Random Bipartite Networks

 last updated：2022／08／29，00：04：32 EDTPrinciples of Complex Systems，Vols．1，2，\＆3D CSYS／MATH 300，303，\＆394，2022－2023｜＠pocsvox

Prof．Peter Sheridan Dodds｜＠peterdodds
Computational Story Lab I Vermont Complex Systems Center Santa Fe Institute｜University of Vermont
\qquad

Outline

Introduction

Basic story

References
$\underset{\text {＠opocssox }}{\substack{\text { Pocs }}}$ Random Bipartic
Networks
\qquad Basic story
References

＂Flavor network and the principles of food pairing＂

Nature Scientific Reports，1，196，2011．${ }^{[1]}$

introduction

Basic story References
troduction
sic story
References
（min ${ }^{\circ} 1$
sace 6 of 43

Pocs
＠pocsvox
:---

Basic story
References

＂The Product Space Conditions the
Development of Nations＂$\overline{\text { Do }}$
Hidalgo et al．，
Science，317，482－487，2007．${ }^{\text {［6］}}$
eferences

Guimerà et al．，Science 2005：${ }^{[5]}$＂Team Assembly Mechanisms Determine
Collaboration Network
Structure and Team Performance＂
Broadway musical industry
Scientific collaboration in Social Psychology， Economics，Ecology， and Astronomy．

Random bipartite networks：
We＇ll follow this rather well cited［ \mathcal{Z} paper：
\square＂Random graphs with arbitrary degree Newman，Strogatz，and Watts，
Phys．Rev．E，64，026118，2001．${ }^{[7]}$

$\}$

Example of a bipartite affiliation network and the induced networks：

，Center：A small story－trope bipartite graph．${ }^{[2]}$ Induced trope network and the induced story network are on the left and right．
\＆The dashed edge in the bipartite affiliation network indicates an edge added to the system， resulting in the dashed edges being added to the two induced networks．

$\xrightarrow[\text { Pocs }]{\text {＠pocssox }}$
Usual helpers for understanding network＇s
Randomly select an edge connecting a 䀠to a \＆
Probability the 䀠 contains k other tropes：
\＆Probability the $\&$ is in k other stories：

$$
R_{k}^{(\oslash)}=\frac{(k+1) P_{k+1}^{(\ell)}}{\sum_{j=0}^{N_{\ell}}(j+1) P_{j+1}^{(\ell)}}=\frac{(k+1) P_{k+1}^{(\ell)}}{\langle k\rangle_{\oslash}} .
$$

\＆$R_{\text {ind }, k}^{\left(8-\text { 朋 }^{2}\right)}=$ probability a random edge leads to a 䀠 which is connected to k other stories by sharing at least one 8 ．
\＆$R_{\text {ind }, k}^{(\mathbb{1 8}-8)}=$ probability a random edge leads to a 8 which is connected to k other tropes by co－occurring in at least one 䁌。
Goal：find these distributions \square ．
Another goal：find the induced distribution of component sizes and a test for the presence or absence of a giant component．
Unrelated goal：be 10\％happier／weep less．

Generating Function Madness

Yes，we＇re doing it：
踝 $F_{\text {（母⿴囗十 }}(x)=\sum_{k=0}^{\infty} P_{k}^{(\mathbb{B})} x^{k}$
绍 $F_{P(\varnothing)}(x)=\sum_{k=0}^{\infty} P_{k}^{(8)} x^{k}$
的 $F_{R \text { 田 }}(x)=\sum_{k=0}^{\infty} R_{k}^{(\mathbb{B \exists)})} x^{k}=\frac{F_{p}^{\prime}(x)}{\left.F_{P(\mathbb{B}}^{\prime}\right)^{(1)}}$
\＆$F_{R^{(\vartheta)}}(x)=\sum_{k=0}^{\infty} R_{k}^{(8)} x^{k}=\frac{F_{P}^{\prime}(x)}{F_{P(\vartheta)}^{\prime}(1)}$

The usual goodness：
领 Normalization：$F_{P(\mathbb{B})}(1)=F_{P^{(\ell)}}(1)=1$ ．
Means：$F_{P(\mathbb{B})}^{\prime}(1)=\langle k\rangle_{\text {国 }}$ and $F_{P())}^{\prime}(1)=\langle k\rangle_{8}$
$\underset{\text { Pocs }}{\text {＠pocsvox }}$
We strap these in as well：

\＆$F_{P_{\text {ind }}^{\text {of }}}(x)=\sum_{k=0}^{\infty} P_{\text {ind }, k^{(\ell)}} x^{k}$
\＆$F_{\left.R_{\text {ind }}^{(\ell-\mathbb{B}}\right)}(x)=\sum_{k=0}^{\infty} R_{\text {ind }, k}^{(8-\text { 目 })} x^{k}$

So how do all these things connect？
We＇re again performing sums of a randomly chosen number of randomly chosen numbers．
We use one of our favorite sneaky tricks

$$
W=\sum_{i=1}^{U} V^{(i)} \rightleftharpoons F_{W}(x)=F_{U}\left(F_{V}(x)\right)
$$

Induced distributions are not straightforward：

View this as $P_{\text {ind }, k}^{(\text {（1）})}$（the probability a story shares tropes with k other stories）．${ }^{[7]}$
Result of purely random wiring with Poisson distributions for affiliation numbers
昭 Parameters：$N_{\text {眠 }}=10^{4}, ~ N_{8}=10^{5}$ ， $\langle k\rangle_{\text {粗 }}=1.5$ ，and $\langle k\rangle_{8}=15$ ．
Pocs
Qepocsvox
Random Bipartite
Networks
Introduction
Basictory
References

＊i has 3 affiliations
＊i has degree 6 in

＊seens i has 3 outgoing edges
＊but depents on which
edge we mitalty choose
＊fine for distributions
$\underset{\text { Pocs }}{\substack{\text { Pocssvox }}}$

Basic story
eferences

－Randomly choose a 8 ，find the stories its part of (U) ，and then find how many other tropes are part of those stories (V) ：

$$
F_{P_{\text {ind }}^{(\text {() }}}(x)=F_{P_{\text {ind }}^{(\vartheta)}}(x)=F_{P^{(\vartheta)}}\left(F_{R^{(\boxplus)}}(x)\right)
$$

Find the 8 at the end of a randomly chosen affiliation edge leaving a story，find the number of other stories that use it (U) ，and then find how many other tropes are in those stories (V) ：

$$
F_{R_{\text {ind }}^{(\mathbb{1}}(\mathbb{Q})}(x)=F_{R^{(\vartheta)}}\left(F_{R^{(\mathbb{B})}}(x)\right)
$$

Let＇s do some good：
Average number of stories connected to a story through trope－space：

$$
\langle k\rangle_{\mathbb{Z B}, \text { ind }}=F_{P_{\text {ind }}^{(H)}}^{\prime}(1)
$$

8

$$
\begin{aligned}
& \text { So: }\langle k\rangle_{\text {国, ind }}=\left.\frac{\mathrm{d}}{\mathrm{~d} x} F_{P(\mathbb{1})}\left(F_{R^{(\vartheta)}}(x)\right)\right|_{x=1} \\
& =F_{R^{\ominus)}}^{\prime}(1) F_{P \text { 田 }}^{\prime}\left(F_{R^{\ominus}}(1)\right)=F_{R^{\ominus}}^{\prime}(1) F_{P(\mathbb{B})}^{\prime}(1)
\end{aligned}
$$

Similarly，the average number of tropes connected to a random trope through stories：

$$
\langle k\rangle_{8, \text { ind }}=F_{R(\mathbb{1})}^{\prime}(1) F_{P^{(Q)}}^{\prime}(1)
$$

．In terms of the underlying distributions，we have：

Spreading through bipartite networks：

昭 View as bouncing back and forth between the two connected populations．${ }^{[2]}$
Actual spread may be within only one population （ideas between between people）or through both （failures in physical and communication networks）．
解 The gain ratio for simple contagion on a bipartite random network＝product of two gain ratios．
orcs
Qpocsvox Random Bipartite
Networks ntroductio Basis story References
a路（in） 1_{0}°

$$
\text { sac } 31 \text { of } 43
$$

$$
\begin{aligned}
& \text { Poss } \\
& \text { @pocsvox }
\end{aligned}
$$

$$
\begin{aligned}
& \text { @pocssox } \\
& \text { Random Biparty }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Random Bipartite } \\
& \text { Networks }
\end{aligned}
$$

Introduction

Basic story
References

$$
\begin{aligned}
& \text { min } \left\lvert\, \begin{array}{l}
\text { on } \\
\text { mac } 32 \text { of } 43
\end{array}\right.
\end{aligned}
$$

In terms of the underlying distributions：

$$
\langle k\rangle_{R, \text { 国, ind }}=\frac{\langle k(k-1)\rangle_{\circledast ⿴}}{\langle k\rangle_{\text {® }}} \frac{\langle k(k-1)\rangle_{8}}{\langle k\rangle_{8}}
$$

We have a giant component in both induced networks when

$$
\langle k\rangle_{R, \text { 囲, ind }} \equiv\langle k\rangle_{R, 8, \text { ind }}>1
$$

See this as the product of two gain ratios． \＃excellent \＃physics
We can mess with this condition to make it mathematically pleasant and pleasantly inscrutable：

$$
\sum_{k=0}^{\infty} \sum_{k^{\prime}=0}^{\infty} k k^{\prime}\left(k k^{\prime}-k-k^{\prime}\right) P_{k}^{(\mathbb{1}])} P_{k^{\prime}}^{(8)}=0 .
$$

Simple example for finding the degree distributions for the two induced networks in a random bipartite affiliation structure：
Set $P_{k}^{(\mathbb{B D})}=\delta_{k 3}$ and leave $P_{k}^{(8)}$ arbitrary．
Each story contains exactly three tropes．
We have $F_{P \text { 田 }}(x)=x^{3}$ and $F_{\left.R^{(\boxplus)}\right)}(x)=x^{2}$ 。
路 Using $F_{P_{\text {ind }}^{(\mathbb{B})}}(x)=F_{P^{(\mathbb{B})}}\left(F_{R^{(\gamma)}}(x)\right)$ and $F_{P_{\text {ind }}^{(\ell)}}(x) \stackrel{\text { ind }}{=} F_{P^{(\ell)}}\left(F_{\left.R^{(⿴ 囗}\right)}(x)\right)$ we have $F_{\left.P_{\text {ind }}^{(\mathbb{B n}}\right)}(x)=\left[F_{R^{(\theta)}}(x)\right]^{3}$ and $F_{P_{\text {ind }}^{(\theta)}}(x)=F_{P^{(\theta)}}\left(x^{2}\right)$ ．
Even more specific：If each trope is found in exactly two stories then $F_{P^{(8)}}=x^{2}$ and $F_{R^{(\theta)}}=x$ giving $F_{P_{\text {ind }}^{(\text {Big })}}(x)=x^{3}$ and $F_{P_{\text {ind }}^{(\text {（i）}}}(x)=x^{4}$ ．
\＆Yes for giant components \square ：
$\langle k\rangle_{R, \text { 四 } \mathrm{B}, \text { ind }} \equiv\langle k\rangle_{R, 8, \text { ind }}=2 \cdot 1=2>1$.

Boards and Directors：${ }^{[7]}$

Exponentialish distribution for number of boards each director sits on．
Boards typically have 5 to 15 directors．
\＆Plan：Take these distributions，presume random bipartite structure and generate co－director network and board interlock network．
$\underset{\substack{\text { Poss } \\ \text {＠pocssvox }}}{\text { and }}$ ton networks．

	Clustering C		Average degree z	
Network	Theory	Actual	Theory	Actual
Company directors	0.590	0.588	14.53	14.44
Movie actors	0.084	0.199	125.6	113.4
Physics（arxiv．org）	0.192	0.452	16.74	9.27
Biomedicine（MEDLINE）	0.042	0.088	18.02	16.93

R Random bipartite affiliation network assumption produces decent matches for some basic quantities．

$$
\text { Boards and Directors: }{ }^{[7]}
$$

Jolly good：Works very well for co－directors．
For comparison，the dashed line is a Poisson with the empirical average degree．
poss
Random Bipartite
random Bipartite
introduction
sic story
eferences

Boards and Directors：${ }^{[7]}$

Wins less bananas for the board interlock network．
Assortativity is the reason：Directors who sit on many boards tend to sit on the same boards
Note：The term assortativity was not used in this 2001 paper．
$\stackrel{\text { Pecs }}{\text {＠＠ocsvox }}$
Random Bipartite

o come:

B Distributions of component size.
Simpler computation for the giant component condition.
\& Contagion.
Testing real bipartite structures for departure from randomness.

Nutshell:

R Random bipartite networks model many real systems well.
嚧 Crucial improvement over simple random networks.
We can find the induced distributions and determine connectivity/contagion condition.

References I

[1] Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A.-L. Barabási.
Flavor network and the principles of food pairing. Nature Scientific Reports, 1:196, 2011. pdf[
[2] P. S. Dodds.
A simple person's approach to understanding the contagion condition for spreading processes on generalized random networks.
In S. Lehmann and Y.-Y. Ahn, editors, Spreading
Dynamics in Social Systems. 2017. pdf©
[3] L. P. García-Pérez, M. A. Serrano, and M. Boguñá. The complex architecture of primes and natural numbers, 2014.
http://arxiv.org/abs/1402.3612. pdf[^
$\xrightarrow[\text { Pocs }]{\text { @pocsvox }}$ Random Bipart
\qquad Basic story References
[4] K.-I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A.-L. Barabási.
The human disease network
Proc. Natl. Acad. Sci., 104:8685-8690, 2007. pdf[T
[5] R. Guimerà, B. Uzzi, J. Spiro, and L. A. N. Amaral. Team assembly mechanisms determine collaboration network structure and team performance.
Science, 308:697-702, 2005. pdf[^Z
[6] C. A. Hidalgo, B. Klinger, A.-L. Barabási, and R. Hausman.

The product space conditions the development of nations.
Science, 317:482-487, 2007. pdf[^
asic story References Random graphs with arbitrary degree distribution and their applications
Phys. Rev. E, 64:026118, 2001. pdf[
[8] C.-Y. Teng, Y.-R. Lin, and L. A. Adamic Recipe recommendation using ingredient networks.
In Proceedings of the 3rd Annual ACM Web Science Conference, WebSci '12, pages 298-307, New York, NY, USA, 2012. ACM. pdf[
References III
Bipartite
$\xrightarrow{\text { Pocs }}$ @pocsvox
andom sipartite

