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Flavor network and the principles of food
pairing
Yong-Yeol Ahn1,2,3*, Sebastian E. Ahnert1,4*, James P. Bagrow1,2 & Albert-László Barabási1,2

1Center for Complex Network Research, Department of Physics Northeastern University, Boston, MA 02115, 2Center for Cancer
Systems Biology Dana-Farber Cancer Institute, Harvard University, Boston, MA 02115, 3School of Informatics and Computing
Indiana University, Bloomington, IN 47408, 4Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge,
Cambridge CB3 0HE, UK.

The cultural diversity of culinary practice, as illustrated by the variety of regional cuisines, raises the question
of whether there are any general patterns that determine the ingredient combinations used in food today or
principles that transcend individual tastes and recipes. We introduce a flavor network that captures the flavor
compounds shared by culinary ingredients.Western cuisines show a tendency to use ingredient pairs that share
many flavor compounds, supporting the so-called food pairing hypothesis. By contrast, East Asian cuisines tend
to avoid compound sharing ingredients. Given the increasing availability of information on food preparation,
our data-driven investigation opens new avenues towards a systematic understanding of culinary practice.

A
s omnivores, humans have historically faced the difficult task of identifying and gathering food that
satisfies nutritional needs while avoiding foodborne illnesses1. This process has contributed to the current
diet of humans, which is influenced by factors ranging from an evolved preference for sugar and fat to

palatability, nutritional value, culture, ease of production, and climate1–9. The relatively small number of recipes
in use (,106, e.g. http://cookpad.com) compared to the enormous number of potential recipes (.1015, see
Supplementary Information Sec S1.2), together with the frequent recurrence of particular combinations in
various regional cuisines, indicates that we are exploiting but a tiny fraction of the potential combinations.
Although this pattern itself can be explained by a simple evolutionary model10 or data-driven approaches11, a
fundamental question still remains: are there any quantifiable and reproducible principles behind our choice of
certain ingredient combinations and avoidance of others?

Although many factors such as colors, texture, temperature, and sound play an important role in food
sensation12–15, palatability is largely determined by flavor, representing a group of sensations including odors
(due to molecules that can bind olfactory receptors), tastes (due to molecules that stimulate taste buds), and
freshness or pungency (trigeminal senses)16. Therefore, the flavor compound (chemical) profile of the culinary
ingredients is a natural starting point for a systematic search for principles that might underlie our choice of
acceptable ingredient combinations.

A hypothesis, which over the past decade has received attention among some chefs and food scientists, states that
ingredients sharing flavor compounds are more likely to taste well together than ingredients that do not17 (also see
http://www.foodpairing.com). This food pairing hypothesis has been used to search for novel ingredient combina-
tions and has prompted, for example, some contemporary restaurants to combine white chocolate and caviar, as they
share trimethylamine and other flavor compounds, or chocolate and blue cheese that share at least 73 flavor
compounds. As we search for evidence supporting (or refuting) any ‘rules’ that may underlie our recipes, we must
bear in mind that the scientific analysis of any art, including the art of cooking, is unlikely to be capable of explaining
every aspect of the artistic creativity involved. Furthermore, there are many ingredients whose main role in a recipe
may not be only flavoring but something else as well (e.g. eggs’ role to ensure mechanical stability or paprika’s role to
add vivid colors). Finally, the flavor of a dish owes as much to the mode of preparation as to the choice of particular
ingredients12,18,19. However, our hypothesis is that, given the large number of recipes we use in our analysis (56,498),
such factors can be systematically filtered out, allowing for the discovery of patterns that may transcend specific
dishes or ingredients.

Here we introduce a network-based approach to explore the impact of flavor compounds on ingredient
combinations. Efforts by food chemists to identify the flavor compounds contained in most culinary ingredients
allows us to link each ingredient to 51 flavor compounds on average20 1. We build a bipartite network21–26
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consisting of two different types of nodes: (i) 381 ingredients used in
recipes throughout the world, and (ii) 1,021 flavor compounds that
are known to contribute to the flavor of each of these ingredients
(Fig. 1A). A projection of this bipartite network is the flavor network
in which two nodes (ingredients) are connected if they share at least
one flavor compound (Fig. 1B). The weight of each link represents
the number of shared flavor compounds, turning the flavor network
into a weighted network27,22,23.While the compound concentration in
each ingredient and the detection threshold of each compound
should ideally be taken into account, the lack of systematic data
prevents us from exploring their impact (see Sec S1.1.2 on data
limitations).
Since several flavor compounds are shared by a large number of

ingredients, the resulting flavor network is too dense for direct visu-
alization (average degree kh i^214). We therefore use a backbone
extraction method28,29 to identify the statistically significant links for
each ingredient given the sum of weights characterizing the particu-
lar node (Fig. 2), see SI for details). Not surprisingly, each module in
the network corresponds to a distinct food class such as meats (red)

or fruits (yellow). The links between modules inform us of the flavor
compounds that hold different classes of foods together. For
instance, fruits and dairy products are close to alcoholic drinks,
and mushrooms appear isolated, as they share a statistically signifi-
cant number of flavor compounds only with other mushrooms.
The flavor network allows us to reformulate the food pairing

hypothesis as a topological property: do we more frequently use
ingredient pairs that are strongly linked in the flavor network or
do we avoid them? To test this hypothesis we need data on ingredient
combinations preferred by humans, information readily available in
the current body of recipes. For generality, we used 56,498 recipes
provided by two American repositories (epicurious.com and allreci-
pes.com) and to avoid a distinctly Western interpretation of the
world’s cuisine, we also used a Korean repository (menupan.com).
The recipes are grouped into geographically distinct cuisines (North
American,Western European, Southern European, Latin American,
and East Asian; see Fig. 1 and Table S2). The average number of
ingredients used in a recipe is around eight, and the overall distri-
bution is bounded (Fig. 1C), indicating that recipes with a very large

Figure 1 | Flavor network. (A) The ingredients contained in two recipes (left column), together with the flavor compounds that are known to be present
in the ingredients (right column). Each flavor compound is linked to the ingredients that contain it, forming a bipartite network. Some compounds
(shown in boldface) are shared bymultiple ingredients. (B) If we project the ingredient-compound bipartite network into the ingredient space, we obtain
the flavor network, whose nodes are ingredients, linked if they share at least one flavor compound. The thickness of links represents the number of flavor
compounds two ingredients share and the size of each circle corresponds to the prevalence of the ingredients in recipes. (C) The distribution of recipe size,
capturing the number of ingredients per recipe, across the five cuisines explored in our study. (D) The frequency-rank plot of ingredients across the five
cuisines show an approximately invariant distribution across cuisines.

www.nature.com/scientificreports
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1Center for Complex Network Research, Department of Physics Northeastern University, Boston, MA 02115, 2Center for Cancer
Systems Biology Dana-Farber Cancer Institute, Harvard University, Boston, MA 02115, 3School of Informatics and Computing
Indiana University, Bloomington, IN 47408, 4Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge,
Cambridge CB3 0HE, UK.

The cultural diversity of culinary practice, as illustrated by the variety of regional cuisines, raises the question
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various regional cuisines, indicates that we are exploiting but a tiny fraction of the potential combinations.
Although this pattern itself can be explained by a simple evolutionary model10 or data-driven approaches11, a
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certain ingredient combinations and avoidance of others?

Although many factors such as colors, texture, temperature, and sound play an important role in food
sensation12–15, palatability is largely determined by flavor, representing a group of sensations including odors
(due to molecules that can bind olfactory receptors), tastes (due to molecules that stimulate taste buds), and
freshness or pungency (trigeminal senses)16. Therefore, the flavor compound (chemical) profile of the culinary
ingredients is a natural starting point for a systematic search for principles that might underlie our choice of
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ingredients sharing flavor compounds are more likely to taste well together than ingredients that do not17 (also see
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tions and has prompted, for example, some contemporary restaurants to combine white chocolate and caviar, as they
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may not be only flavoring but something else as well (e.g. eggs’ role to ensure mechanical stability or paprika’s role to
add vivid colors). Finally, the flavor of a dish owes as much to the mode of preparation as to the choice of particular
ingredients12,18,19. However, our hypothesis is that, given the large number of recipes we use in our analysis (56,498),
such factors can be systematically filtered out, allowing for the discovery of patterns that may transcend specific
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or very small number of ingredients are rare. By contrast, the popu-
larity of specific ingredients varies over four orders of magnitude,
documenting huge differences in how frequently various ingredients
are used in recipes (Fig. 1D), as observed in10. For example, jasmine
tea, Jamaican rum, and 14 other ingredients are each found in only a
single recipe (see SI S1.2), but egg appears in as many as 20,951, more
than one third of all recipes.

Results
Figure 3D indicates that North American and Western European
cuisines exhibit a statistically significant tendency towards recipes
whose ingredients share flavor compounds. By contrast, East Asian
and Southern European cuisines avoid recipes whose ingredients
share flavor compounds (see Fig. 3D for the Z-score, capturing the
statistical significance ofDNs). The systematic difference between the
East Asian and the North American recipes is particularly clear if we
inspect the P Nrand

s

! "
distribution of the randomized recipe dataset,

compared to the observed number of shared compunds character-
izing the two cuisines, Ns. This distribution reveals that North
American dishes use far more compound-sharing pairs than
expected by chance (Fig. 3E), and the East Asian dishes far fewer
(Fig. 3F). Finally, we generalize the food pairing hypothesis by
exploring if ingredient pairs sharing more compounds are more likely
to be used in specific cuisines. The results largely correlate with our
earlier observations: in North American recipes, the more compounds
are shared by two ingredients, the more likely they appear in recipes.
By contrast, in East Asian cuisine the more flavor compounds two

ingredients share, the less likely they are used together (Fig. 3G and
3H; see SI for details and results on other cuisines).
What is the mechanism responsible for these differences? That is,

does Fig. 3C through H imply that all recipes aim to pair ingredients
together that share (North America) or do not share (East Asia)
flavor compounds, or could we identify some compounds respons-
ible for the bulk of the observed effect? We therefore measured the
contribution xi (see Methods) of each ingredient to the shared com-
pound effect in a given cuisine c, quantifying to what degree its
presence affects the magnitude of DNs.
In Fig. 3I,J we show as a scatter plot xi (horizontal axis) and the

frequency fi for each ingredient in North American and East Asian
cuisines. The vast majority of the ingredients lie on the xi 5 0 axis,
indicating that their contribution toDNs is negligible. Yet, we observe
a few frequently used outliers, which tend to be in the positive xi
region for North American cuisine, and lie predominantly in the
negative region for East Asian cuisine. This suggests that the food
pairing effect is due to a few outliers that are frequently used in a
particular cuisine, e.g. milk, butter, cocoa, vanilla, cream, and egg in
the North America, and beef, ginger, pork, cayenne, chicken, and
onion in East Asia. Support for the definitive role of these ingredients
is provided in Fig. 3K,L where we removed the ingredients in order
of their positive (or negative) contributions to DNs in the North
American (or East Asian) cuisine, finding that the z-score, which
measures the significance of the shared compound hypothesis, drops
below two after the removal of only 13 (5) ingredients from North
American (or East Asian) cuisine (see SI S2.2.2). Note, however, that

Figure 2 | The backbone of the flavor network. Each node denotes an ingredient, the node color indicates food category, and node size reflects the
ingredient prevalence in recipes. Two ingredients are connected if they share a significant number of flavor compounds, link thickness representing the
number of shared compounds between the two ingredients. Adjacent links are bundled to reduce the clutter. Note that themap shows only the statistically
significant links, as identified by the algorithm of Refs.28,29 for p-value 0.04. A drawing of the full network is too dense to be informative.We use, however,
the full network in our subsequent measurements.

www.nature.com/scientificreports
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ABSTRACT
The recording and sharing of cooking recipes, a human ac-
tivity dating back thousands of years, naturally became an
early and prominent social use of the web. The resulting
online recipe collections are repositories of ingredient com-
binations and cooking methods whose large-scale and vari-
ety yield interesting insights about both the fundamentals of
cooking and user preferences. At the level of an individual
ingredient we measure whether it tends to be essential or can
be dropped or added, and whether its quantity can be modi-
fied. We also construct two types of networks to capture the
relationships between ingredients. The complement network
captures which ingredients tend to co-occur frequently, and
is composed of two large communities: one savory, the other
sweet. The substitute network, derived from user-generated
suggestions for modifications, can be decomposed into many
communities of functionally equivalent ingredients, and cap-
tures users’ preference for healthier variants of a recipe. Our
experiments reveal that recipe ratings can be well predicted
with features derived from combinations of ingredient net-
works and nutrition information.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data mining

General Terms
Measurement; Experimentation

Keywords
ingredient networks, recipe recommendation

1. INTRODUCTION
The web enables individuals to collaboratively share knowl-

edge and recipe websites are one of the earliest examples of
collaborative knowledge sharing on the web. Allrecipes.com,

the subject of our present study, was founded in 1997, years
ahead of other collaborative websites such as the Wikipedia.
Recipe sites thrive because individuals are eager to share
their recipes, from family recipes that had been passed down
for generations, to new concoctions that they created that
afternoon, having been motivated in part by the ability to
share the result online. Once shared, the recipes are imple-
mented and evaluated by other users, who supply ratings
and comments.

The desire to look up recipes online may at first appear
odd given that tombs of printed recipes can be found in
almost every kitchen. The Joy of Cooking [12] alone con-
tains 4,500 recipes spread over 1,000 pages. There is, how-
ever, substantial additional value in online recipes, beyond
their accessibility. While the Joy of Cooking contains a
single recipe for Swedish meatballs, Allrecipes.com hosts
“Swedish Meatballs I”, “II”, and “III”, submitted by different
users, along with 4 other variants, including “The Amaz-
ing Swedish Meatball”. Each variant has been reviewed,
from 329 reviews for “Swedish Meatballs I” to 5 reviews
for “Swedish Meatballs III”. The reviews not only provide
a crowd-sourced ranking of the different recipes, but also
many suggestions on how to modify them, e.g. using ground
turkey instead of beef, skipping the “cream of wheat” be-
cause it is rarely on hand, etc.

The wealth of information captured by online collabora-
tive recipe sharing sites is revealing not only of the fun-
damentals of cooking, but also of user preferences. The co-
occurrence of ingredients in tens of thousands of recipes pro-
vides information about which ingredients go well together,
and when a pairing is unusual. Users’ reviews provide clues
as to the flexibility of a recipe, and the ingredients within
it. Can the amount of cinnamon be doubled? Can the nut-
meg be omitted? If one is lacking a certain ingredient, can a
substitute be found among supplies at hand without a trip
to the grocery store? Unlike cookbooks, which will contain
vetted but perhaps not the best variants for some individu-
als’ tastes, ratings assigned to user-submitted recipes allow
for the evaluation of what works and what does not.

In this paper, we seek to distill the collective knowledge
and preference about cooking through mining a popular
recipe-sharing website. To extract such information, we first
parse the unstructured text of the recipes and the accom-
panying user reviews. We construct two types of networks
that reflect different relationships between ingredients, in
order to capture users’ knowledge about how to combine in-
gredients. The complement network captures which ingre-
dients tend to co-occur frequently, and is composed of two
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cherry gelatin

graham cracker

low fat cottage cheese

pork shoulder roast

heavy whipping cream tofu

bok choy

butter cracker

baking soda

pimento pepper

milk powder

chorizo sausage

ladyfinger

steak sauce

crimushroom

radishe

shiitake mushroom

pesto

brownie mix

pumpkin pie spice

rye flour

cardamom

saffron thread

linguine

corn

fat free sour cream

basmati rice

bittersweet chocolate

bay

corn chip

cracker

french green bean

poppy seed

vegetable oil

grape tomato

pizza crust dough

low sodium beef broth

club soda

lard

soy sauce
panko bread

couscou

crab meat

mango

unpastry shell

catalina dressing

pasta shell

italian salad dressing

mexican corn

decorating gel

italian bread

napa cabbage

onion powder

white wine vinegar

cocktail rye bread

basil sauce

crouton

brown gravy mix

barbeque sauce

apple cider vinegar

hoagie roll

milk chocolate candy kisse

flounder

salt black pepper

maraschino cherry juice

chow mein noodle

tiger prawn

banana pepper

cranberry

vermicelli pasta

root beer

strawberry jam

lemon gelatin mix

creamed corn

pretzel

pie shell

sunflower kernel

rump roast

romaine

vegetable stock

lemon pepper seasoning

guacamole

louisiana hot sauce

cabbage

yellow onion

superfine sugar

orange peel

raspberry

cumin seed
candied mixed fruit peel

cream of coconut

bow tie pasta

creme fraiche

currant

pork chop

turkey gravy

fat free half and half

chicken ramen noodle

wooden skewer

whipping cream

mace

seasoning salt

mozzarella cheese
pasta sauce

lean pork

broccoli floweret

tomatillo

lemonade

tomato paste

caesar dressing

basil pesto

melon liqueur

coconut milk

whole wheat pastry flour

muenster cheese

lump crab meat

angel food cake

ring

cheese tortellini

spiral pasta

vanilla pudding

caulifloweret

smoked sausage

hot dog

pita bread

cocoa powder

garbanzo bean

tart apple

wheat bran

hot pepper sauce

chili

refried bean

salmon steak

white cheddar cheese

low fat mayonnaise

grapefruit

dijon mustard

tomato juice

yellow squash

baking apple

cream of tartar

vodka

rye bread

white chip

flat iron steak

linguine pasta

fennel

whole wheat bread

baking mix

alfredo pasta sauce

margarine

confectioners' sugar
fruit gelatin mix

pork

balsamic vinegar

pork loin chop

jicama

pre pizza crust

triple sec

teriyaki sauce

cola carbonated beverage

polish sausage

cracked black pepper

poblano chile pepper

individually wrapped caramel

roast beef

bread stuffing mix

eggnog

pear

caramel

beet

worcestershire sauce

chicken stock

horseradish

semisweet chocolate chip

basil

red grape

plum

cinnamon sugar

fajita seasoning

rice noodle

powdered milk

star anise pod

short grain rice

ramen noodle

vegetable

coconut oil

whiskey

lime gelatin mix

peanut oil

ham

ginger root

lima bean

pimento stuffed green olive

hoisin sauce

round steak

stuffing

part skim ricotta cheese

broiler fryer chicken up

milk chocolate chip

turbinado sugar

vegetable shortening

tarragon vinegar

golden delicious apple

turkey

rigatoni pasta

stuffing mix

milk

juiced

burgundy wine

red kidney bean

dill

candied pineapple

german chocolate cake mix

arborio rice

sugar free vanilla pudding mix

pine nut

green apple

cucumber oregano
pearl onion

stuffed green olive

whipped topping mix

broccoli

pinto bean

pasta

beef short rib

gelatin

garlic powder

rutabaga

chicken liver

pepperjack cheese

herb

lemon gras

sweet potato

pineapple ring

parsley flake

pie filling

spice cake mix

butterscotch chip

greek yogurt

vanilla ice cream

seafood seasoning

parsnip

applesauce

chinese five spice powder

salt pepper

beef broth

cherry tomato

sage

vanilla

vital wheat gluten

artichoke heart

mixed berry

bacon dripping

self rising flour

nilla wafer

navy bean

bacon

egg yolk

wonton wrapper

chocolate pudding mix

salsa

coconut

tomato based chili sauce

marsala wine

mussel

manicotti shell

anise extract

mustard seed

nutmeg

cayenne pepper

black bean pepper
okra

asparagu

mustard powder

firmly brown sugar

balsamic vinaigrette dressing

chicken breast
oyster

ditalini pasta

old bay seasoning tm

brown rice

process american cheese

chocolate

miso paste

pineapple

iceberg lettuce

pearl barley

oat

greek seasoning

biscuit

clove

browning sauce

chicken bouillon powder

green pea

bread dough

cream cheese
peanut butter chip

silken tofu

pineapple chip

sea scallop

ricotta cheese

papaya

red cabbage

egg substitute

zesty italian dressing

devil's food cake mix

bagel

sour mix

lamb

irish stout beer

sea salt

romaine lettuce

kalamata olive

salt

monosodium glutamate

rice wine

white potato

rum extract

grape jelly

crescent roll dough

beer

phyllo dough

fettuccine pasta

chili seasoning mix

biscuit mix

candy coated chocolate

green cabbage

ranch bean

cream of celery soup

apple pie filling

caper

nectarine

white mushroom

banana

orange gelatin mix

1% buttermilk

apple jelly

dinner roll

sugar pumpkin

salad green

shrimp

cheese ravioli

chicken wing

sour cream

saltine

cornmeal

mixed vegetable

beef tenderloin

sherry

rotini pasta

mexican cheese blend

kosher salt black pepper

mayonnaise

lobster

white onion

chocolate cookie

white bread

french baguette

bread

vanilla frosting

anise seed

ranch dressing mix

wild rice

hot

canadian bacon

cornflakes cereal

wax bean

cantaloupe

non fat yogurt

lite whipped topping

spaghetti squash

egg roll wrapper

solid pack pumpkin

recipe pastry

asafoetida powder

coffee powder

italian sauce

amaretto liqueur

shortening

turmeric

semolina flour

pomegranate juice

corned beef

skewer

shallot
spanish onion

tapioca

provolone cheese

chile sauce

vanilla bean

chile pepper
angel hair pasta

pumpkin

tilapia

brie cheese

cottage cheese

banana liqueur

lemon

smoked salmon

ginger paste

brown mustard

peanut butter

escarole

sour milk

olive oil

country pork rib

pastry shell

adobo seasoning

candy coated milk chocolate

curry
ghee

alfredo sauce

yellow cake mix

granny smith apple

beef chuck

chocolate hazelnut spread

maple syrup

squid

gingersnap cooky

raspberry gelatin

molasse

lemon cake mix

fish stock

cook

grenadine syrup

puff pastry

rum

grapefruit juice

tahini

black pepper
butternut squash

key lime juice

sirloin steak

macaroni

butter shortening

brown lentil

chicken broth

chili bean

pickling spice

yellow food coloring

great northern bean

mixed nut

green chile

salmon

english muffin

coffee liqueur

non fat milk powder

buttermilk

distilled white vinegar

golden syrup

powdered fruit pectin

green chily

grape

raspberry gelatin mix

low fat sour cream

topping

pineapple juice

red lettuce

orange zest

ketchup

chunk chicken

steak seasoning

sandwich roll

crystallized ginger

kosher salt

roma tomato

red bean

red candied cherry

sesame seed

beef stock

cashew

popped popcorn

apricot nectar

any fruit jam

processed cheese food

red pepper

coleslaw mix

white cake mix

cherry pie filling

canola oil

whole wheat flour

honey

long grain

marinara sauce

yellow summer squash

toffee baking bit

whole milk

trout

onion separated

low fat cream cheese

corn oil

oat bran

cream of potato soup

allspice berry

mandarin orange

cumin

saltine cracker

swiss chard

fenugreek seed

fish sauce

eggplant

baby corn

cider vinegar

orange sherbet

debearded

beef bouillon

kernel corn

vanilla vodka

chicken leg quarter

mint
feta cheese

lime juice

raspberry jam

cooking oil

white corn

herb stuffing mix

lemon lime soda

pork sausage

ziti pasta

orange marmalade

yogurt

bean

ginger garlic paste

crescent dinner roll

scallop

walnut oil

smoked ham

red food coloring

triple sec liqueur

fat free evaporated milk

walnut
baking chocolate

blueberry

caramel ice cream topping

bacon grease

fat free italian dressing

steak

fig

miracle whip ‚Ñ

potato starch

luncheon meat

brandy based orange liqueur

smoked paprika

puff pastry shell

raspberry preserve

apple butter

tomato sauce

white rice

beef stew meat

taco seasoning mix

date

whipped topping

marshmallow

coffee

butterscotch schnapp

red wine vinegar

orange

chicken thigh

mild italian sausage

blueberry pie filling

yeast

lime peel

rice flour

chocolate cake mix

barbecue sauce

monterey jack cheese

halibut

beef round steak

seed

sour cherry

pork sparerib

orange roughy

barley nugget cereal

leek

maraschino cherry

chickpea

fettuccini pasta

orange juice

blue cheese dressing

yam

garam masala

black eyed pea

penne pasta

serrano chile pepper

flour
chive

marjoram

herb stuffing

beef sirloin

beef

maple extract

bamboo shoot

lemon extract

meat tenderizer

kielbasa sausage

low sodium chicken broth

asparagus

cod

italian seasoning

lime gelatin

vegetable bouillon

andouille sausage

collard green

blackberry

beef gravy

green grape

tamari

fruit

malt vinegar

strawberry gelatin

lemon gelatin

green olive

poultry seasoning

prune

beef consomme

chili powder

dressing

fennel seed

gruyere cheese

jellied cranberry sauce

chipotle pepper

vanilla extract

apricot

linguini pasta

cranberry sauce

port wine

process cheese

cornish game hen

cilantro

green chile pepper

wheat

bread machine yeast

tube pasta

biscuit baking mix

cream corn

spinach

low fat whipped topping

irish cream liqueur

candy

zucchini

mild cheddar cheese

orange gelatin cornstarch

cheese

snow pea

low fat margarine

green candied cherry

vermouth

brandy

white grape juice

corn bread mix

broccoli floret

vidalia onion

cocktail sauce

pickled jalapeno pepper

beaten egg

hamburger bun

black walnut

dill pickle juice

dill pickle relish

habanero pepper

white chocolate chip

veal

powdered non dairy creamer

lasagna noodle

ginger
apricot jam

imitation crab meat

chicken soup base

white bean

tarragon

onion soup mix

thousand island dressing

red lentil

pancake mix

wheat germ

fat free mayonnaise

yukon gold potato

long grain rice

carrot

cauliflower floret

vegetable cooking spray

crawfish tail

peppermint extract

brussels sprout

onion salt buttermilk biscuit

white kidney bean

mango chutney

black olive

meatless spaghetti sauce

curry powder

coriander

red snapper

biscuit dough

sausage

cheddar cheese soup

lettuce

pork loin roast

lemon pepper

red curry paste

egg noodle

hot sauce

raspberry vinegar

butter cooking spray

peach schnapp

egg
spicy pork sausage

mixed fruit

catfish

venison

yellow pepper

carbonated water

pumpkin seed

new potato

lemon juice

chocolate pudding

watermelon

chicken breast half

gorgonzola cheese

buttery round cracker

apple pie spice

process cheese sauce

jasmine rice

lemon pudding mix

cooking sherry

strawberry preserve

french bread

toothpick

sauce

corn tortilla chip

garlic paste

salt free seasoning blend

elbow macaroni
pickle

cream of chicken soup

cardamom pod

persimmon pulp

chicken

liquid smoke

cocoa

pound cake

bell pepper

food coloring

coconut extract

chocolate chip

berry cranberry sauce

red bell pepper

seashell pasta

american cheese

oatmeal

sourdough bread

cornbread

mixed salad green

arugula

oil

parmesan cheese
clam juice

brick cream cheesecereal

italian parsley

milk chocolate

rice wine vinegar

hot dog bun

pistachio pudding mix

curd cottage cheese

garlic salt

chocolate cookie crust

orange extract

cream of mushroom soup

saffron

mushroom

tortilla chip

white hominy

green beans snapped

dill pickle

french onion soup

skim milk

tequila

flax seed

low fat cheddar cheese

red wine

nut

apple cider

candied cherry

cheddar cheese

gingerroot

chocolate frosting

low fat yogurt

peppercorn

pepperoni

artichoke

baby pea

crisp rice cereal

potato chip

coconut cream

angel food cake mix

onion flake

salad shrimp

taco seasoning

champagne

peach

low fat

yellow cornmeal

pork roast

baby spinach

portobello mushroom cap

blue cheese

strawberry gelatin mix

pink lemonade

chestnut

strawberry

oyster sauce

sugar snap pea

kaffir lime

anchovy

stuffed olive

herb bread stuffing mix

half and half

serrano pepper

coconut rum

red apple

cherry

flank steak

round

peppermint candy

butter bean

almond

white vinegar
celery seed

corn syrup
fat free cream cheese

cannellini bean

clam

mustard

scallion

potato flake

parsley

fat free yogurt

pita bread round

red pepper flake

onion

bourbon whiskey

creme de menthe liqueur

golden raisin

pancetta bacon

apple juice

egg white

fontina cheese

kale

asiago cheese

spiced rum

farfalle pasta

lobster tail

mirin

leg of lamb

tomato

zested

sauerkraut

unpie crust

bourbon

lean beef

tuna steak

wild rice mix

raisin

chocolate syrup

juice

cajun seasoning

cauliflowerwater
lemon yogurt

tapioca flour

vanilla yogurt

pimiento

hazelnut liqueur

thyme

part skim mozzarella cheese

mandarin orange segment

cinnamon

corn tortilla

crispy rice cereal

colby monterey jack cheese

apricot preserve

chipotle chile powder

swiss cheese

white wine

baking powder
graham cracker crust

vanilla wafer

lime

sugar based curing mixture

cream cheese spread

celery
olive

simple syrup

asian sesame oil

bacon bit

sharp cheddar cheese

rice vinegar

sea salt black pepper

curry paste

beef chuck roast

butter extract

pork loin

ginger ale

chicken leg

adobo sauce

lime zest

ham hock

watercres

pastry

seasoning

lentil

mascarpone cheese

baker's semisweet chocolate

acorn squash

chunk chicken breast

pepperoni sausage

brown sugar

fusilli pasta

kaiser roll

red delicious apple

honey mustard

unbleached flour

vinegar

spicy brown mustard

chuck roast

candied citron

vegetable combination

beef flank steak

red chile pepper

avocado

quinoa

cake flour

whole wheat tortilla

dill seed

turnip

vegetable broth

sugar
sugar cookie mix neufchatel cheese

coriander seed

apple

vegetable soup mix

chocolate sandwich cooky

colby cheese

sourdough starter

green bean

pecan
softened butter matzo meal

hash brown potato

vanilla pudding mix

pickle relish

noodlered potato

white chocolate

pistachio nut

green food coloring

lemon zest

chutney

splenda

buttermilk baking mix

caraway seedmaple flavoring

taco sauce

chili oil

kiwi

lean turkey

garlic

golden mushroom soup

grit

chili sauce

rosemary

green salsa

corkscrew shaped pasta

marshmallow creme

enchilada sauce

baby carrot

savory

cinnamon red candy

corn muffin mix

black peppercorn

green bell pepper
water chestnut

french dressing

almond extract

rose water

paprika

english cucumber

nutritional yeast

unpie shell

ears corn

cream of shrimp soup

plum tomato

bratwurst

green lettuce

lemon lime carbonated beverage

ice

creole seasoning

grape juice

italian sausage

pizza crust

orzo pasta

white rum

crescent roll

italian cheese blend

rhubarb

chicken bouillon

prosciutto

cream

red onion

marinated artichoke heart

jalapeno chile pepper

tater tot

pork tenderloin

spaghetti

gin

semisweet chocolate

pie crust

cooking spray

spaghetti sauce

bread flour

butterscotch pudding mix

romano cheese

bulgur

hungarian paprika

white balsamic vinegar

picante sauce

meatball

tuna

chili without bean

bean sprout

baking cocoa

chile paste

butter

yellow mustard

haddock

sunflower seed

processed american cheese

russet potato

allspice

giblet

button mushroom

peanut

kidney bean

portobello mushroom

ranch dressing

almond paste

hazelnut

beef brisket

sake

fruit cocktail

beef sirloin steak

pimento

honeydew melon

low fat milk

salami

german chocolate

pizza sauce

green tomato

orange liqueur

celery salt

chocolate mix

cranberry juice

white pepper

barley

soy milk

sweet

poblano pepper

macadamia nut

goat cheese

tomato soup

tea bag

mixed spice

low fat peanut butter

turkey breast

lemon peel

tomato vegetable juice cocktail

jalapeno pepper

low sodium soy sauce

processed cheese

limeade

artificial sweetener

sesame oil

heavy cream

fat free chicken broth

pork shoulder

evaporated milk

cornflake

bay scallop

chocolate waferwhite sugar

rapid rise yeast potato

flour tortilla

chicken drum

chocolate ice cream

pepper jack cheese

baking potato

italian dressing mix

Figure 2: Ingredient complement network. Two ingredients share an edge if they occur together more than

would be expected by chance and if their pointwise mutual information exceeds a threshold.
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Figure 3: The likelihood that a review suggests a

modification to the recipe depends on the star rating

the review is assigning to the recipe.

In the following, we describe the recipe modifications ex-
tracted from user reviews, including adjustment, deletion
and addition. We then present how we constructed an in-
gredient substitute network based on the extracted informa-
tion.

5.1 Adjustments
Some modifications involve increasing or decreasing the

amount of an ingredient in the recipe. In this and the fol-
lowing analyses, we split the review on punctuation such
as commas and periods. We used simple heuristics to de-
tect when a review suggested a modification: adding/using
more/less of an ingredient counted as an increase/decrease.
Doubling or increasing counted as an increase, while reduc-
ing, cutting, or decreasing counted as a decrease. While it is
likely that there are other expressions signaling the adjust-
ment of ingredient quantities, using this set of terms allowed

us to compare the relative rate of modification, as well as
the frequency of increase vs. decrease between ingredients.
The ingredients themselves were extracted by performing a
maximal character match within a window following an ad-
justment term.
Figure 4 shows the ratios of the number of reviews sug-

gesting modifications, either increases or decreases, to the
number of recipes that contain the ingredient. Two patterns
are immediately apparent. Ingredients that may be per-
ceived as being unhealthy, such as fats and sugars, are, with
the exception of vegetable oil and margarine, more likely
to be modified, and to be decreased. On the other hand,
flavor enhancers such as soy sauce, lemon juice, cinnamon,
Worcestershire sauce, and toppings such as cheeses, bacon
and mushrooms, are also likely to be modified; however, they
tend to be added in greater, rather than lesser quantities.
Combined, the patterns suggest that good-tasting but “un-
healthy” ingredients can be reduced, if desired, while spices,
extracts, and toppings can be increased to taste.

5.2 Deletions and additions
Recipes are also frequently modified such that ingredients

are omitted entirely. We looked for words indicating that
the reviewer did not have an ingredient (and hence did not
use it), e.g. “had no” and “didn’t have”. We further used
“omit/left out/left o↵/bother with” as indication that the
reviewer had omitted the ingredients, potentially for other
reasons. Because reviewers often used simplified terms, e.g.
“vanilla” instead of “vanilla extract”, we compared words in
proximity to the action words by constructing 4-character-
grams and calculating the cosine similarity between the n-
grams in the review and the list of ingredients for the recipe.
To identify additions, we simply looked for the word“add”,

but omitted possible substitutions. For example, we would
use “added cucumber”, but not “added cucumber instead of
green pepper”, the latter of which we analyze in the follow-
ing section. We then compared the addition to the list of
ingredients in the recipes, and considered the addition valid
only if the ingredient does not already belong in the recipe.
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ing epibiotic and pelagic communities. These
icebergs can be compared to estuaries that supply
surrounding coastal regions with nutrients. In that
respect, icebergs may be thought of as “Lagran-
gian estuaries,” drifting through the Southern
Ocean while enriching the surrounding pelagic
zone. Our preliminary studies suggest that free-
drifting icebergs and their associated communities
could serve as areas of increased production and
sequestration of organic carbon to the deep sea, a
process unaccounted for in current global carbon
budgets (33).
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The Product Space Conditions the
Development of Nations
C. A. Hidalgo,1*† B. Klinger,2* A.-L. Barabási,1 R. Hausmann2

Economies grow by upgrading the products they produce and export. The technology, capital,
institutions, and skills needed to make newer products are more easily adapted from some products
than from others. Here, we study this network of relatedness between products, or “product space,”
finding that more-sophisticated products are located in a densely connected core whereas less-
sophisticated products occupy a less-connected periphery. Empirically, countries move through the
product space by developing goods close to those they currently produce. Most countries can reach
the core only by traversing empirically infrequent distances, which may help explain why poor
countries have trouble developing more competitive exports and fail to converge to the income
levels of rich countries.

Does the type of product that a country
exports matter for subsequent economic
performance? The fathers of development

economics held that it does, suggesting that indus-
trialization creates spillover benefits that fuel sub-
sequent growth (1–3). Yet, lacking formal models,

mainstream economic theory has been unable to
incorporate these ideas. Instead, two approaches
have been used to explain a country’s pattern of
specialization. The first focuses on the relative pro-
portion between productive factors (i.e., physical
capital, labor, land, skills or human capital, infra-
structure, and institutions) (4). Hence, poor countries
specialize in goods intensive in unskilled labor and
land, whereas richer countries specialize in goods
requiring infrastructure, institutions, and human and
physical capital. The second approach emphasizes
technological differences (5) and has to be com-
plemented with a theory of what underlies them.
The varieties and quality ladders models (6, 7) as-

sume that there is always a slightly more ad-
vanced product, or just a different one, that
countries can move to, disregarding product
similarities when thinking about structural trans-
formation and growth.

Think of a product as a tree and the set of all
products as a forest. A country is composed of a
collection of firms, i.e., of monkeys that live on
different trees and exploit those products. The pro-
cess of growth implies moving from a poorer part
of the forest, where trees have little fruit, to better
parts of the forest. This implies thatmonkeyswould
have to jump distances, that is, redeploy (human,
physical, and institutional) capital toward goods that
are different from those currently under produc-
tion. Traditional growth theory assumes there is
always a tree within reach; hence, the structure of
this forest is unimportant. However, if this forest
is heterogeneous, with some dense areas and other
more-deserted ones, and if monkeys can jump
only limited distances, then monkeys may be un-
able to move through the forest. If this is the case,
the structure of this space and a country’s orien-
tation within it become of great importance to the
development of countries.

In theory, many possible factors may cause
relatedness between products, that is, close-
ness between trees; such as the intensity of labor,
land, and capital (8), the level of technological
sophistication (9, 10), the inputs or outputs in-
volved in a product’s value chain (e.g., cotton,
yarn, cloth, and garments) (11), or requisite insti-
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USA. 2Center for International Development, Kennedy School
of Government, Harvard University, Cambridge, MA 02139,
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Networks and creativity:

Lastly, agents that remain inactive for
longer than t time steps are removed from the
network. This rule is motivated by the obser-
vation that agents do not remain in the network
forever: agents age and retire, change careers,
and so on. The removal process enables the
network to reach a steady state after a transient
time. Our results do not depend in the specific
value of t (Materials and Methods).

Through participation in a team, agents
become part of a large network (30). This fact
prompted us to examine the topology of the
network of collaborations among the practi-
tioners of a given field. More specifically,
we asked, BIs there a large connected cluster
comprising most of the agents or is the net-
work composed of numerous smaller clus-
ters?[ A large connected cluster would be
supporting evidence for the so-called invisible
college, the web of social and professional
contacts linking scientists across universities
proposed by de Solla Price (31) and Merton
(32). A large number of small clusters would
be indicative of a field made up of isolated
schools of thought. For all five fields con-
sidered here, we find that the network con-
tains a large connected cluster.

As is typically done in the study of per-
colation phase transitions (33), we use the
fraction S of agents that belong to the largest
cluster of the network to quantify the tran-
sition between these two regimes: invisible
college or isolated schools. We explore sys-
tematically the (p,q) parameter space of the
model. We find that the system undergoes
a percolation transition (33) at a critical line,
pc(m,q). That is, the system experiences a
sharp transition from a multitude of small
clusters to a situation in which one large clus-
ter, comprising a substantial fraction S of the
individuals, emerges: the so-called giant com-
ponent (Fig. 3). The transition line pc(m,q)
therefore determines the tipping point for the
emergence of the invisible college (34). Our
analysis shows that the existence of this
transition is independent of the average number
of agents bmÀ in a collaboration, although the
precise value of pc(m,q) does depend on m.

The proximity to the transition line, which
depends on the distribution of the different
types of links, determines the structure of the
largest cluster (Fig. 3A). In the vicinity of the
transition, the largest cluster has an almost
linear or branched structure (Fig. 3A) ( p 0
0.30). As one moves toward larger p, the
largest cluster starts to have more and more
loops (Fig. 3A) (p 0 0.35), and, eventually, it
becomes a densely connected network (Fig.
3A) ( p 0 0.60).

Networks with the same fraction, S, of
nodes in the largest cluster do not necessarily
correspond to networks with identical prop-
erties. Each point in the (p,q) parameter space
is characterized by both S and the fraction,
fR, of repeat incumbent-incumbent links. For

example, in Fig. 3C, the line fR 0 0.32 cor-
responds to those values of p and q for which
32% of all links in new teams are between
repeat collaborators (35). The fR has a nota-
ble impact on the dynamics of the network.
When fR is large, collaborations are firmly
established, and therefore the structure of the
network changes very slowly. In contrast, low
values of fR correspond to enterprises with
high turnover and very fast dynamics. Inter-
mediate values of fR are related to situations
in which collaboration patterns with peers are
fluid (Materials and Methods).

For each of the five fields for which we
have empirical data, we measure the relative
size of the giant component S (Materials and
Methods). For all fields considered, S is
larger than 50% (Table 1). This result pro-
vides quantitative evidence for the existence
of an invisible college in all the fields. In-
triguingly, the relative sizes of the giant com-

ponent is similar for three of the four fields
considered: S 0 0.70, S 0 0.68, and S 0 0.75
for BMI, social psychology, and ecology,
respectively. However, for astronomy S was
significantly larger (0.92), whereas for eco-
nomics it was significantly smaller (0.54).

To gain further insight in the structure of
collaboration networks, we used our model
to estimate the values of p and q for each
field. Given the temporal sequence of teams
producing the network of collaborations, one
can calculate the fraction of incumbents and
the fraction of repeat incumbent-incumbent
links. These fractions and the model enable
us to then estimate the values of p and q that
are consistent with the data (36).

We estimated p and q for each field and
then simulated the model to predict the key
properties of the network of collaborations,
including the degree distribution of the
network and the fraction S of nodes in the

Fig. 2. Modeling the emergence of collaboration networks in creative enterprises. (A) Creation of a
team with m 0 3 agents. Consider, at time zero, a collaboration network comprising five agents, all
incumbents (blue circles). Along with the incumbents, there is a large pool of newcomers (green
circles) available to participate in new teams. Each agent in a team has a probability p of being
drawn from the pool of incumbents and a probability 1 j p of being drawn from the pool of new-
comers. For the second and subsequent agents selected from the incumbents’ pool: (i) with probability
q, the new agent is randomly selected from among the set of collaborators of a randomly selected
incumbent already in the team; (ii) otherwise, he or she is selected at random among all incumbents in
the network. For concreteness, let us assume that incumbent 4 is selected as the first agent in the new
team (leftmost box). Let us also assume that the second agent is an incumbent, too (center-left box). In
this example, the second agent is a past collaborator of agent 4, specifically agent 3 (center-right box).
Lastly, the third agent is selected from the pool of newcomers; this agent becomes incumbent 6
(rightmost box). In these boxes and in the following panels and figures, blue lines indicate newcomer-
newcomer collaborations, green lines indicate newcomer-incumbent collaborations, yellow lines indi-
cate new incumbent-incumbent collaborations, and red lines indicate repeat collaborations. (B) Time
evolution of the network of collaborations according to the model for p 0 0.5, q 0 0.5, and m 0 3.
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The human disease network
Kwang-Il Goh*†‡§, Michael E. Cusick†‡¶, David Valle�, Barton Childs�, Marc Vidal†‡¶**, and Albert-László Barabási*†‡**
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A network of disorders and disease genes linked by known disorder–
gene associations offers a platform to explore in a single graph-
theoretic framework all known phenotype and disease gene associ-
ations, indicating the common genetic origin of many diseases. Genes
associated with similar disorders show both higher likelihood of
physical interactions between their products and higher expression
profiling similarity for their transcripts, supporting the existence of
distinct disease-specific functional modules. We find that essential
human genes are likely to encode hub proteins and are expressed
widely in most tissues. This suggests that disease genes also would
play a central role in the human interactome. In contrast, we find that
the vast majority of disease genes are nonessential and show no
tendency to encode hub proteins, and their expression pattern indi-
cates that they are localized in the functional periphery of the
network. A selection-based model explains the observed difference
between essential and disease genes and also suggests that diseases
caused by somatic mutations should not be peripheral, a prediction
we confirm for cancer genes.

biological networks � complex networks � human genetics � systems
biology � diseasome

Decades-long efforts to map human disease loci, at first genet-
ically and later physically (1), followed by recent positional

cloning of many disease genes (2) and genome-wide association
studies (3), have generated an impressive list of disorder–gene
association pairs (4, 5). In addition, recent efforts to map the
protein–protein interactions in humans (6, 7), together with efforts
to curate an extensive map of human metabolism (8) and regulatory
networks offer increasingly detailed maps of the relationships
between different disease genes. Most of the successful studies
building on these new approaches have focused, however, on a
single disease, using network-based tools to gain a better under-
standing of the relationship between the genes implicated in a
selected disorder (9).

Here we take a conceptually different approach, exploring
whether human genetic disorders and the corresponding disease
genes might be related to each other at a higher level of cellular and
organismal organization. Support for the validity of this approach
is provided by examples of genetic disorders that arise from
mutations in more than a single gene (locus heterogeneity). For
example, Zellweger syndrome is caused by mutations in any of at
least 11 genes, all associated with peroxisome biogenesis (10).
Similarly, there are many examples of different mutations in the
same gene (allelic heterogeneity) giving rise to phenotypes cur-
rently classified as different disorders. For example, mutations in
TP53 have been linked to 11 clinically distinguishable cancer-
related disorders (11). Given the highly interlinked internal orga-
nization of the cell (12–17), it should be possible to improve the
single gene–single disorder approach by developing a conceptual
framework to link systematically all genetic disorders (the human
‘‘disease phenome’’) with the complete list of disease genes (the
‘‘disease genome’’), resulting in a global view of the ‘‘diseasome,’’
the combined set of all known disorder/disease gene associations.

Results
Construction of the Diseasome. We constructed a bipartite graph
consisting of two disjoint sets of nodes. One set corresponds to all

known genetic disorders, whereas the other set corresponds to all
known disease genes in the human genome (Fig. 1). A disorder and
a gene are then connected by a link if mutations in that gene are
implicated in that disorder. The list of disorders, disease genes, and
associations between them was obtained from the Online Mende-
lian Inheritance in Man (OMIM; ref. 18), a compendium of human
disease genes and phenotypes. As of December 2005, this list
contained 1,284 disorders and 1,777 disease genes. OMIM initially
focused on monogenic disorders but in recent years has expanded
to include complex traits and the associated genetic mutations that
confer susceptibility to these common disorders (18). Although this
history introduces some biases, and the disease gene record is far
from complete, OMIM represents the most complete and up-to-
date repository of all known disease genes and the disorders they
confer. We manually classified each disorder into one of 22 disorder
classes based on the physiological system affected [see supporting
information (SI) Text, SI Fig. 5, and SI Table 1 for details].

Starting from the diseasome bipartite graph we generated two
biologically relevant network projections (Fig. 1). In the ‘‘human
disease network’’ (HDN) nodes represent disorders, and two
disorders are connected to each other if they share at least one gene
in which mutations are associated with both disorders (Figs. 1 and
2a). In the ‘‘disease gene network’’ (DGN) nodes represent disease
genes, and two genes are connected if they are associated with the
same disorder (Figs. 1 and 2b). Next, we discuss the potential of
these networks to help us understand and represent in a single
framework all known disease gene and phenotype associations.

Properties of the HDN. If each human disorder tends to have a
distinct and unique genetic origin, then the HDN would be dis-
connected into many single nodes corresponding to specific disor-
ders or grouped into small clusters of a few closely related disorders.
In contrast, the obtained HDN displays many connections between
both individual disorders and disorder classes (Fig. 2a). Of 1,284
disorders, 867 have at least one link to other disorders, and 516
disorders form a giant component, suggesting that the genetic
origins of most diseases, to some extent, are shared with other
diseases. The number of genes associated with a disorder, s, has a
broad distribution (see SI Fig. 6a), indicating that most disorders
relate to a few disease genes, whereas a handful of phenotypes, such
as deafness (s � 41), leukemia (s � 37), and colon cancer (s � 34),
relate to dozens of genes (Fig. 2a). The degree (k) distribution of
HDN (SI Fig. 6b) indicates that most disorders are linked to only
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Fig. 2. The HDN and the DGN. (a) In the HDN, each node corresponds to a distinct disorder, colored based on the disorder class to which it belongs, the name
of the 22 disorder classes being shown on the right. A link between disorders in the same disorder class is colored with the corresponding dimmer color and links
connecting different disorder classes are gray. The size of each node is proportional to the number of genes participating in the corresponding disorder (see key),
and the link thickness is proportional to the number of genes shared by the disorders it connects. We indicate the name of disorders with !10 associated genes,
as well as those mentioned in the text. For a complete set of names, see SI Fig. 13. (b) In the DGN, each node is a gene, with two genes being connected if they
are implicated in the same disorder. The size of each node is proportional to the number of disorders in which the gene is implicated (see key). Nodes are light
gray if the corresponding genes are associated with more than one disorder class. Genes associated with more than five disorders, and those mentioned in the
text, are indicated with the gene symbol. Only nodes with at least one link are shown.
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The complex architecture of primes and natural numbers

Guillermo Garćıa-Pérez,1 M. Ángeles Serrano,1 and Marián Boguñá1

1Departament de F́ısica Fonamental, Universitat de Barcelona
Mart́ı i Franquès 1, 08028 Barcelona, Spain

(Dated: February 18, 2014)

Natural numbers can be divided in two non-overlapping infinite sets, primes and composites,
with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the
architecture of natural numbers with primes as building blocks remains elusive. Here, we propose
a new approach to decoding the architecture of natural numbers based on complex networks and
stochastic processes theory. We introduce a parameter-free non-Markovian dynamical model that
naturally generates random primes and their relation with composite numbers with remarkable
accuracy. Our model satisfies the prime number theorem as an emerging property and a refined
version of Cramér’s conjecture about the statistics of gaps between consecutive primes that seems
closer to reality than the original Cramér’s version. Regarding composites, the model helps us to
derive the prime factors counting function, giving the probability of distinct prime factors for any
integer. Probabilistic models like ours can help not only to conjecture but also to prove results
about primes and the complex architecture of natural numbers.

I. INTRODUCTION

Prime numbers have fascinated and puzzled philoso-
phers, mathematicians, physicists and computer scien-
tists alike for the last two and a half thousand years. A
prime is a natural number that has no divisors other than
1 and itself; every natural number greater than 1 that is
not a prime is called a composite. Despite the apparent
simplicity of these definitions, the hidden structure in
the sequence of primes and their relation with the set of
natural numbers are not yet completely understood [21].
There is no known closed formula that sets apart all of
the prime numbers from composites, and many questions
about primes and their distribution amongst the set of
natural numbers still remain open. Indeed, most of the
knowledge about the sequence of primes stands on un-
proved theorems and conjectures.

The mystery of primes is not a mere conundrum of
pure mathematics. Unexpected connections can be dis-
covered between primes and different topics in Physics.
For instance, the Riemann zeta function ζ(s) –a sum over
all integers equivalent to a product over all primes– has
been considered as a partition function [1–3] such that
its sequence of zeros –encoding information about the
sequence of primes– can be seen as a spectrum of energy
levels. This idea traces back to the Hilbert-Pólya conjec-
ture [4], which states that the zeros of the ζ(s) function
might be the eigenvalues of some hermitian operator on a
Hilbert space. Recently, interesting connections have also
been found between primes and self-organized critical-
ity [5], or primes and quantum computation [6, 7] (see [8]
for an extensive bibliographical survey between the con-
nection of number theory and physics). The importance
of primes transcend theoretical aspects, and practical ap-
plications include public key cryptography algorithms [9]
and pseudorandom number generators [10].

One of the most promising approaches to solve the
enigmas of number theory is the use of probability the-
ory and stochastic processes. Akin to chaotic dynami-

cal systems, prime numbers, albeit purely deterministic,
appear to be scattered throughout natural numbers in a
non-homogeneous random fashion. Indeed, for n� 1 the
probability that a randomly chosen number in a “small”
neighborhood of n is prime is given by [22]

Pn ∼
1

lnn
. (1)

This is equivalent to the well-known prime number the-
orem [11], which states that the prime counting func-
tion π(N) –counting the number of primes up to N– ap-
proaches N/ lnN in the limit of N →∞, i.e.,

π(N) ∼
∫ N

2

dx

lnx
≡ Li(N) ∼ N

lnN
, (2)

where Li(N) is the offset logarithmic integral function.
Taking advantage of this apparent randomness, Cramér
formulated a simple model [12, 13] where each integer
n is declared as a “prime” with independent probability
given by Eq. (1). The model –that generates sequences
of random primes that are, obviously, in agreement with
the prime number theorem– allowed him to “prove”, in
a probabilistic sense, his famous conjecture about gaps
between consecutive primes [13].

Cramér’s probabilistic model plays, still today, a fun-
damental role when formulating conjectures concerning
primes. However, it presents three major drawbacks. 1)
It does not “explain” the prime number theorem; instead,
it is an input of the model. 2) Random primes in the
model are totally uncorrelated whereas there are both
short and long range correlations in the sequence of real
primes. 3) Finally, it says nothing about the relation
between prime and composite numbers. In this paper,
we combine a complex network approach with the the-
ory of stochastic processes to introduce a parameter-free
non-Markovian dynamical model that naturally gener-
ates random primes as well as the relation between primes
and composite numbers with remarkable accuracy. Our
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FIG. 1: Example of the bipartite network of natural num-
bers grown up to size 20. Orange circles represent composite
numbers and green squares prime numbers. The degree of
a prime, k

p

, is the number of distinct composites to which
it is connected to whereas its strength, s

p

, is the sum of its
weighted connections. Similarly, the degree of a composite,
k

c

, is its number of distinct prime factors and its strength, s
c

,
the total number of prime factors.

model is in agreement with Eqs. (1) and (2) and satisfies a
modified version of Cramér’s conjecture about the statis-
tics of gaps between consecutive primes that seems closer
to reality than the original Cramér’s version. Regarding
composites, the model helps us to derive the prime fac-
tors counting function, giving the probability of distinct
prime factors for any integer.

II. BIPARTITE NETWORK OF NATURAL
NUMBERS

Primes are the building blocks of natural numbers.
The fundamental theorem of arithmetics states that any
natural number n > 1 can be factorized uniquely as

n = p↵1
1

p↵2
2

· · · p↵k

k

· · · (3)

where p
i

is the i-th prime and ↵
i

are non-negative inte-
gers. From a complex network perspective, natural num-
bers can be thought of as a weighted bipartite network
with two types of nodes, primes and composites. A com-
posite n is linked to primes p

i

with weights ↵
i

according
to the factorization in Eq. (3), as shown in Fig. 1.
For a given network size N , the probability that a ran-

domly chosen prime inside the network is connected to
k
p

di↵erent composites, that is, the degree distribution
P (k

p

) for prime numbers, can be exactly determined in
terms of the prime counting function as (see Appendix A
for details)

P (k
p

) =
⇡
⇣

N

k

p

+1

⌘
� ⇡

⇣
N

k

p

+2

⌘

⇡(N)
, (4)

with k
p

= 0, 1, · · · , ⌅N

2

⇧
, where bxc stands for the floor

function. Using the prime number theorem Eq. (2), it
is easy to see that in the limit N � 1 and k

p

<
p
N

this distribution behaves as P (k
p

) ⇠ k�2

p

. Quite surpris-
ingly, we obtain a scale-free network with an exponent
�2, very similar to many real complex networks, like the
Internet [14], and similar to the degree distribution of the
causal graph of the de Sitter space-time [15]. As we shall
show, this is a consequence of an e↵ective preferential
attachment rule induced by the growth mechanism.
The result in Eq. (4) allows us to derive an identity

relating ⇡(n) and the number of distinct prime factors
of any integer n, !(n), that, to the best of our knowl-
edge, has gone unnoticed until now. We name !(n) the
prime factors counting function. We start from the triv-
ial identity [N � 1 � ⇡(N)]hk

c

i = ⇡(N)hk
p

i, where k
c

is
the degree of a composite (or its number of distinct prime
factors). Plugging Eq. (4) in this identity, we obtain

NX

n=2

!(n) =

bN/2cX

i=1

⇡

✓
N

i

◆
. (5)

Replacing the sum by an integral, we can approximate
this expression as

NX

n=2

!(n) ⇡ N

Z
N

2

⇡(x)dx

x2

⇠ N ln lnN +O(N). (6)

The final asymptotic behavior is directly related to the
Hardy-Ramanujan theorem [16], which now becomes a
simple consequence of the prime number theorem. Func-
tion !(n) can be easily computed from Eq. (7) as

!(n) =

bn/2cX

i=1


⇡
⇣n
i

⌘
� ⇡

✓
n� 1

i

◆�
. (7)

Notice that if n is a composite number, then !(n) is,
in our network representation, its degree. Therefore,
the degree distribution of composite numbers is given by

P (k
c

) =
⇣P

N

n=2

�
!(n),k

c

� �
k

c

,1

⇡(N)
⌘
/(N � 1 � ⇡(N)).

Besides, Eq. (7) naturally leads to a set of arithmetic
functions giving the sum of the prime factors of n raised
to any exponent (see Appendix C).
Equations (4) and (7) are a remarkable result. Beyond

potential applications to find better estimates of function
!(n), they state that the local properties of the network
of natural numbers are fully determined by the prime
counting function ⇡(N) alone. We then expect that any
model producing random versions of the network that
is able to reproduce well the prime counting function,
⇡(N), will also reproduce well the large scale of the real
network topology.

III. MODELING THE EVOLUTION AND
STRUCTURE OF NATURAL NUMBERS

The order relation implicit in the natural numbers al-
lows us to consider the bipartite network representation
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Random bipartite networks:
We’ll follow this rather well cited paper:

Random graphs with arbitrary degree distributions and their applications

M. E. J. Newman,1,2 S. H. Strogatz,2,3 and D. J. Watts1,4
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Recent work on the structure of social networks and the internet has focused attention on graphs with
distributions of vertex degree that are significantly different from the Poisson degree distributions that have
been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary
degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed
and bipartite graphs. Among other results, we derive exact expressions for the position of the phase transition
at which a giant component first forms, the mean component size, the size of the giant component if there is
one, the mean number of vertices a certain distance away from a randomly chosen vertex, and the average
vertex-vertex distance within a graph. We apply our theory to some real-world graphs, including the world-
wide web and collaboration graphs of scientists and Fortune 1000 company directors. We demonstrate that in
some cases random graphs with appropriate distributions of vertex degree predict with surprising accuracy the
behavior of the real world, while in others there is a measurable discrepancy between theory and reality,
perhaps indicating the presence of additional social structure in the network that is not captured by the random
graph.

DOI: 10.1103/PhysRevE.64.026118 PACS number~s!: 89.75.Hc, 87.23.Ge, 05.90.1m

I. INTRODUCTION
A random graph@1# is a collection of points, or vertices,

with lines, or edges, connecting pairs of them at random
@Fig. 1~a!#. The study of random graphs has a long history.
Starting with the influential work of Erdo¨s and Re´nyi in the
1950s and 1960s@2–4#, random graph theory has developed
into one of the mainstays of modern discrete mathematics,
and has produced a prodigious number of results, many of
them highly ingenious, describing statistical properties of
graphs, such as distributions of component sizes, existence
and size of a giant component, and typical vertex-vertex dis-
tances.

In almost all of these studies the assumption has been
made that the presence or absence of an edge between two
vertices is independent of the presence or absence of any
other edge, so that each edge may be considered to be
present with independent probabilityp. If there areN verti-
ces in a graph, and each is connected to an average ofz
edges, then it is trivial to show thatp5z/(N21), which for
large N is usually approximated byz/N. The number of
edges connected to any particular vertex is called the degree
k of that vertex, and has a probability distributionpk given
by

pk5S N

k D pk~12p!N2k.
zke2z

k!
, ~1!

where the second equality becomes exact in the limit of large
N. This distribution we recognize as the Poisson distribution:
the ordinary random graph has a Poisson distribution of ver-
tex degrees, a point which turns out to be crucial, as we now
explain.

Random graphs are not merely a mathematical toy; they
have been employed extensively as models of real-world net-

works of various types, particularly in epidemiology. The
passage of a disease through a community depends strongly
on the pattern of contacts between those infected with the
disease and those susceptible to it. This pattern can be de-
picted as a network, with individuals represented by vertices
and contacts capable of transmitting the disease by edges. A
large class of epidemiological models known as susceptible/
infectious/recovered models@5–7# makes frequent use of the
so-called fully mixed approximation, which is the assump-
tion that contacts are random and uncorrelated, i.e., they
form a random graph.

Random graphs however turn out to have severe short-
comings as models of such real-world phenomena. Although
it is difficult to determine experimentally the structure of the
network of contacts by which a disease is spread@8#, studies
have been performed of other social networks such as net-
works of friendships within a variety of communities@9–11#,
networks of telephone calls@12,13#, airline timetables@14#,
and the power grid@15#, as well as networks in physical or

FIG. 1. ~a! A schematic representation of a random graph, the
circles representing vertices and the lines representing edges.~b! A
directed random graph, i.e., one in which each edge runs in only
one direction.

PHYSICAL REVIEW E, VOLUME 64, 026118

1063-651X/2001/64~2!/026118~17!/$20.00 ©2001 The American Physical Society64 026118-1

“Random graphs with arbitrary degree
distributions and their applications”
Newman, Strogatz, and Watts,
Phys. Rev. E, 64, 026118, 2001. [7]
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Example of a bipartite affiliation network and the
induced networks:

 Center: A small story-trope bipartite graph. [2]

 Induced trope network and the induced story
network are on the left and right.

 The dashed edge in the bipartite affiliation
network indicates an edge added to the system,
resulting in the dashed edges being added to the
two induced networks.
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Basic story:
 An example of two inter-affiliated types:

  = stories,
  = tropes.

 Stories contain tropes, tropes are in stories.
 Consider a story-trope system with 𝑁 = # stories

and 𝑁 = # tropes.
 𝑚, = number of edges between and .
 Let’s have some underlying distributions for

numbers of affiliations: 𝑃 ()
𝑘 (a story has 𝑘 tropes)

and 𝑃 ()
𝑘 (a trope is in 𝑘 stories).

 Average number of affiliations: ⟨𝑘⟩ and ⟨𝑘⟩.
 ⟨𝑘⟩ = average number of tropes per story.
 ⟨𝑘⟩ = average number of stories containing a

given trope.

 Must have balance: 𝑁 ⋅ ⟨𝑘⟩ = 𝑚, = 𝑁 ⋅ ⟨𝑘⟩.
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Usual helpers for understanding network’s
structure:
 Randomly select an edge connecting a to a .
 Probability the contains 𝑘 other tropes:

𝑅()
𝑘 = (𝑘 + 1)𝑃 ()

𝑘+1
∑𝑁

𝑗=0(𝑗 + 1)𝑃 ()
𝑗+1

= (𝑘 + 1)𝑃 ()
𝑘+1

⟨𝑘⟩
.

 Probability the  is in 𝑘 other stories:

𝑅()
𝑘 = (𝑘 + 1)𝑃 ()

𝑘+1
∑𝑁

𝑗=0(𝑗 + 1)𝑃 ()
𝑗+1

= (𝑘 + 1)𝑃 ()
𝑘+1

⟨𝑘⟩
.

PoCS
@pocsvox

Random Bipartite
Networks

Introduction

Basic story

References

.
.
.
.
.

.
20 of 43

Networks of and  within bipartite structure:

 𝑃 ()
ind,𝑘 = probability a random is connected to 𝑘

stories by sharing at least one .

 𝑃 ()
ind,𝑘 = probability a random  is connected to 𝑘

tropes by co-occurring in at least one.

 𝑅(—)
ind,𝑘 = probability a random edge leads to a

which is connected to 𝑘 other stories by sharing at
least one .

 𝑅(—)
ind,𝑘 = probability a random edge leads to a 

which is connected to 𝑘 other tropes by
co-occurring in at least one.

 Goal: find these distributions .
 Another goal: find the induced distribution of

component sizes and a test for the presence or
absence of a giant component.

 Unrelated goal: be 10% happier/weep less.

PoCS
@pocsvox

Random Bipartite
Networks

Introduction

Basic story

References

.
.
.
.
.

.
21 of 43

Thursday

2016/03/17

,

S7E15

112

§,
:

TH
,

!,;%q×
"

,

.

'

§ randomly

i "
'

'

"

.

Yifubsnp

FEE :

t.hr#If8aE
'

pleat
)

bip ,n

"
°

RCHFEL ;

0 0 0 bip

0 0 0

'¥Kat±I⇒H÷÷¥
"

'¥kN#*Xi
g

IN

otneqneeltnced

network



PoCS
@pocsvox

Random Bipartite
Networks

Introduction

Basic story

References

.
.
.
.
.

.
22 of 43

Coconuts
,S7El6 ,

Tuesday
,
2016/03/22

4/6

pk#)=Su

put
:#it

.

QB
:

•Y•/•

8
"

bar
"

.

:#

r#¥j
:

FEE

:p
.

#¥,
D

Dr.
D

=§
,

Man :

eiEYY.Fd@MMYoM0fo.bip

99 µ

8k4

Thursday

2016/03/17

,

S7E15

112

§,
:

TH
,

!,;%q×
"

,

.

'

§ randomly

i "
'

'

"

.

Yifubsnp

FEE :

t.hr#If8aE
'

pleat
)

bip ,n

"
°

RCHFEL ;

0 0 0 bip

0 0 0

'¥Kat±I⇒H÷÷¥
"

'¥kN#*Xi
g

IN

otneqneeltnced

network

PoCS
@pocsvox

Random Bipartite
Networks

Introduction

Basic story

References

.
.
.
.
.

.
23 of 43

Coconuts
,

SFE 16
,
Tuesday

,
2016/03/22 5/6

•

r.sn#a
:

an
'

.

.INT#i.*s.

.

Sn
,

FEE : D D D

'

¥¥n
:

meet ;

"tH•Yl•X÷÷¥:%t•
"

She

PoCS
@pocsvox

Random Bipartite
Networks

Introduction

Basic story

References

.
.
.
.
.

.
24 of 43

Generating Function Madness

Yes, we’re doing it:

 𝐹𝑃 ()(𝑥) = ∑∞
𝑘=0 𝑃 ()

𝑘 𝑥𝑘

 𝐹𝑃 ()(𝑥) = ∑∞
𝑘=0 𝑃 ()

𝑘 𝑥𝑘

 𝐹𝑅()(𝑥) = ∑∞
𝑘=0 𝑅()

𝑘 𝑥𝑘 = 𝐹 ′
𝑃() (𝑥)

𝐹 ′
𝑃() (1)

 𝐹𝑅()(𝑥) = ∑∞
𝑘=0 𝑅()

𝑘 𝑥𝑘 = 𝐹 ′
𝑃() (𝑥)

𝐹 ′
𝑃() (1)

The usual goodness:
 Normalization: 𝐹𝑃 ()(1) = 𝐹𝑃 ()(1) = 1.
 Means: 𝐹 ′

𝑃 ()(1) = ⟨𝑘⟩ and 𝐹 ′
𝑃 ()(1) = ⟨𝑘⟩.
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We strap these in as well:

 𝐹𝑃 ()
ind

(𝑥) = ∑∞
𝑘=0 𝑃 ()

ind,𝑘𝑥𝑘

 𝐹𝑃 ()
ind

(𝑥) = ∑∞
𝑘=0 𝑃 ()

ind,𝑘𝑥𝑘

 𝐹𝑅(—)
ind

(𝑥) = ∑∞
𝑘=0 𝑅(—)

ind,𝑘 𝑥𝑘

 𝐹𝑅(—)
ind

(𝑥) = ∑∞
𝑘=0 𝑅(—)

ind,𝑘 𝑥𝑘

So how do all these things connect?
 We’re again performing sums of a randomly

chosen number of randomly chosen numbers.
 We use one of our favorite sneaky tricks:

𝑊 =
𝑈

∑
𝑖=1

𝑉 (𝑖) ⇌ 𝐹𝑊(𝑥) = 𝐹𝑈(𝐹𝑉 (𝑥)).
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Induced distributions are not straightforward:

rz!
!z

z! e
"(e"!"1)#

k!1

z ! zk" $"e"!%k, &89'

where the coefficients ( k
z) are the Stirling numbers of the

second kind $47%

! zk" !#
r!1

k
&"1 'k"r

r!&k"r '! r
z. &90'

D. Simulation results

Random bipartite graphs can be generated using an algo-
rithm similar to the one described in Sec. III B for directed
graphs. After making sure that the required degree distribu-
tions for both actor and movie vertices have means consis-
tent with the required total numbers of actors and movies
according to Eq. &66', we generate vertex degrees for each
actor and movie at random and calculate their sum. If these
sums are unequal, we discard the degree of one actor and one
movie, chosen at random, and replace them with new de-
grees drawn from the relevant distributions. We repeat this
process until the total actor and movie degrees are equal.
Then we join vertices up in pairs.
In Fig. 7 we show the results of such a simulation for a

bipartite random graph with Poisson degree distribution. &In
fact, for the particular case of the Poisson distribution, the
graph can be generated simply by joining up actors and mov-
ies at random, without regard for individual vertex degrees.'
The figure shows the distribution of the number of co-stars
of each actor, along with the analytic solution, Eqs. &89' and
&90'. Once more, numerical and analytic results are in good
agreement.

V. APPLICATIONS TO REAL-WORLD NETWORKS

In this section we construct random graph models of two
types of real-world networks, namely, collaboration graphs
and the world-wide web, using the results of Secs. III and IV

to incorporate realistic degree distributions into the models.
As we will show, the results are in reasonably good agree-
ment with empirical data, although there are some interesting
discrepancies also, perhaps indicating the presence of social
phenomena that are not incorporated in the random graph.

A. Collaboration networks

In this section we construct random bipartite graph mod-
els of the known collaboration networks of company direc-
tors $29–31%, movie actors $15%, and scientists $36%. As we
will see, the random graph works well as a model of these
networks, giving good order-of-magnitude estimates of all
quantities investigated, and in some cases giving results of
startling accuracy.
Our first example is the collaboration network of the

members of the boards of directors of the Fortune 1000 com-
panies &the 1000 US companies with the highest revenues'.
The data come from the 1999 Fortune 1000 $29–31% and in
fact include only 914 of the 1000, since data on the boards of
the remaining 86 were not available. The data form a bipar-
tite graph in which one type of vertex represents the boards
of directors, and the other type the members of those boards,
with edges connecting boards to their members. In Fig. 8 we
show the frequency distribution of the numbers of boards on
which each member sits, and the numbers of members of
each board. As we see, the former distribution is close to
exponential, with the majority of directors sitting on only
one board, while the latter is strongly peaked around ten,
indicating that most boards have about ten members.
Using these distributions, we can define generating func-

tions f 0(x) and g0(x) as in Eq. &23', and hence find the
generating functions G0(x) and G1(x) for the distributions
of numbers of co-workers of the directors. We have used
these generating functions and Eqs. &72' and &81' to calculate
the expected clustering coefficient C and the average number
of co-workers z in the one-mode projection of board direc-
tors on a random bipartite graph with the same vertex degree
distributions as the original dataset. In Table I we show the
results of these calculations, along with the same quantities

FIG. 7. The frequency distribution of numbers of co-stars of an
actor in a bipartite graph with "!1.5 and !!15. The points are
simulation results for M!10 000 and N!100 000. The line is the
exact solution, Eqs. &89' and &90'. The error bars on the numerical
results are smaller than the points.

FIG. 8. Frequency distributions for the boards of directors of the
Fortune 1000. Left panel: the numbers of boards on which each
director sits. Right panel: the numbers of directors on each board.

RANDOM GRAPHS WITH ARBITRARY DEGREE . . . PHYSICAL REVIEW E 64 026118

026118-13

 View this as 𝑃 ()
ind,𝑘 (the probability a story shares tropes

with 𝑘 other stories). [7]

 Result of purely random wiring with Poisson
distributions for affiliation numbers.

 Parameters: 𝑁 = 104, 𝑁 = 105,
⟨𝑘⟩ = 1.5, and ⟨𝑘⟩ = 15.
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Induced distribution for stories:
 Randomly choose a, find its tropes (𝑈 ), and

then find how many other stories each of those
tropes are part of (𝑉 ):

𝐹𝑃 ()
ind

(𝑥) = 𝐹𝑃 ()
ind

(𝑥) = 𝐹𝑃 () (𝐹𝑅()(𝑥))

 Find the at the end of a randomly chosen
affiliation edge leaving a trope, find its number of
other tropes (𝑈 ), and then find how many other
stories each of those tropes are part of (𝑉 ):

𝐹𝑅(—)
ind

(𝑥) = 𝐹𝑅() (𝐹𝑅()(𝑥))
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Induced distribution for tropes:
 Randomly choose a , find the stories its part of

(𝑈 ), and then find how many other tropes are part
of those stories (𝑉 ):

𝐹𝑃 ()
ind

(𝑥) = 𝐹𝑃 ()
ind

(𝑥) = 𝐹𝑃 () (𝐹𝑅()(𝑥))

 Find the  at the end of a randomly chosen
affiliation edge leaving a story, find the number of
other stories that use it (𝑈 ), and then find how
many other tropes are in those stories (𝑉 ):

𝐹𝑅(—)
ind

(𝑥) = 𝐹𝑅() (𝐹𝑅()(𝑥))
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Let’s do some good:

 Average number of stories connected to a story
through trope-space:

⟨𝑘⟩,ind = 𝐹 ′
𝑃 ()

ind
(1)



So: ⟨𝑘⟩,ind = d
d𝑥𝐹𝑃 () (𝐹𝑅()(𝑥))∣

𝑥=1

= 𝐹 ′
𝑅()(1)𝐹 ′

𝑃 () (𝐹𝑅()(1)) = 𝐹 ′
𝑅()(1)𝐹 ′

𝑃 ()(1)

 Similarly, the average number of tropes connected to a
random trope through stories:

⟨𝑘⟩,ind = 𝐹 ′
𝑅()(1)𝐹 ′

𝑃 ()(1)

 In terms of the underlying distributions, we have:
⟨𝑘⟩,ind = ⟨𝑘(𝑘−1)⟩

⟨𝑘⟩ ⟨𝑘⟩ and ⟨𝑘⟩,ind = ⟨𝑘(𝑘−1)⟩
⟨𝑘⟩ ⟨𝑘⟩
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Spreading through bipartite networks:

 View as bouncing back and forth between the two
connected populations. [2]

 Actual spread may be within only one population
(ideas between between people) or through both
(failures in physical and communication networks).

 The gain ratio for simple contagion on a bipartite
random network = product of two gain ratios.

Unstoppable spreading: is this thing connected?

 Always about the edges: when following a random
edge toward a, what’s the expected number of new
edges leading to other stories via tropes?

 We want to determine ⟨𝑘⟩𝑅,,ind = 𝐹 ′
𝑅(—)

ind
(1) (and

𝐹 ′
𝑅(—)

ind
(1) for the trope side of things).

 We compute with joy:

⟨𝑘⟩𝑅,,ind = d
d𝑥𝐹𝑅(—)

ind,𝑘
(𝑥)∣

𝑥=1
= d

d𝑥𝐹𝑅() (𝐹𝑅()(𝑥))∣
𝑥=1

= 𝐹 ′
𝑅()(1)𝐹 ′

𝑅() (𝐹𝑅()(1)) = 𝐹 ′
𝑅()(1)𝐹 ′

𝑅()(1) = 𝐹 ″
𝑃 ()(1)

𝐹 ′
𝑃 ()(1)

𝐹 ″
𝑃 ()(1)

𝐹 ′
𝑃 ()(1)

 Note symmetry.

 $happiness++;

PoCS
@pocsvox

Random Bipartite
Networks

Introduction

Basic story

References

.
.
.
.
.

.
34 of 43

 In terms of the underlying distributions:

⟨𝑘⟩𝑅,,ind = ⟨𝑘(𝑘 − 1)⟩
⟨𝑘⟩

⟨𝑘(𝑘 − 1)⟩
⟨𝑘⟩

 We have a giant component in both induced networks
when

⟨𝑘⟩𝑅,,ind ≡ ⟨𝑘⟩𝑅,,ind > 1
.

 See this as the product of two gain ratios.
#excellent #physics

 We can mess with this condition to make it
mathematically pleasant and pleasantly inscrutable:

∞
∑
𝑘=0

∞
∑

𝑘′=0
𝑘𝑘′(𝑘𝑘′ − 𝑘 − 𝑘′)𝑃 ()

𝑘 𝑃 ()
𝑘′ = 0.
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Simple example for finding the degree
distributions for the two induced networks in a
random bipartite affiliation structure:

 Set 𝑃 ()
𝑘 = 𝛿𝑘3 and leave 𝑃 ()

𝑘 arbitrary.
 Each story contains exactly three tropes.
 We have 𝐹𝑃 ()(𝑥) = 𝑥3 and 𝐹𝑅()(𝑥) = 𝑥2.
 Using 𝐹𝑃 ()

ind
(𝑥) = 𝐹𝑃 () (𝐹𝑅()(𝑥)) and

𝐹𝑃 ()
ind

(𝑥) = 𝐹𝑃 () (𝐹𝑅()(𝑥)) we have
𝐹𝑃 ()

ind
(𝑥) = [𝐹𝑅()(𝑥)]3 and 𝐹𝑃 ()

ind
(𝑥) = 𝐹𝑃 () (𝑥2) .

 Even more specific: If each trope is found in
exactly two stories then 𝐹𝑃 () = 𝑥2 and 𝐹𝑅() = 𝑥
giving 𝐹𝑃 ()

ind
(𝑥) = 𝑥3 and 𝐹𝑃 ()

ind
(𝑥) = 𝑥4.

 Yes for giant components :
⟨𝑘⟩𝑅,,ind ≡ ⟨𝑘⟩𝑅,,ind = 2 ⋅ 1 = 2 > 1.
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Boards and Directors: [7]

rz!
!z

z! e
"(e"!"1)#

k!1

z ! zk" $"e"!%k, &89'

where the coefficients ( k
z) are the Stirling numbers of the

second kind $47%

! zk" !#
r!1

k
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r!&k"r '! r
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D. Simulation results

Random bipartite graphs can be generated using an algo-
rithm similar to the one described in Sec. III B for directed
graphs. After making sure that the required degree distribu-
tions for both actor and movie vertices have means consis-
tent with the required total numbers of actors and movies
according to Eq. &66', we generate vertex degrees for each
actor and movie at random and calculate their sum. If these
sums are unequal, we discard the degree of one actor and one
movie, chosen at random, and replace them with new de-
grees drawn from the relevant distributions. We repeat this
process until the total actor and movie degrees are equal.
Then we join vertices up in pairs.
In Fig. 7 we show the results of such a simulation for a

bipartite random graph with Poisson degree distribution. &In
fact, for the particular case of the Poisson distribution, the
graph can be generated simply by joining up actors and mov-
ies at random, without regard for individual vertex degrees.'
The figure shows the distribution of the number of co-stars
of each actor, along with the analytic solution, Eqs. &89' and
&90'. Once more, numerical and analytic results are in good
agreement.

V. APPLICATIONS TO REAL-WORLD NETWORKS

In this section we construct random graph models of two
types of real-world networks, namely, collaboration graphs
and the world-wide web, using the results of Secs. III and IV

to incorporate realistic degree distributions into the models.
As we will show, the results are in reasonably good agree-
ment with empirical data, although there are some interesting
discrepancies also, perhaps indicating the presence of social
phenomena that are not incorporated in the random graph.

A. Collaboration networks

In this section we construct random bipartite graph mod-
els of the known collaboration networks of company direc-
tors $29–31%, movie actors $15%, and scientists $36%. As we
will see, the random graph works well as a model of these
networks, giving good order-of-magnitude estimates of all
quantities investigated, and in some cases giving results of
startling accuracy.
Our first example is the collaboration network of the

members of the boards of directors of the Fortune 1000 com-
panies &the 1000 US companies with the highest revenues'.
The data come from the 1999 Fortune 1000 $29–31% and in
fact include only 914 of the 1000, since data on the boards of
the remaining 86 were not available. The data form a bipar-
tite graph in which one type of vertex represents the boards
of directors, and the other type the members of those boards,
with edges connecting boards to their members. In Fig. 8 we
show the frequency distribution of the numbers of boards on
which each member sits, and the numbers of members of
each board. As we see, the former distribution is close to
exponential, with the majority of directors sitting on only
one board, while the latter is strongly peaked around ten,
indicating that most boards have about ten members.
Using these distributions, we can define generating func-

tions f 0(x) and g0(x) as in Eq. &23', and hence find the
generating functions G0(x) and G1(x) for the distributions
of numbers of co-workers of the directors. We have used
these generating functions and Eqs. &72' and &81' to calculate
the expected clustering coefficient C and the average number
of co-workers z in the one-mode projection of board direc-
tors on a random bipartite graph with the same vertex degree
distributions as the original dataset. In Table I we show the
results of these calculations, along with the same quantities

FIG. 7. The frequency distribution of numbers of co-stars of an
actor in a bipartite graph with "!1.5 and !!15. The points are
simulation results for M!10 000 and N!100 000. The line is the
exact solution, Eqs. &89' and &90'. The error bars on the numerical
results are smaller than the points.

FIG. 8. Frequency distributions for the boards of directors of the
Fortune 1000. Left panel: the numbers of boards on which each
director sits. Right panel: the numbers of directors on each board.
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 Exponentialish distribution for number of boards each
director sits on.

 Boards typically have 5 to 15 directors.

 Plan: Take these distributions, presume random
bipartite structure and generate co-director network
and board interlock network.
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for the real Fortune 1000. As the table shows the two are in
remarkable—almost perfect—agreement.
It is not just the average value of z that we can calculate

from our generating functions, but the entire distribution:
since the generating functions are finite polynomials in this
case, we can simply perform the derivatives to get the prob-
ability distribution rz . In Fig. 9, we show the results of this
calculation for the Fortune 1000 graph. The points in the
figure show the actual distribution of z for the real-world
data, while the solid line shows the theoretical results. Again
the agreement is excellent. The dashed line in the figure
shows the distribution for an ordinary Poisson random graph
with the same mean. Clearly this is a significantly inferior fit.
In fact, within the business world, attention has focused

not on the collaboration patterns of company directors, but
on the ‘‘interlocks’’ between boards, i.e., on the one-mode
network in which vertices represent boards of directors and
two boards are connected if they have one or more directors
in common !28,29". This is also simple to study with our
model. In Fig. 10 we show the distribution of the numbers of
interlocks that each board has, along with the theoretical pre-
diction from our model. As we see, the agreement between
empirical data and theory is significantly worse in this case
than for the distribution of co-directors. In particular, it ap-
pears that our theory significantly underestimates the number
of boards that are interlocked with very small or very large

numbers of other boards, while overestimating those with
intermediate numbers of interlocks. One possible explanation
of this is that ‘‘bigshots work with other bigshots.’’ That is,
the people who sit on many boards tend to sit on those
boards with other people who sit on many boards. And con-
versely the people who sit on only one board #which is the
majority of all directors$, tend to do so with others who sit on
only one board. This would tend to stretch the distribution of
numbers of interlocks, just as seen in figure, producing a
disproportionately high number of boards with very many or
very few interlocks to others. To test this hypothesis, we
have calculated, as a function of the number of boards on
which a director sits, the average number of boards on which
each of their co-directors sit. The results are shown in the
inset of Fig. 10. If these two quantities were uncorrelated, the
plot would be flat. Instead, however, it slopes clearly up-
wards, indicating indeed that on the average the big shots
work with other big shots. #This idea is not new. It has been
discussed previously by a number of others—see Refs. !48"
and !49", for example.$
The example of the boards of directors is a particularly

instructive one. What it illustrates is that the cases in which
our random graph models agree well with real-world phe-
nomena are not necessarily the most interesting. Certainly it
is satisfying, as in Fig. 9, to have the theory agree well with
the data. But probably Fig. 10 is more instructive: we have
learned something about the structure of the network of the
boards of directors by observing the way in which the pattern
of board interlocks differs from the predictions of the purely
random network. Thus it is perhaps best to regard our ran-
dom graph as a null model—a baseline from which our ex-
pectations about network structure should be measured. It is
deviation from the random graph behavior, not agreement
with it, that allows us to draw conclusions about real-world
networks.

TABLE I. Summary of results of the analysis of four collabora-
tion networks.

Clustering C Average degree z
Network Theory Actual Theory Actual

Company directors 0.590 0.588 14.53 14.44
Movie actors 0.084 0.199 125.6 113.4
Physics #arxiv.org$ 0.192 0.452 16.74 9.27
Biomedicine #MEDLINE$ 0.042 0.088 18.02 16.93

FIG. 9. The probability distribution of numbers of co-directors
in the Fortune 1000 graph. The points are the real-world data, the
solid line is the bipartite graph model, and the dashed line is the
Poisson distribution with the same mean. Insets: the equivalent dis-
tributions for the numbers of collaborators of movie actors and
physicists.

FIG. 10. The distribution of the number of other boards with
which each board of directors is ‘‘interlocked’’ in the Fortune 1000
data. An interlock between two boards means that they share one or
more common members. The points are the empirical data, the solid
line is the theoretical prediction. Inset: the number of boards on
which one’s codirectors sit, as a function of the number of boards
one sits on oneself.
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 Random bipartite affiliation network assumption
produces decent matches for some basic quantities.
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for the real Fortune 1000. As the table shows the two are in
remarkable—almost perfect—agreement.
It is not just the average value of z that we can calculate

from our generating functions, but the entire distribution:
since the generating functions are finite polynomials in this
case, we can simply perform the derivatives to get the prob-
ability distribution rz . In Fig. 9, we show the results of this
calculation for the Fortune 1000 graph. The points in the
figure show the actual distribution of z for the real-world
data, while the solid line shows the theoretical results. Again
the agreement is excellent. The dashed line in the figure
shows the distribution for an ordinary Poisson random graph
with the same mean. Clearly this is a significantly inferior fit.
In fact, within the business world, attention has focused

not on the collaboration patterns of company directors, but
on the ‘‘interlocks’’ between boards, i.e., on the one-mode
network in which vertices represent boards of directors and
two boards are connected if they have one or more directors
in common !28,29". This is also simple to study with our
model. In Fig. 10 we show the distribution of the numbers of
interlocks that each board has, along with the theoretical pre-
diction from our model. As we see, the agreement between
empirical data and theory is significantly worse in this case
than for the distribution of co-directors. In particular, it ap-
pears that our theory significantly underestimates the number
of boards that are interlocked with very small or very large

numbers of other boards, while overestimating those with
intermediate numbers of interlocks. One possible explanation
of this is that ‘‘bigshots work with other bigshots.’’ That is,
the people who sit on many boards tend to sit on those
boards with other people who sit on many boards. And con-
versely the people who sit on only one board #which is the
majority of all directors$, tend to do so with others who sit on
only one board. This would tend to stretch the distribution of
numbers of interlocks, just as seen in figure, producing a
disproportionately high number of boards with very many or
very few interlocks to others. To test this hypothesis, we
have calculated, as a function of the number of boards on
which a director sits, the average number of boards on which
each of their co-directors sit. The results are shown in the
inset of Fig. 10. If these two quantities were uncorrelated, the
plot would be flat. Instead, however, it slopes clearly up-
wards, indicating indeed that on the average the big shots
work with other big shots. #This idea is not new. It has been
discussed previously by a number of others—see Refs. !48"
and !49", for example.$
The example of the boards of directors is a particularly

instructive one. What it illustrates is that the cases in which
our random graph models agree well with real-world phe-
nomena are not necessarily the most interesting. Certainly it
is satisfying, as in Fig. 9, to have the theory agree well with
the data. But probably Fig. 10 is more instructive: we have
learned something about the structure of the network of the
boards of directors by observing the way in which the pattern
of board interlocks differs from the predictions of the purely
random network. Thus it is perhaps best to regard our ran-
dom graph as a null model—a baseline from which our ex-
pectations about network structure should be measured. It is
deviation from the random graph behavior, not agreement
with it, that allows us to draw conclusions about real-world
networks.

TABLE I. Summary of results of the analysis of four collabora-
tion networks.

Clustering C Average degree z
Network Theory Actual Theory Actual

Company directors 0.590 0.588 14.53 14.44
Movie actors 0.084 0.199 125.6 113.4
Physics #arxiv.org$ 0.192 0.452 16.74 9.27
Biomedicine #MEDLINE$ 0.042 0.088 18.02 16.93

FIG. 9. The probability distribution of numbers of co-directors
in the Fortune 1000 graph. The points are the real-world data, the
solid line is the bipartite graph model, and the dashed line is the
Poisson distribution with the same mean. Insets: the equivalent dis-
tributions for the numbers of collaborators of movie actors and
physicists.

FIG. 10. The distribution of the number of other boards with
which each board of directors is ‘‘interlocked’’ in the Fortune 1000
data. An interlock between two boards means that they share one or
more common members. The points are the empirical data, the solid
line is the theoretical prediction. Inset: the number of boards on
which one’s codirectors sit, as a function of the number of boards
one sits on oneself.
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 Jolly good: Works very well for co-directors.

 For comparison, the dashed line is a Poisson with the
empirical average degree.
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for the real Fortune 1000. As the table shows the two are in
remarkable—almost perfect—agreement.
It is not just the average value of z that we can calculate

from our generating functions, but the entire distribution:
since the generating functions are finite polynomials in this
case, we can simply perform the derivatives to get the prob-
ability distribution rz . In Fig. 9, we show the results of this
calculation for the Fortune 1000 graph. The points in the
figure show the actual distribution of z for the real-world
data, while the solid line shows the theoretical results. Again
the agreement is excellent. The dashed line in the figure
shows the distribution for an ordinary Poisson random graph
with the same mean. Clearly this is a significantly inferior fit.
In fact, within the business world, attention has focused

not on the collaboration patterns of company directors, but
on the ‘‘interlocks’’ between boards, i.e., on the one-mode
network in which vertices represent boards of directors and
two boards are connected if they have one or more directors
in common !28,29". This is also simple to study with our
model. In Fig. 10 we show the distribution of the numbers of
interlocks that each board has, along with the theoretical pre-
diction from our model. As we see, the agreement between
empirical data and theory is significantly worse in this case
than for the distribution of co-directors. In particular, it ap-
pears that our theory significantly underestimates the number
of boards that are interlocked with very small or very large

numbers of other boards, while overestimating those with
intermediate numbers of interlocks. One possible explanation
of this is that ‘‘bigshots work with other bigshots.’’ That is,
the people who sit on many boards tend to sit on those
boards with other people who sit on many boards. And con-
versely the people who sit on only one board #which is the
majority of all directors$, tend to do so with others who sit on
only one board. This would tend to stretch the distribution of
numbers of interlocks, just as seen in figure, producing a
disproportionately high number of boards with very many or
very few interlocks to others. To test this hypothesis, we
have calculated, as a function of the number of boards on
which a director sits, the average number of boards on which
each of their co-directors sit. The results are shown in the
inset of Fig. 10. If these two quantities were uncorrelated, the
plot would be flat. Instead, however, it slopes clearly up-
wards, indicating indeed that on the average the big shots
work with other big shots. #This idea is not new. It has been
discussed previously by a number of others—see Refs. !48"
and !49", for example.$
The example of the boards of directors is a particularly

instructive one. What it illustrates is that the cases in which
our random graph models agree well with real-world phe-
nomena are not necessarily the most interesting. Certainly it
is satisfying, as in Fig. 9, to have the theory agree well with
the data. But probably Fig. 10 is more instructive: we have
learned something about the structure of the network of the
boards of directors by observing the way in which the pattern
of board interlocks differs from the predictions of the purely
random network. Thus it is perhaps best to regard our ran-
dom graph as a null model—a baseline from which our ex-
pectations about network structure should be measured. It is
deviation from the random graph behavior, not agreement
with it, that allows us to draw conclusions about real-world
networks.

TABLE I. Summary of results of the analysis of four collabora-
tion networks.

Clustering C Average degree z
Network Theory Actual Theory Actual

Company directors 0.590 0.588 14.53 14.44
Movie actors 0.084 0.199 125.6 113.4
Physics #arxiv.org$ 0.192 0.452 16.74 9.27
Biomedicine #MEDLINE$ 0.042 0.088 18.02 16.93

FIG. 9. The probability distribution of numbers of co-directors
in the Fortune 1000 graph. The points are the real-world data, the
solid line is the bipartite graph model, and the dashed line is the
Poisson distribution with the same mean. Insets: the equivalent dis-
tributions for the numbers of collaborators of movie actors and
physicists.

FIG. 10. The distribution of the number of other boards with
which each board of directors is ‘‘interlocked’’ in the Fortune 1000
data. An interlock between two boards means that they share one or
more common members. The points are the empirical data, the solid
line is the theoretical prediction. Inset: the number of boards on
which one’s codirectors sit, as a function of the number of boards
one sits on oneself.
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 Wins less bananas for the board interlock network.

 Assortativity is the reason: Directors who sit on many
boards tend to sit on the same boards.

 Note: The term assortativity was not used in this 2001
paper.



PoCS
@pocsvox

Random Bipartite
Networks

Introduction

Basic story

References

.
.
.
.
.

.
40 of 43

To come:
 Distributions of component size.
 Simpler computation for the giant component

condition.
 Contagion.
 Testing real bipartite structures for departure

from randomness.

Nutshell:
 Random bipartite networks model many real

systems well.
 Crucial improvement over simple random

networks.
 We can find the induced distributions and

determine connectivity/contagion condition.
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