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These slides are brought to you by:

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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These slides are also brought to you by:

Special Guest Executive Producer

 On Instagram at pratchett_the_cat

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://www.instagram.com/pratchett_the_cat/
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Semester projects—Usual plan:

Requirements:
1. 2 minute introduction to project (𝑛th week).
2. 4 minute final presentation.
3. Report: ≥ 4 pages (single space), journal-style
4. And/Or: Online visualization.
5. Use Github for code and data visualizations.
6. Work in teams of 2 or 3.

Goals can range a great deal:
 Understand, critique, and communicate published

work.
 Seed research papers or help papers along.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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The narrative hierarchy—Stories and Storytelling
on all Scales:

 1 to 3 word encapsulation = a
soundbite = a buzzframe,

 1 sentence, title,
 few sentences, a haiku,
 a paragraph, abstract,
 short paper, essay,
 long paper,
 chapter,
 book,
 …

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://www.uvm.edu/pdodds/writings/2015-06-04narrative-hierarchy/
http://www.uvm.edu/pdodds/writings/2015-06-04narrative-hierarchy/
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“This Is How Fast America Changes Its Mind”

Alex Tribou and Keith Collins, 2015

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://www.bloomberg.com/graphics/2015-pace-of-social-change/
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 Flesch–Kincaid readability tests

206.835−1.015 ( total words
total sentences

)−84.6 ( total syllables
total words

)

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://en.wikipedia.org/wiki/Flesch–Kincaid_readability_tests
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Big data-ishness of sociotechnical nature:

 Dynamics of any thematically connected subset of
words on Twitter

 Extend bot follower detection per NYT:
https://www.nytimes.com/interactive/2018/01/27/
technology/social-media-bots.html

 Ratiometer (started) https://fivethirtyeight.com/
features/the-worst-tweeter-in-politics-isnt-trump/

 POTUSometer (underway)

 Story Wrangler (underway)

 Everything about hashtags (micro stories)

 Homer’s Odyssey: Undefined words

 Story-based study inspired by: The Vanishing of
Reality.

 Youtube: 3 degrees of conspiracy theories

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html
https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html
https://fivethirtyeight.com/features/the-worst-tweeter-in-politics-isnt-trump/
https://fivethirtyeight.com/features/the-worst-tweeter-in-politics-isnt-trump/
https://www.theparisreview.org/blog/2018/08/01/the-vanishing-of-reality/
https://www.theparisreview.org/blog/2018/08/01/the-vanishing-of-reality/
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Random:
 Wealth: Simple social model of limited giving and

cooperating.
 Scaling regarding component, size, and number

for any complex system.
 Exploration of networks underlying many systems

(big part of the PoCS to come).

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Mathematical models, simulations:
 Toy models at large (cellular automata)
 Generalization of rich-get-richer model
 Risk: Extreme value problems and rich-get-rich

models (floods, finance, earthquakes).
 Big data climate patterns and dynamics
 Teletherm (well developed)
 Wind (under way)

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Online, interactive Emotional Shapes of Stories for
10,000+ books:

http://hedonometer.org/books.html


Online, interactive Emotional Shapes of Stories for
1,000+ movie scripts:

http://hedonometer.org/movies.html
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Emotional arcs for 1748 books from gutenberg.org

(37) The Shadow Line: A Confession
(48) Lady Windermere's Fan
(16) The Tragedy of Hamlet, Prince of Denmark
(18) Operation: Outer Space
(36) Hamlet, Prince of Denmark
(47) The New Pun Book
(31) Headlong Hall
(36) The Girl Next Door
(19) All for Love; Or, The World Well Lost: A Tragedy
(38) Tom Swift and the Electronic Hydrolung
(31) Nonsense Novels
(26) Rinkitink in Oz: Wherein Is Recorded the Perilo...
(30) The Chimes: A Goblin Story of Some Bells That R...
(28) The Trees of Pride
(37) Small Means and Great Ends
(72) Alice's Adventures in Wonderland: Illustrated by...
(47) Love's Labour's Lost
(37) A Man of Means
(44) Our American Cousin
(24) All's Well That Ends Well
(35) The Black Dwarf
(20) To Him That Hath: A Tale of the West of Today
(6) Frankenstein; Or, The Modern Prometheus
(12) The Barrier
(20) An Essay Upon Projects
(26) The Time Machine
(12) The Brand of Silence: A Detective Story
(10) Manalive
(11) The Man Who Knew
(13) The Elusive Pimpernel
(1) A Portrait of the Artist as a Young Man
(3) Paradise Lost
(4) Little Fuzzy
(4) The Marrow of Tradition
(7) The Ultimate Weapon
(12) The Napoleon of Notting Hill
(9) The Cosmic Computer
(8) In the Days of the Comet
(5) Eastern Standard Tribe
(4) When the Sleeper Wakes
(6) The Triumphs of Eugne Valmont
(26) The Winter's Tale
(14) Tolstoy on Shakespeare: A Critical Essay on Sha...
(34) Oliver Twist, Vol. 2 (of 3)
(9) The Keepers of the King's Peace
(25) The Idle Thoughts of an Idle Fellow
(32) The Wrong Box
(26) Deadwood Dick, the Prince of the Road; or, The ...
(26) Book of Wise Sayings: Selected Largely from East...
(18) India's Love Lyrics
(10) A Little Princess: Being the whole story of Sar...
(46) Through the Magic Door
(13) The Celtic Twilight
(17) Nonsenseorship
(15) England, My England
(23) The Haunted Room: A Tale
(13) Rewards and Fairies
(12) The Mirror of the Sea
(19) Peter and Wendy
(19) Pagan Passions
(Cluster size) Example Book from cluster

C2 = 5121 C4 = 3495 C8 = 2066
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 Six basic shapes: Tragedy, Icarus, Oedipus,
Rags-to-Riches, Man-in-a-hole, Cindarella.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://www.gutenberg.org
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For story explorers:
 Plots from Wikipedia:

https://github.com/markriedl/WikiPlots
 Millions of books on the VACC:

Hathitrust data set.
 So many possibilities

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://github.com/markriedl/WikiPlots
https://www.hathitrust.org
https://litlab.stanford.edu/distributions-of-words-27k-novels/
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Twitter—living in the now:
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 Research opportunity: be involved in our socio-
info-algorithmo-econo-geo-technico-physical
systems research group studying Twitter and
other wordful large data sets.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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topics:

Rummage round in the papers we’ve covered in our
weekly Complex Systems Reading Group at UVM.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://www.uvm.edu/~cmplxsys/outreach/reading-group/
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topics:

 Explore the Sociotechnocene.
 Develop and elaborate an online experiment to

study some aspect of sociotechnical phenomena
 e.g., collective search, cooperation, cheating,

influence, creation, decision-making, language,
belief, stories, etc.

 Part of the PLAY project.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Storyfinder:

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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The Sixipedia!

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Sociotechnical phenomena—Foldit:

players were particularly adept at solving puzzles requiring substan-
tial backbone remodelling to bury exposed hydrophobic residues
into the protein core (Fig. 2). When a hydrophobic residue points
outwards into solvent, and no corresponding hole within the core is
evident, stochastic Monte Carlo trajectories are unlikely to sample
the coordinated backbone and side-chain shifts needed to bury the
residue properly in the core. By adjusting the backbone to allow the
exposed hydrophobic residue to pack properly in the core, players
were able to solve these problems in a variety of blind scenarios
including a register shift and a remodelled loop (Fig. 2a, b), a rotated
helix (Fig. 2c), two remodelled loops (Fig. 2d), and a helix rotation
and remodelled loop (Fig. 2e).

Players were also able to restructure b-sheets to improve hydro-
phobic burial and hydrogen bond quality. Automated methods have
difficulty performing major protein restructuring operations to
change b-sheet hydrogen-bond patterns, especially once the solution

has settled in a local low-energy basin. Players were able to carry out
these restructuring operations in such scenarios as strand swapping
(Fig. 3) and register shifting (Fig. 2a). In one strand-swap puzzle,
Foldit players were able to get within 1.1 Å of the native structure,
with the top-scoring Foldit prediction being 1.4 Å away. A superposi-
tion between the starting Foldit puzzle, the top-scoring Foldit solu-
tion, and model 1 of the native NMR structure 2kpo (Protein Data
Bank) are shown in Fig. 3b. Rosetta’s rebuild and refine protocol,
however, was unable to get within 2 Å of the native structure (Fig. 3a,
yellow points). This example highlights a key difference between
humans and computers. As shown in Fig. 3c, solving the strand-swap
problem required substantially unravelling the structure (Fig. 3c,
bottom), with a corresponding unfavourable increase in energy
(Fig. 3c, top). Players persisted with this reconfiguration despite the
energy increase because they correctly recognized that the swap could
ultimately lead to lower energies. In contrast, although the Rosetta

1

3

4

2

6

7

8

9

11
10

12

5

Figure 1 | Foldit screenshot illustrating tools and visualizations. The
visualizations include a clash representing atoms that are too close (arrow 1);
a hydrogen bond (arrow 2); a hydrophobic side chain with a yellow blob
because it is exposed (arrow 3); a hydrophilic side chain (arrow 4); and a
segment of the backbone that is red due to high residue energy (arrow 5). The
players can make modifications including ‘rubber bands’ (arrow 6), which
add constraints to guide automated tools, and freezing (arrow 7), which

prevents degrees of freedom from changing. The user interface includes
information about the player’s current status, including score (arrow 8); a
leader board (arrow 9), which shows the scores of other players and groups;
toolbars for accessing tools and options (arrow 10); chat for interacting with
other players (arrow 11); and a ‘cookbook’ for making new automated tools
or ‘recipes’ (arrow 12).

Table 1 | Blind data set

Puzzle ID Foldit Ca r.m.s.d. Rebuild and refine Ca
r.m.s.d.

Native Method Number of residues Figure(s)

986875 1.4 4.5 2kpo NMR 99 3a–c, Supplementary 4
986698 1.8 3.7 2kky NMR 102 3d, e
986836 5.7 6.6 3epu X-ray 136 2c, Supplementary 6d
987088 3.5 4.3 2kpt NMR 116 2a, b, Supplementary 6a, b
987162 4.5 5.2 3lur X-ray 158 Supplementary 6c
987076 3.3 3.5 2kpm NMR 81 2e, Supplementary 5c
986629 3.5 3.3 2kk1 NMR 135 Supplementary 5b
987145 2.6 2.3 3nuf X-ray 105 2d, Supplementary 5a
986844 6.9 5.8 2ki0 NMR 36 Supplementary 10a
986961 10.6 5.7 2knr NMR 118 Supplementary 10b

A listing of all the Foldit puzzles run in the blind data set. A Ca r.m.s.d. comparison to the native structure is given between the best-scoring model produced by Foldit players and the best-scoring
model produced by the Rosetta rebuild and refine protocol, given the same starting model(s). Solutions considerably better with one method than the other are indicated in bold. The solved
structures (which were released after each puzzle ended) are represented by their Protein Data Bank (PDB) codes. Results from these Foldit puzzles can be accessed on the Foldit website by
replacing ID with the corresponding Foldit puzzle ID in http://fold.it/portal/node/ID. 2kky, 2kpt, 2kpm, 2kk1 and 2knr were taken from the CASD-NMR experiment10. 2kpowas provided by N. Koga
and R. Koga. 2ki0 and 3epu were found by searching for unreleased structures on the PDB website (http://www.rcsb.org/pdb/search/searchStatus.do). 3lur and 3nuf were provided by the Joint
Center for Structural Genomics (JCSG). The location of figures containing results for each puzzle are provided in the last column.

NATURE |Vol 466 |5 August 2010 LETTERS

757
Macmillan Publishers Limited. All rights reserved©2010

 “Predicting protein structures with a multiplayer
online game.” Cooper et al., Nature, 2010. [12]

 Also: zooniverse, ESP game, captchas.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://www.zooniverse.org
http://www.gwap.com/gwap/gamesPreview/espgame/
http://www.captcha.net/
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with r0g~5:8 km, br5 1.656 0.15 and k5 350km (Fig. 1d, see

Supplementary Information for statistical validation). Lévy flights
are characterized by a high degree of intrinsic heterogeneity, raising
the possibility that equation (2) could emerge from an ensemble of
identical agents, each following a Lévy trajectory. Therefore, we
determined P(rg) for an ensemble of agents following a random walk
(RW), Lévy flight (LF) or truncated Lévy flight (TLF) (Fig. 1d)8,12,13.
We found that an ensemble of Lévy agents display a significant degree
of heterogeneity in rg; however, this was not sufficient to explain the
truncated power-law distribution P(rg) exhibited by the mobile
phone users. Taken together, Fig. 1c and d suggest that the difference
in the range of typical mobility patterns of individuals (rg) has a
strong impact on the truncated Lévy behaviour seen in equation
(1), ruling out hypothesis A.

If individual trajectories are described by an LF or TLF, then
the radius of gyration should increase with time as rg(t), t3/(21 b)

(ref. 21), whereas, for an RW, rg(t), t1/2; that is, the longer we
observe a user, the higher the chance that she/he will travel to areas
not visited before. To check the validity of these predictions, we
measured the time dependence of the radius of gyration for users
whose gyration radius would be considered small (rg(T)# 3 km),
medium (20, rg(T)# 30 km) or large (rg(T). 100 km) at the end
of our observation period (T5 6months). The results indicate that

the time dependence of the average radius of gyration of mobile
phone users is better approximated by a logarithmic increase, not
only a manifestly slower dependence than the one predicted by a
power law but also one that may appear similar to a saturation
process (Fig. 2a and Supplementary Fig. 4).

In Fig. 2b, we chose users with similar asymptotic rg(T) after
T5 6months, and measured the jump size distribution P(Drjrg)
for each group. As the inset of Fig. 2b shows, users with small rg travel
mostly over small distances, whereas those with large rg tend to
display a combination of many small and a few larger jump sizes.
Once we rescaled the distributions with rg (Fig. 2b), we found that the
data collapsed into a single curve, suggesting that a single jump size
distribution characterizes all users, independent of their rg. This
indicates that P Dr rg

!!" #
*r{a

g F Dr
$
rg

" #
, where a< 1.26 0.1 and

F(x) is an rg-independent function with asymptotic behaviour, that
is, F(x), x2a for x, 1 and F(x) rapidly decreases for x? 1.
Therefore, the travel patterns of individual users may be approxi-
mated by a Lévy flight up to a distance characterized by rg. Most
important, however, is the fact that the individual trajectories are
bounded beyond rg; thus, large displacements, which are the source
of the distinct and anomalous nature of Lévy flights, are statistically
absent. To understand the relationship between the different expo-
nents, we note that themeasured probability distributions are related

Figure 1 | Basic human mobility patterns. a, Week-long trajectory of 40
mobile phone users indicates that most individuals travel only over short
distances, but a few regularly move over hundreds of kilometres. b, The
detailed trajectory of a single user. The different phone towers are shown as
green dots, and the Voronoi lattice in grey marks the approximate reception
area of each tower. The data set studied by us records only the identity of the
closest tower to amobile user; thus, we can not identify the position of a user
within a Voronoi cell. The trajectory of the user shown in b is constructed
from 186 two-hourly reports, during which the user visited a total of 12
different locations (tower vicinities). Among these, the user is found on 96
and 67 occasions in the two most preferred locations; the frequency of visits

for each location is shown as a vertical bar. The circle represents the radius of
gyration centred in the trajectory’s centre of mass. c, Probability density
function P(Dr) of travel distances obtained for the two studied data sets D1

and D2. The solid line indicates a truncated power law for which the
parameters are provided in the text (see equation (1)). d, The distribution
P(rg) of the radius of gyration measured for the users, where rg(T) was
measured after T5 6 months of observation. The solid line represents a
similar truncated power-law fit (see equation (2)). The dotted, dashed and
dot-dashed curves show P(rg) obtained from the standard null models (RW,
LF and TLF, respectively), where for the TLF we used the same step size
distribution as the one measured for the mobile phone users.

LETTERS NATURE |Vol 453 |5 June 2008

780
Nature   Publishing Group©2008

©!2006!Nature Publishing Group!

!

time. Figure 1b shows secondary reports of bank notes with initial
entry at Omaha that have dispersed for times T . 100 days (with an
average time kTl ¼ 289 days). Only 23.6% of the bank notes travelled
farther than 800 km, whereas 57.3% travelled an intermediate dis-
tance 50 , r , 800 km, and a relatively large fraction of 19.1%
remained within a radius of 50 km, even after an average time of
nearly one year. From the computed value Teq < 68 days, a much
higher fraction of bills is expected to reach the metropolitan areas of
the West coast and the New England states after this time. This is
sufficient evidence that the simple Lévy flight picture for dispersal is
incomplete. What causes this attenuation of dispersal?
Two alternative explanations might account for this effect. The

slowing down might be caused by strong spatial inhomogeneities of
the system. People might be less likely to leave large cities than for
example, suburban areas. Alternatively, long periods of rest might be
an intrinsic temporal property of dispersal. In asmuch as an algebraic
tail in spatial displacements yields superdiffusive behaviour, a tail in
the probability density f(t) for times t between successive spatial
displacements of an ordinary randomwalk can lead to subdiffusion15

(see Supplementary Information). Here, the ambivalence between
scale-free spatial displacements and scale-free periods of rest can be
responsible for the observed attenuation of superdiffusion.
In order to address this issue we investigated the relative pro-

portion Pi
0ðtÞ of bank notes which are reported in a small (20 km)

radius of the initial entry location i as a function of time (Fig. 1d).
The quantity Pi

0ðtÞ estimates the probability of a bank note being
reported at the initial location at time t. We computed Pi

0ðtÞ for
metropolitan areas, cities of intermediate size and small towns: for all
classes we found the asymptotic behaviour P0(t) , At2h, with the
same exponent h ¼ 0.6 ^ 0.03, which indicates that waiting time
and dispersal characteristics are universal. Notice that for a pure
Lévy flight with index b in two dimensions, P0(t) scales with time
as t22/b (dashed red line)15. For b < 0.6 (as suggested by Fig. 1c) this
implies h < 3.33. This is a fivefold steeper decrease than observed,
which clearly shows that dispersal cannot be described by a pure Lévy
flight. The measured decay is even slower than the decay expected
from ordinary two-dimensional diffusion (h ¼ 1, dashed black line).
Therefore, we conclude that the slow decay in P0(t) reflects the effect

Figure 1 | Dispersal of bank notes and humans on geographical scales.
a, Relative logarithmic densities of population (cP ¼ logrP/krPl), report
(cR ¼ logrR/krRl) and initial entry (c IE ¼ logr IE/kr IEl) as functions of
geographical coordinates. Colour-code shows densities relative to the
nationwide averages (3,109 counties) of krPl ¼ 95.15, krRl ¼ 0.34 and
kr IEl ¼ 0.15 individuals, reports and initial entries per km2, respectively.
b, Trajectories of bank notes originating from four different places. City
names indicate initial location, symbols secondary report locations. Lines
represent short-time trajectories with travelling time T , 14 days. Lines are
omitted for the long-time trajectories (initial entry in Omaha) with
T . 100 days. The inset depicts a close-up view of the New York area. Pie
charts indicate the relative number of secondary reports coarsely sorted by
distance. The fractions of secondary reports that occurred at the initial entry
location (dark), at short (0 , r , 50 km), intermediate (50 , r , 800 km)
and long (r . 800 km) distances are ordered by increasing brightness of hue.
The total number of initial entries are N ¼ 2,055 (Omaha), N ¼ 524
(Seattle), N ¼ 231 (New York), N ¼ 381 (Jacksonville). c, The short-time

dispersal kernel. The measured probability density function P(r) of
traversing a distance r in less than T ¼ 4 days is depicted in blue symbols.
It is computed from an ensemble of 20,540 short-time displacements. The
dashed black line indicates a power law P(r),r2(1 þ b) with an exponent of
b ¼ 0.59. The inset shows P(r) for three classes of initial entry locations
(black triangles for metropolitan areas, diamonds for cities of intermediate
size, circles for small towns). Their decay is consistent with the measured
exponent b ¼ 0.59 (dashed line). d, The relative proportion P0(t) of
secondary reports within a short radius (r0 ¼ 20 km) of the initial entry
location as a function of time. Blue squares show P0(t) averaged over 25,375
initial entry locations. Black triangles, diamonds, and circles show P0(t) for
the same classes as c. All curves decrease asymptotically as t2h with an
exponent h ¼ 0.60 ^ 0.03 indicated by the blue dashed line. Ordinary
diffusion in two dimensions predicts an exponent h ¼ 1.0 (black dashed
line). Lévy flight dispersal with an exponent b ¼ 0.6 as suggested by b
predicts an even steeper decrease, h ¼ 3.33 (red dashed line).

NATURE|Vol 439|26 January 2006 LETTERS
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 Study movement and
interactions of people.

 Brockmann et al. [5] “Where’s
George” study.

 Barabasi’s group: tracking
movement via cell
phones [21].

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/


PoCS
@pocsvox

Semester projects

The Plan

Suggestions for
Projects

Archive

References

.
.
.
.
.

.
25 of 74

The madness of modern geography:

 Explore distances between points on the Earth as
travel times.

 See Jonathan Harris’s work here and here.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://www.number27.org/assets/work/extras/maps/traveltime/index.html
http://www.visualcomplexity.com/vc/project_details.cfm?id=92&index=5&domain=Transportation%20Networks
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LETTER
doi:10.1038/nature10856

A universal model for mobility and migration
patterns
Filippo Simini1,2,3, Marta C. González4, Amos Maritan2 & Albert-László Barabási1,5,6

Introduced in its contemporary form in 1946 (ref. 1), but with roots
that go back to the eighteenth century2, the gravity law1,3,4 is the pre-
vailing framework with which to predict population movement3,5,6,
cargo shipping volume7 and inter-city phone calls8,9, as well as bilateral
trade flows between nations10. Despite its widespread use, it relies on
adjustable parameters that vary from region to region and suffers
from known analytic inconsistencies. Here we introduce a stochastic
process capturing local mobility decisions that helps us analytically
derive commuting and mobility fluxes that require as input only
information on the population distribution. The resulting radiation
model predicts mobility patterns in good agreement with mobility
and transport patterns observed in a wide range of phenomena, from
long-term migration patterns to communication volume between
different regions. Given its parameter-free nature, the model can be
applied in areas where we lack previous mobility measurements,
significantly improving the predictive accuracy of most of the
phenomena affected by mobility and transport processes11–23.

In analogy with Newton’s law of gravity, the gravity law assumes
that the number of individuals Tij that move between locations i and j
per unit time is proportional to some power of the population of the
source (mi) and destination (nj) locations, and decays with the distance
rij between them as

Tij~
ma

i nb
j

f (rij)
ð1Þ

where a and b are adjustable exponents and the deterrence function
f(rij) is chosen to fit the empirical data. Occasionally Tij is interpreted as
the probability rate of individuals travelling from i to j, or an effective
coupling between the two locations24. Despite its widespread use, the
gravity law has notable limitations:

Limitation one, we lack a rigorous derivation of (1). Whereas
entropy maximization25 leads to (1) with a 5 b 5 1, it fails to offer
the functional form of f(r).

Limitation two, lacking theoretical guidance, practitioners use a
range of deterrence functions (power law or exponential) and up to
nine parameters to fit the empirical data5,7,8,11,14.

Limitation three, as (1) requires previous traffic data to fit the para-
meters [a, b, …], it is unable to predict mobility in regions where we
lack systematic traffic data, areas of major interest in modelling of
infectious diseases.

Limitation four, the gravity law has systematic predictive discrep-
ancies. Indeed, in Fig. 1a we highlight two pairs of counties with similar
origin and destination populations and comparable distance, so
according to (1) the flux between them should be the same. Yet, the
US census (see Supplementary Information) documents an order of
magnitude difference between the two fluxes: only 6 individuals
commute between the two Alabama counties, whereas 44 do in Utah.

Limitation five, equation (1) predicts that the number of commuters
increases without limit as we increase the destination population nj, yet

1Center for Complex Network Research and Department of Physics, Biology and Computer Science, Northeastern University, Boston, Massachusetts 02115, USA. 2Dipartimento di Fisica ‘‘G. Galilei’’,
Università di Padova, CNISM and INFN, via Marzolo 8, 35131 Padova, Italy. 3Institute of Physics, Budapest University of Technology and Economics, Budafoki út 8, Budapest, H-1111, Hungary. 4MIT,
Department of Civil and Environmental Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. 5Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston,
Massachusetts 02115, USA. 6Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
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Figure 1 | The radiation model. a, To demonstrate the limitations of the
gravity law we highlight two pairs of counties, one in Utah (UT) and the other
in Alabama (AL), with similar origin (m, blue) and destination (n, green)
populations and comparable distance r between them (see bottom left table).
The gravity law predictions were obtained by fitting equation (1) to the full
commuting data set, recovering the parameters [a, b, c] 5 [0.30, 0.64, 3.05] for
r , 119 km, and [0.24, 0.14, 0.29] for r . 119 km of ref. 14. The fluxes predicted
by (1) are the same because the two county pairs have similar m, n and r (top
right table). Yet the US census 2000 reports a flux that is an order of magnitude
greater between the Utah counties, a difference correctly captured by the
radiation model (b, c). b, The definition of the radiation model: an individual
(for example, living in Saratoga County, New York) applies for jobs in all
counties and collects potential employment offers. The number of job
opportunities in each county (j) is nj/njobs, chosen to be proportional to the
resident population nj. Each offer’s attractiveness (benefit) is represented by a
random variable with distribution p(z), the numbers placed in each county
representing the best offer among the nj/njobs trials in that area. Each county is
marked in green (red) if its best offer is better (lower) than the best offer in the
home county (here z 5 10). c, An individual accepts the closest job that offers
better benefits than his home county. In the shown configuration the individual
will commute to Oneida County, New York, the closest county whose benefit
z 5 13 exceeds the home county benefit z 5 10. This process is repeated for
each potential commuter, choosing new benefit variables z in each case.
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“A universal model for mobility and
migration patterns”
Simini et al.,
Nature, 484, 96–100, 2012. [37]

simulation shown in Fig. 2B. Compared to Fig. 1C,
this demonstrates that effective distance generates
a much higher correlation than geographic dis-
tance (R2

eff ¼ 0:97 compared to R2
geo ¼ 0:34; see

tables S2 and S3 and fig. S12 for more examples).
Furthermore, the relationship of Ta and Deff is
linear, which means that the effective speed veff =
Deff /Ta of the wavefront is a well-defined con-
stant. To compare the regression quality, we com-
puted the distribution of relative residuals r =
dTa/Ta, using effective or geographic distance as a
regressor. The ratio of residual variances implies
a more than 50-fold higher prediction quality
(table S3 and fig. S13).

Although we have demonstrated the clear
linear functional relationship for simulated, hy-
pothetical scenarios of global disease spread, it
is crucial to test the validity and usefulness of
the effective distance approach on empirical data.
Figure 2, D and E, depict arrival time versus ef-
fective distance on the basis of data for the 2009
H1N1 pandemic and the global 2003 SARS epi-
demic, respectively (figs. S14 to S16 and table S4).
Arrival times are the same as in Fig. 1, D and E,
but shown across effective rather than geographic
distances. As the empirical data are available on a
country resolution, we determined the traffic be-
tween countries by aggregation to specify a coarse-
grained network (GMNc) (189 nodes, 5004 links)
and effective distances from the origin location
in each case (see supplementary text for details).

Both the H1N1 and SARS data exhibit a clear
linear relationship between arrival time and ef-
fective distance from the source, even though
additional factors complicate the spreading of
real diseases. Fluctuations, effects due to coarse
graining, and errors in arrival-time measurements
can add noise to the system, which increases the
scatter in the linear relationship. To address the
general validity of the observed effects, we also
analyzed data generated by the global epidemic
and mobility model (GLEAM) (www.gleamviz.
org), a sophisticated epidemic simulation frame-
work (21). GLEAM incorporates air transporta-
tion and local commuter traffic on a global scale,
is fully stochastic, and permits the simulation of
infectious state–dependent mobility behavior, clin-
ical states, antiviral statement, and more. The re-
sults of this analysis are shown in figs. S17 to
S19 and are consistent with our claims.

Relative Arrival Times Are Independent
of Epidemic Parameters
Our results reveal an important, approximate
relationship between the system parameters,
which can be summarized as follows:

Ta ¼ Deff ðPÞ
︸eff : distance

=veff ða,R0,g,eÞ
︸eff : speed

ð6Þ

This equation states that arrival times can be
computed with high fidelity based on the ef-

fective distances Deff and effective spreading
speed veff, and that each factor depends on dif-
ferent parameters of the dynamical system. The
epidemiological parameters determine the effec-
tive speed, whereas effective distance depends
only on the topological features of the static
underlying network, i.e., the matrix P. When
confronted with the outbreak of an emergent in-
fectious disease, one of the key problems is that
the disease-specific parameters are typically un-
known in the beginning, and simulations based
on plausible parameter ranges typically exhibit
substantial variability in predicted outcomes.
However, Eq. 6 allows us to compute relative
arrival times without knowledge of these pa-
rameters. If, for example, the outbreak node is
labeled k, while n and m are arbitrary nodes,
then Ta(n|k)/Ta(m|k) =Deff(n|k)/Deff(m|k). Equa-
tion 6 states that the effective speed veff is a
global property, independent of the mobility net-
work and the outbreak location. Thus, irrespec-
tive of mobility and OL, one can investigate
how the effective speed depends on rate param-
eters of the system.

Origin of Outbreak Reconstruction Based on
Effective Distance
The concept of effective distance is particularly
valuable for solving the aforementioned in-
verse problem: Given a spatially distributed
prevalence pattern that was generated by an
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Fig. 3. Qualitative outbreak reconstruction based on effective distance.
(A) Spatial distribution of prevalence jn(t) at time T = 81 days for OL Chicago
(parameters b = 0.28 day–1, R0 = 1.9, g = 2.8 × 10–3 day–1, and e = 10–6).
After this time, it is difficult, if not impossible, to determine the correct OL from
snapshots of the dynamics. (B) Candidate OLs chosen from different geographic
regions. (C) Panels depict the state of the system shown in (A) from the

perspective of each candidate OL, using each OL’s shortest path tree represen-
tation. Only the actual OL (ORD, circled in blue) produces a circular wavefront.
Even for comparable North American airports [Atlanta (ATL), Toronto (YYZ), and
Mexico City (MEX)], the wavefronts are not nearly as concentric. Effective
distances thus permit the extraction of the correct OL, based on information on
the mobility network and a single snapshot of the dynamics.

13 DECEMBER 2013 VOL 342 SCIENCE www.sciencemag.org1340

RESEARCH ARTICLE

“The hidden geometry of complex,
network-driven contagion phenomena”
Brockmann and Helbing,
Science, 342, 1337–1342, 2013. [4]

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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https://pdodds.w3.uvm.edu//research/papers/others/everything/simini2012a.pdf
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https://pdodds.w3.uvm.edu//research/papers/others/everything/brockmann2013a.pdf
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Weighted links Fnm quantify direct air traffic
(passengers per day) from node m to node n.
The GMN is constructed from the worldwide air
traffic between 4069 airports with 25,453 direct
connections. Details on the data and network con-
struction are provided in the supplementary mate-
rials (e.g., fig. S1 and table S1) (5, 13, 20, 29). The
total network traffic is approximately F ¼ 8:91"
106 passengers per day. Assuming that the total
traffic in and out of a node is proportional to its
population size, Eqs. 1 and 2 can be rewritten as

∂t jn ¼ asn jnsð jn=eÞ − b jn þ g ∑
m≠n

Pmnð jm − jnÞ

∂tsn ¼ −asn jnsð jn=eÞ þ g ∑
m≠n

Pmnðsm − snÞ

with sn = Sn/Nn, jn = In/Nn, and rn = 1 – sn – jn. A
detailed derivation is provided in the supplemen-
tary text. The mobility parameter g is the average
mobility rate, i.e.,g ¼ F=W, whereW ¼ ∑nNn is
the total population in the system. This yields nu-
merical values in the range g =0.0013–0.0178day–1.
The matrix P with 0 ≤ Pmn ≤ 1 quantifies the
fraction of the passenger flux with destinationm

emanating from node n, i.e., Pmn = Fmn/Fn,

where Fn ¼ ∑
m
Fmn. The additional sigmoid func-

tion sðxÞ ¼ xh=ð1þ xhÞwithgainparameterh >>0
accounts for the local invasion threshold e and
fluctuation effects for jn < e (30–32). Typical
parameter choices for e and h areh ¼ 4,8,∞ and
−log10 e ¼ 4,…,6. Our results are robust with re-
spect to changes in these parameters (e.g., figs. S5
and S13).

Figure 1B shows a temporal snapshot of the
dynamical system defined by Eq. 3 for a hy-
pothetical pandemic with initial outbreak loca-
tion (OL) in HongKong (HKG) (see also Fig. 2B
and fig. S2 for temporal sequences of the dy-
namical system for various other OLs). General-
ly, the metapopulation model above and related
models used in the past generate solutions that
are characterized by similar qualitative features.
First, only during the early stage of the process
does the prevalence jn(t) (i.e., the fraction of
infected individuals) correlate significantly with
geographic distance from the OL. Second, at in-

termediate and later stages, themultiscale structure
of the GMN induces a spatial decoherence of
the spreading pattern. Third, despite the global
connectivity, the spatiotemporal patterns do not
converge to the same pattern, i.e., spatiotemporal
differences are not a transient effect (figs. S3 to
S6 andmovies S1 to S3). This type of complexity
sharply contrasts the generic behavior of ordinary
reaction-diffusion systems, which typically ex-
hibit spatially coherent wavefronts.

Most Probable Paths and Effective Distance
The key idea we pursue here is that, despite the
structural complexity of the underlying network,
the redundancy of connections, and the multiplic-
ity of paths a contagion phenomenon can take, the
dynamic process is dominated by a set of most
probable trajectories that can be derived from the
connectivity matrix P. This hypothesis is analogous
to the dominance of the smallest resistor in a strong-
ly heterogeneous electrical network with parallel
conducting lines.Given the flux-fraction0≤Pmn≤1,
i.e., the fraction of travelers that leave node n and
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Fig. 1. Complexity in global, network-driven contagion phenomena. (A)
The global mobility network (GMN). Gray lines represent passenger flows along
direct connections between 4069 airports worldwide. Geographic regions are
distinguished by color [classified according to network modularity maximization
(39)]. (B) Temporal snapshot of a simulated global pandemic with initial outbreak
location (OL) in Hong Kong (HKG). The simulation is based on themetapopulation
model defined by Eq. 3 with parameters R0 = 1.5, b = 0.285 day–1, g = 2.8 ×
10–3 day–1, e = 10–6. Red symbols depict locations with epidemic arrival times
in the time window 105 days≤ Ta≤ 110 days. Because of themultiscale structure
of the underlying network, the spatial distribution of disease prevalence (i.e.,
the fraction of infected individuals) lacks geometric coherence. No clear wave-
front is visible, and based on this dynamic state, the OL cannot be easily deduced.
(C) For the same simulation as in (B), the panel depicts arrival times Ta as a
function of geographic distance Dg from the OL [nodes are colored according to
geographic region as in (A)] for each of the 4069 nodes in the network. On a

global scale, Ta weakly correlates with geographic distance Dg (R2 = 0.34). A
linear fit yields an average global spreading speed of vg = 331 km/day (see also
fig. S7). Using Dg and vg to estimate arrival times for specific locations, however,
does not work well owing to the strong variability of the arrival times for a given
geographic distance. The red horizontal bar corresponds to the arrival time
window shown in (B). (D) Arrival times versus geographic distance from the
source (Mexico) for the 2009 H1N1 pandemic. Symbols represent 140 affected
countries, and symbol size quantifies total traffic per country. Arrival times are
defined as the date of the first confirmed case in a given country after the initial
outbreak on 17 March 2009. As in the simulated scenario, arrival time and
geographic distance are only weakly correlated (R2 = 0.0394). (E) In analogy to
(D), the panel depicts the arrival times versus geographic distance from the
source (China) of the 2003 SARS epidemic for 29 affected countries worldwide.
Arrival times are taken from WHO published data (2). As in (C) and (D), arrival
time correlates weakly with geographic distance.

(3)

13 DECEMBER 2013 VOL 342 SCIENCE www.sciencemag.org1338
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arrive at node m, we define the effective distance
dnm from a node n to a connected node m as

dmn ¼ ð1 − logPmnÞ ≥ 1 ð4Þ

This concept of effective distance reflects the
idea that a small fraction of traffic n→m is effec-
tively equivalent to a large distance, and vice versa.
As explained in more detail in the supplemen-
tary text, the logarithm is a consequence of the
requirement that effective lengths are additive,
whereas probabilities along multistep paths are
multiplicative. Eq. 4 defines a quasi-distance,which
is generally asymmetric, i.e., dmn ≠ dnm. The lack
of symmetry is analogous to a road network of one-
way streets, where the shortest distance fromA toB
may differ from the one from B to A. This asym-
metry captures the effect that a randomly seeded
disease in a peripheral node of the network has a
higher probability of being transmitted to a well-
connected hub than vice versa (figs. S8 to S10).
More properties of effective distance as defined
by Eq. 4 are discussed in the supplementary text.
On the basis of effective distance, we can define
the directed length lðGÞ of an ordered path

G ¼ fn1,…,nLg as the sum of effective lengths
along the legs of the path. Moreover, we define
the effective distance Dmn from an arbitrary ref-
erence node n to another node m in the network
by the length of the shortest path from n to m:

Dmn ¼ min
G

lðGÞ ð5Þ

Again, we typically haveDmn ≠ Dnm. From
the perspective of a chosen origin node n, the set
of shortest paths to all other nodes constitutes a
shortest path treeYn (Fig. 2A), illustrating themost
probable sequence of paths from the root node n
to the other nodes.

Effective Distance Perspective Reveals
Hidden Pattern Geometry
The key question is how, compared to the con-
ventional geographic representation, the same
spreading process evolves on the shortest path
tree. Figure 2B portrays this comparison. We see
that the effective distance representation has no-
table advantages: It reveals simple coherent wave
fronts, whereas spatiotemporal patterns in geo-
graphical space are complex, incoherent, and hard

to understand. This is a generic feature that is
robust against variations in epidemic parameters
and true for any choice of the OL (figs. S11 and
S12). Using effective distance, one can thus cal-
culate the spreading speed and arrival times of a
disease, and determine functional relationships
between epidemiological and mobility parameters.
The dynamic simplicity in the new representation
is much more than just a trivial visual rearrange-
ment of the spatiotemporal pattern. Simple prop-
agating waves in the new perspective imply that
the contagion process is dominated by most prob-
able paths, as this is the underlying assumption in
the derivation of Eq. 5. Also, effective distance
and the shortest path trees only depend on the
static mobility matrix P. This implies that, on a
spatial scale described by the metapopulation
model (Eq. 3), the complexity of the spatiotemporal
pattern is largely determined by the structure of
the mobility component in Eq. 3 and not by the
nonlinearities or the disease-specific, epidemio-
logical rate parameters of the model.

Figure 2C presents the correlation of arrival
times Ta with effective distances Deff for the
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Fig. 2. Understanding global contagion phenomena using effective
distance. (A) The structure of the shortest path tree (in gray) from Hong Kong
(central node). Radial distance represents effective distance Deff as defined by
Eqs. 4 and 5. Nodes are colored according to the same scheme as in Fig. 1A. (B)
The sequence (from left to right) of panels depicts the time course of a simulated
model disease with initial outbreak in Hong Kong (HKG), for the same param-
eter set as used in Fig. 1B. Prevalence is reflected by the redness of the symbols.
Each panel compares the state of the system in the conventional geographic
representation (bottom) with the effective distance representation (top). The
complex spatial pattern in the conventional view is equivalent to a homoge-

neous wave that propagates outwards at constant effective speed in the effective
distance representation. (C) Epidemic arrival time Ta versus effective distance
Deff for the same simulated epidemic as in (B). In contrast to geographic distance
(Fig. 1C), effective distance correlates strongly with arrival time (R2 = 0.973), i.e.,
effective distance is an excellent predictor of arrival times. (D and E) Linear
relationship between effective distance and arrival time for the 2009 H1N1
pandemic (D) and the 2003 SARS epidemic (E). The arrival time data are the
same as in Fig. 1, D and E. The effective distance was computed from the proj-
ected global mobility network between countries. As in the model system, we
observe a strong correlation between arrival time and effective distance.

www.sciencemag.org SCIENCE VOL 342 13 DECEMBER 2013 1339
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simulation shown in Fig. 2B. Compared to Fig. 1C,
this demonstrates that effective distance generates
a much higher correlation than geographic dis-
tance (R2

eff ¼ 0:97 compared to R2
geo ¼ 0:34; see

tables S2 and S3 and fig. S12 for more examples).
Furthermore, the relationship of Ta and Deff is
linear, which means that the effective speed veff =
Deff /Ta of the wavefront is a well-defined con-
stant. To compare the regression quality, we com-
puted the distribution of relative residuals r =
dTa/Ta, using effective or geographic distance as a
regressor. The ratio of residual variances implies
a more than 50-fold higher prediction quality
(table S3 and fig. S13).

Although we have demonstrated the clear
linear functional relationship for simulated, hy-
pothetical scenarios of global disease spread, it
is crucial to test the validity and usefulness of
the effective distance approach on empirical data.
Figure 2, D and E, depict arrival time versus ef-
fective distance on the basis of data for the 2009
H1N1 pandemic and the global 2003 SARS epi-
demic, respectively (figs. S14 to S16 and table S4).
Arrival times are the same as in Fig. 1, D and E,
but shown across effective rather than geographic
distances. As the empirical data are available on a
country resolution, we determined the traffic be-
tween countries by aggregation to specify a coarse-
grained network (GMNc) (189 nodes, 5004 links)
and effective distances from the origin location
in each case (see supplementary text for details).

Both the H1N1 and SARS data exhibit a clear
linear relationship between arrival time and ef-
fective distance from the source, even though
additional factors complicate the spreading of
real diseases. Fluctuations, effects due to coarse
graining, and errors in arrival-time measurements
can add noise to the system, which increases the
scatter in the linear relationship. To address the
general validity of the observed effects, we also
analyzed data generated by the global epidemic
and mobility model (GLEAM) (www.gleamviz.
org), a sophisticated epidemic simulation frame-
work (21). GLEAM incorporates air transporta-
tion and local commuter traffic on a global scale,
is fully stochastic, and permits the simulation of
infectious state–dependent mobility behavior, clin-
ical states, antiviral statement, and more. The re-
sults of this analysis are shown in figs. S17 to
S19 and are consistent with our claims.

Relative Arrival Times Are Independent
of Epidemic Parameters
Our results reveal an important, approximate
relationship between the system parameters,
which can be summarized as follows:

Ta ¼ Deff ðPÞ
︸eff : distance

=veff ða,R0,g,eÞ
︸eff : speed

ð6Þ

This equation states that arrival times can be
computed with high fidelity based on the ef-

fective distances Deff and effective spreading
speed veff, and that each factor depends on dif-
ferent parameters of the dynamical system. The
epidemiological parameters determine the effec-
tive speed, whereas effective distance depends
only on the topological features of the static
underlying network, i.e., the matrix P. When
confronted with the outbreak of an emergent in-
fectious disease, one of the key problems is that
the disease-specific parameters are typically un-
known in the beginning, and simulations based
on plausible parameter ranges typically exhibit
substantial variability in predicted outcomes.
However, Eq. 6 allows us to compute relative
arrival times without knowledge of these pa-
rameters. If, for example, the outbreak node is
labeled k, while n and m are arbitrary nodes,
then Ta(n|k)/Ta(m|k) =Deff(n|k)/Deff(m|k). Equa-
tion 6 states that the effective speed veff is a
global property, independent of the mobility net-
work and the outbreak location. Thus, irrespec-
tive of mobility and OL, one can investigate
how the effective speed depends on rate param-
eters of the system.

Origin of Outbreak Reconstruction Based on
Effective Distance
The concept of effective distance is particularly
valuable for solving the aforementioned in-
verse problem: Given a spatially distributed
prevalence pattern that was generated by an

A
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SYD
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SVO

DXB
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YYZ

JNB

HND
BWE
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B

C

DXB

YYZ

BWE

JNB LHR MEX SYD ATL

PEKHNDORDSVO

Fig. 3. Qualitative outbreak reconstruction based on effective distance.
(A) Spatial distribution of prevalence jn(t) at time T = 81 days for OL Chicago
(parameters b = 0.28 day–1, R0 = 1.9, g = 2.8 × 10–3 day–1, and e = 10–6).
After this time, it is difficult, if not impossible, to determine the correct OL from
snapshots of the dynamics. (B) Candidate OLs chosen from different geographic
regions. (C) Panels depict the state of the system shown in (A) from the

perspective of each candidate OL, using each OL’s shortest path tree represen-
tation. Only the actual OL (ORD, circled in blue) produces a circular wavefront.
Even for comparable North American airports [Atlanta (ATL), Toronto (YYZ), and
Mexico City (MEX)], the wavefronts are not nearly as concentric. Effective
distances thus permit the extraction of the correct OL, based on information on
the mobility network and a single snapshot of the dynamics.

13 DECEMBER 2013 VOL 342 SCIENCE www.sciencemag.org1340
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Multilayer networks:

Explore “Catastrophic cascade of failures in
interdependent networks” [6]. Buldyrev et al., Nature
2010.

continue this process until no further splitting and link removal can
occur (Fig. 2d). We find that this process leads to a percolation phase
transition for the two interdependent networks at a critical threshold,
p5 pc, which is significantly larger than the equivalent threshold for a
single network. As in classical network theory21–25, we define the giant
mutually connected component to be themutually connected cluster
spanning the entire network. Below pc there is no giant mutually
connected component, whereas above pc a giant mutually connected
cluster exists.

Our insight based on percolation theory is that when the network
is fragmented, the nodes belonging to the giant component connect-
ing a finite fraction of the network are still functional, whereas the
nodes that are part of the remaining small clusters become non-
functional. Therefore, for interdependent networks only the giant

mutually connected cluster is of interest. The probability that two
neighbouring A-nodes are connected by A«B links to two neigh-
bouring B-nodes scales as 1/N (Supplementary Information). Hence,
at the end of the cascade process of failures, above pc only very small
mutually connected clusters and one giant mutually connected clus-
ter exist, in contrast to traditional percolation, wherein the cluster
size distribution obeys a power law. When the giant component
exists, the interdependent networks preserve their functionality; if
it does not exist, the networks split into small fragments that cannot
function on their own.

We apply our model first to the case of two Erdo0 s–Rényi net-
works21–23 with average degrees ÆkAæ and ÆkBæ. We remove a random
fraction, 12 p, of the nodes in network A and follow the iterative
process of forming a1-, b2-, a3-, …, b2k- and a2k11-clusters as

a11

a12

a13

a11

a12

a13

a31

a32

a33

a34

b21

b22

b23

b24

b21

b22

b23

b24

Attack

Stage 1 Stage 2 Stage 3A B

a b c d

Figure 2 | Modelling an iterative process of a cascade of failures. Each
node in network A depends on one and only one node in network B, and vice
versa. Links between the networks are shown as horizontal straight lines, and
A-links and B-links are shown as arcs. a, One node from network A is
removed (‘attack’). b, Stage 1: a dependent node in network B is also
eliminated and network A breaks into three a1-clusters, namely a11, a12 and
a13. c, Stage 2: B-links that link sets of B-nodes connected to separate a1-
clusters are eliminated and network B breaks into four b2-clusters, namely

b21, b22, b23 and b24. d, Stage 3: A-links that link sets of A-nodes connected to
separate b2-clusters are eliminated and network A breaks into four a3-
clusters, namely a31, a32, a33 and a34. These coincidewith the clusters b21, b22,
b23 and b24, and no further link elimination and network breaking occurs.
Therefore, each connected b2-cluster/a3-cluster pair is a mutually connected
cluster and the clusters b24 and a34, which are the largest among them,
constitute the giant mutually connected component.

a b c

Figure 1 | Modelling a blackout in Italy. Illustration of an iterative process of
a cascade of failures using real-world data from a power network (located on
the map of Italy) and an Internet network (shifted above the map) that were
implicated in an electrical blackout that occurred in Italy in September
200320. The networks are drawn using the real geographical locations and
every Internet server is connected to the geographically nearest power
station. a, One power station is removed (red node on map) from the power
network and as a result the Internet nodes depending on it are removed from
the Internet network (red nodes above the map). The nodes that will be
disconnected from the giant cluster (a cluster that spans the entire network)

at the next step are marked in green. b, Additional nodes that were
disconnected from the Internet communication network giant component
are removed (red nodes above map). As a result the power stations
depending on them are removed from the power network (red nodes on
map). Again, the nodes that will be disconnected from the giant cluster at the
next step are marked in green. c, Additional nodes that were disconnected
from the giant component of the power network are removed (red nodes on
map) as well as the nodes in the Internet network that depend on them (red
nodes above map).

LETTERS NATURE |Vol 464 | 15 April 2010

1026
Macmillan Publishers Limited. All rights reserved©2010
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HOT networks:

the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) � �(i, j)�E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax � max{s(g): g �
G(D)}, we define the measure 0 � S(g) � 1 of the graph g as
S(g) � s(g)�smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) � 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) � 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) � 0.33 and S(gd) � 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet
An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the
Abilene network are available from www.internet2.edu�abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-
fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent
the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having
the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree
nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified
version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di � 1 is shown.

14498 � www.pnas.org�cgi�doi�10.1073�pnas.0501426102 Doyle et al.

“The “Robust yet Fragile” nature of the
Internet”
Doyle et al.,
Proc. Natl. Acad. Sci., 2005, 14497–14502,
2005. [17]

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://pdodds.w3.uvm.edu//research/papers/others/everything/doyle2005a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/doyle2005a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/doyle2005a.pdf
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topics:

 Read and critique “Historical Dynamics: Why
States Rise and Fall” by Peter Turchin. [41]

 Can history be explained by differential
equations?: Clyodynamics,

 Construct a working version of Psychohistory.
 “Big History”

Scholarly Incursions
HISTORICAL METHODS, July–September 2011, Volume 44, Number 3
Copyright C© Taylor & Francis Group, LLC

The Life-Spans of Empires
SAMUEL ARBESMAN

Institute for Quantitative Social Science
Harvard University

Abstract. The collapse of empires is exceedingly difficult to under-
stand. The author examined the distribution of imperial lifetimes
using a data set that spans more than three millennia and found that
it conforms to a memoryless exponential distribution in which the
rate of collapse of an empire is independent of its age. Comparing
this distribution to similar lifetime distributions of other complex
systems—specifically, biological species and corporate firms—the
author explores the reasons behind their lifetime distributions and
how this approach can yield insights into empires.

Keywords: empires, exponential, lifetime, longevity, species

The rise and fall of empires is a complicated affair.
Empires fall for many reasons. Some have argued
that the increased complexity of a society causes it to

collapse on itself (Tainter 1988), whereas others have argued
that the fundamental reason for societal collapse is how it
responds to environmental stresses, both endogenous and
exogenous to the system (Diamond 2005). However, there
are many other reasons for collapse, among them economic
and geopolitical causes.

In addition, much work has quantitatively examined
the rise and fall of states (Turchin 2003). However,
despite the rich literature on the causes of the growth and
collapse of societies, empires, and civilizations, no one has
mathematically examined the aggregate lifetime distribution
of these systems. Furthermore, understanding the lifetime
distribution of empires within the larger context of complex
systems—systems that have large numbers of interacting
components that give rise to emergent properties—is of
great importance.

For example, similar to societies, other types of complex
systems have lifetimes that are determined by a complexity of
variables. The mass extinction at the Cretaceous-Paleogene
boundary (when the dinosaurs died) would not have occurred
without a massive meteor impact (Schulte, Alegret, Arenillas,
Arz, Barton, Bown et al. 2010). The Japanese family-owned
company Kongo Gumi, which existed for more than 1,400
years until being absorbed by a large construction firm, would

Address correspondence to Samuel Arbesman, Department of
Health Care Policy, Harvard Medical School, 180 Longwood Ave.,
Boston, MA 02115, USA. E-mail: arbesman@hcp.med.harvard.edu

have survived if they had perhaps not invested as heavily in
real estate (Hutcheson 2007). Each system’s survival is often
remarkably idiosyncratic and distinct. Surprisingly however,
by examining the distribution of lifetimes of corporate firms
and biological species, a researcher can learn about their
behaviors in aggregate.

It is well known that the extinction rate of a species is
independent of its age (Van Valen 1973). This means that
no matter how long-lived a species already is, its extinction
rate is nonetheless the same as a much newer species. Ever
since Leigh Van Valen’s seminal paper (ibid.), the Red Queen
effect—the presence of constant rates of extinction due to
evolution in the face of a changing environment—has been
used to explain the constant rate of extinction of biological
species. More recent research has sought to explain why
species lifetimes adhere to exponential distributions, while
the lifetimes of larger taxa, such as genera, adhere to power-
law distributions (Pigolotti et al. 2005).

These exponential distributions are not unique to biologi-
cal systems. In addition, it has been found that corporate firm
lifetimes also conform to a memoryless exponential distribu-
tion (Fujiwara 2004). Guided by this work, I examined the
extinction rate of long-lived empires, or civilizations. Here I
found that this property of complex systems is also present
in the distribution of lifetimes for empires, using a data set
that spans over three millennia.

Materials and Methods

In two studies, Rein Taagepera (1978, 1979) compiled
the lifetimes of 41 empires, which spanned from 3,000
BCE to 600 CE. Surprisingly, as far as can be determined,
Taagepera did not analyze the lifetime distribution of these
empires. Therefore, I derived the lifetimes of 41 empires
from Taagepera’s work, as measured in centuries. When a
range was given in the data set, the midpoint of the range is
used for the imperial lifetime. The exponential distribution
was then fit by a maximum-likelihood model.

To evaluate the appropriateness of the exponential distri-
bution, several other distributions were attempted for com-
parison: normal, log-normal, geometric, and gamma ones.
For each of these, the log-likelihoods were compared with
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“The life-spans of Empires”
Samuel Arbesman,
Historical Methods: A Journal of
Quantitative and Interdisciplinary History,
44, 127–129, 2011. [1]



 Also see “Secular Cycles”.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://www.eeb.uconn.edu/people/turchin/Clio.htm
http://en.wikipedia.org/wiki/Psychohistory_(fictional)
http://en.wikipedia.org/wiki/Big_History
https://pdodds.w3.uvm.edu//research/papers/others/everything/arbesman2011a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/arbesman2011a.pdf
http://www.eeb.uconn.edu/people/turchin/SEC.htm
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topics:

 Explore general theories on system robustness.
 Are there universal signatures that presage

system failure?
 See “Early-warning signals for critical transitions”

Scheffer et al., Nature 2009. [35]

 “Although predicting such critical points before
they are reached is extremely difficult, work in
different scientific fields is now suggesting the
existence of generic early-warning signals that
may indicate for a wide class of systems if a critical
threshold is approaching.”

 Robust-yet-fragile systems, HOT theory.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/


PoCS
@pocsvox

Semester projects

The Plan

Suggestions for
Projects

Archive

References

.
.
.
.
.

.
34 of 74

topics:

 Study the human disease and disease gene
networks (Goh et al., 2007):
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Charcot-Marie-Tooth
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Fig. 2. The HDN and the DGN. (a) In the HDN, each node corresponds to a distinct disorder, colored based on the disorder class to which it belongs, the name
of the 22 disorder classes being shown on the right. A link between disorders in the same disorder class is colored with the corresponding dimmer color and links
connecting different disorder classes are gray. The size of each node is proportional to the number of genes participating in the corresponding disorder (see key),
and the link thickness is proportional to the number of genes shared by the disorders it connects. We indicate the name of disorders with !10 associated genes,
as well as those mentioned in the text. For a complete set of names, see SI Fig. 13. (b) In the DGN, each node is a gene, with two genes being connected if they
are implicated in the same disorder. The size of each node is proportional to the number of disorders in which the gene is implicated (see key). Nodes are light
gray if the corresponding genes are associated with more than one disorder class. Genes associated with more than five disorders, and those mentioned in the
text, are indicated with the gene symbol. Only nodes with at least one link are shown.

Goh et al. PNAS ! May 22, 2007 ! vol. 104 ! no. 21 ! 8687
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topics:
Explore and critique Fowler and Christakis et al.
work on social contagion of:

images in Figure 1 generates a matrix of shortest network path
distances from each node to all other nodes in the network and
repositions nodes so as to reduce the sum of the difference between
the plotted distances and the network distances (Kamada & Kawai,
1989). The fundamental pattern of ties in a social network (known
as the “topology”) is fixed, but how this pattern is visually ren-
dered depends on the analyst’s objectives.

Results

In Figure 1, we show a portion of the social network, which
demonstrates a clustering of moderately lonely (green nodes) and
very lonely (blue nodes) people, especially at the periphery of the
network. In the statistical models, the relationships between lone-
liness and number of social contacts proved to be negative and
monotonic, as illustrated in Figure 1 and documented in Table 3.

To determine whether the clustering of lonely people shown in
Figure 1 could be explained by chance, we implemented the
following permutation test: We compared the observed network
with 1,000 randomly generated networks in which we preserved
the network topology and the overall prevalence of loneliness but

in which we randomly shuffled the assignment of the loneliness
value to each node (Szabo & Barabasi, 2007). For this test, we
dichotomized loneliness to be zero if the respondent said they were
lonely 0–1 days the previous week, and one otherwise. If cluster-
ing in the social network is occurring, then the probability that an
LP is lonely, given that an FP is lonely, should be higher in the
observed network than in the random networks. This procedure
also allows us to generate confidence intervals and measure how
far, in terms of social distance, the correlation in loneliness be-

Figure 1. Loneliness clusters in the Framingham Social Network. This graph shows the largest component of
friends, spouses, and siblings at Exam 7 (centered on the year 2000). There are 1,019 individuals shown. Each
node represents a participant, and its shape denotes gender (circles are female, squares are male). Lines between
nodes indicate relationship (red for siblings, black for friends and spouses). Node color denotes the mean number
of days the focal participant and all directly connected (Distance 1) linked participants felt lonely in the past
week, with yellow being 0–1 days, green being 2 days, and blue being greater than 3 days or more. The graph
suggests clustering in loneliness and a relationship between being peripheral and feeling lonely, both of which
are confirmed by statistical models discussed in the main text.

Table 3
Mean Total Number of Social Contacts for People in Each of
the Four Loneliness Categories

Variable
M no. of social contacts

(friends and family combined) SE

Felt lonely 0–1 days last week 4.03 0.05
Felt lonely 1–2 days last week 3.88 0.11
Felt lonely 3–4 days last week 3.76 0.21
Felt lonely 5–7 days last week 3.42 0.28

981STRUCTURE AND SPREAD OF LONELINESS

 Obesity [9]

 Smoking
cessation [10]


Happiness [19]

 Loneliness [7]

One of many questions:
How does the (very) sparse sampling of a real social
network affect their findings?

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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topics:

 Explore “self-similarity of complex networks” [38, 39]
First work by Song et al., Nature, 2005.

 See accompanying comment by Strogatz [40]

 See also “Coarse-graining and self-dissimilarity of
complex networks” by Itzkovitz et al. [?]
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Self-similarity of complex networks
Chaoming Song1, Shlomo Havlin2 & Hernán A. Makse1

1Levich Institute and Physics Department, City College of New York, New York,
New York 10031, USA
2Minerva Center and Department of Physics, Bar-Ilan University, Ramat Gan
52900, Israel
.............................................................................................................................................................................

Complex networks have been studied extensively owing to their
relevance to many real systems such as the world-wide web, the
Internet, energy landscapes and biological and social networks1–5.
A large number of real networks are referred to as ‘scale-free’
because they show a power-law distribution of the number of
links per node1,6,7. However, it is widely believed that complex
networks are not invariant or self-similar under a length-scale
transformation. This conclusion originates from the ‘small-
world’ property of these networks, which implies that the
number of nodes increases exponentially with the ‘diameter’ of
the network8–11, rather than the power-law relation expected for a
self-similar structure. Here we analyse a variety of real complex
networks and find that, on the contrary, they consist of self-
repeating patterns on all length scales. This result is achieved by
the application of a renormalization procedure that coarse-
grains the system into boxes containing nodes within a given
‘size’. We identify a power-law relation between the number of
boxes needed to cover the network and the size of the box,
defining a finite self-similar exponent. These fundamental prop-
erties help to explain the scale-free nature of complex networks
and suggest a common self-organization dynamics.
Two fundamental properties of real complex networks have

attracted much attention recently: the small-world and the scale-
free properties.Many naturally occurring networks are ‘small world’
because we can reach a given node from another one, following the
path with the smallest number of links between the nodes, in a very
small number of steps. This corresponds to the so-called ‘six degrees
of separation’ in social networks10. It is mathematically expressed by
the slow (logarithmic) increase of the average diameter of the
network, !l; with the total number of nodes N, !l< lnN; where l
is the shortest distance between two nodes and defines the distance
metric in complex networks6,8,9,11. Equivalently, we obtain:

N < e
!l=l0 ð1Þ

where l0 is a characteristic length.
A second fundamental property in the study of complex networks

arises with the discovery that the probability distribution of
the number of links per node, P(k) (also known as the degree
distribution), can be represented by a power-law (‘scale-free’) with a
degree exponent g that is usually in the range 2 ,g , 3 (ref. 6):

PðkÞ< k2g ð2Þ
These discoveries have been confirmed in many empirical studies of
diverse networks1–4,6,7.
With the aim of providing a deeper understanding of the

underlying mechanism that leads to these common features, we
need to probe the patterns within the network structure in more
detail. The question of connectivity between groups of intercon-
nected nodes on different length scales has received less attention.
But many examples exhibit the importance of collective behaviour,
such as interactions between communities within social networks,
links between clusters of websites of similar subjects, and the highly
modular manner in which molecules interact to keep a cell alive.
Here we show that real complex networks, such as the world-wide
web (WWW), social, protein–protein interaction networks (PIN)
and cellular networks are invariant or self-similar under a length-
scale transformation.

This result comes as a surprise, because the exponential increase
in equation (1) has led to the general understanding that complex
networks are not self-similar, since self-similarity requires a power-
law relation between N and l.

How can we reconcile the exponential increase in equation (1)
with self-similarity, or (in other words) an underlying length-scale-
invariant topology? At the root of the self-similar properties that we
unravel in this study is a scale-invariant renormalization procedure
that we show to be valid for dissimilar complex networks.

To demonstrate this concept we first consider a self-similar

Figure 1 The renormalization procedure applied to complex networks. a, Demonstration
of the method for different lB. The first column depicts the original network. We tile the

system with boxes of size lB (different colours correspond to different boxes). All nodes in
a box are connected by a minimum distance smaller than the given lB. For instance, in the

case of lB ¼ 2, we identify four boxes that contain the nodes depicted with colours red,

orange, white and blue, each containing 3, 2, 1 and 2 nodes, respectively. Then we

replace each box by a single node; two renormalized nodes are connected if there is at

least one link between the unrenormalized boxes. Thus we obtain the network shown in

the second column. The resulting number of boxes needed to tile the network, N B(lB), is
plotted in Fig. 2 versus lB to obtain d B as in equation (3). The renormalization procedure is

applied again and repeated until the network is reduced to a single node (third and fourth

columns for different lB). b, The stages in the renormalization scheme applied to the
entire WWW. We fix the box size to lB ¼ 3 and apply the renormalization for four stages.

This corresponds, for instance, to the sequence for the network demonstration depicted in

the second row in panel a. We colour the nodes in the web according to the boxes to which
they belong. The network is invariant under this renormalization, as explained in the

legend of Fig. 2d and the Supplementary Information.
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erties help to explain the scale-free nature of complex networks
and suggest a common self-organization dynamics.
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With the aim of providing a deeper understanding of the
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need to probe the patterns within the network structure in more
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But many examples exhibit the importance of collective behaviour,
such as interactions between communities within social networks,
links between clusters of websites of similar subjects, and the highly
modular manner in which molecules interact to keep a cell alive.
Here we show that real complex networks, such as the world-wide
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in equation (1) has led to the general understanding that complex
networks are not self-similar, since self-similarity requires a power-
law relation between N and l.

How can we reconcile the exponential increase in equation (1)
with self-similarity, or (in other words) an underlying length-scale-
invariant topology? At the root of the self-similar properties that we
unravel in this study is a scale-invariant renormalization procedure
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To demonstrate this concept we first consider a self-similar

Figure 1 The renormalization procedure applied to complex networks. a, Demonstration
of the method for different lB. The first column depicts the original network. We tile the
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a box are connected by a minimum distance smaller than the given lB. For instance, in the
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topics:

Related papers:
 “Origins of fractality in the growth of complex

networks”
Song et al. (2006a) [39]

 “Skeleton and Fractal Scaling in Complex
Networks”
Go et al. (2006a) [20]

 “Complex Networks Renormalization: Flows and
Fixed Points”
Radicchi et al. (2008a) [34]
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Advances in sociotechnical algorithms:
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ARTICLE
doi:10.1038/nature16961

Mastering the game of Go with deep 
neural networks and tree search
David Silver1*, Aja Huang1*, Chris J. Maddison1, Arthur Guez1, Laurent Sifre1, George van den Driessche1,  
Julian Schrittwieser1, Ioannis Antonoglou1, Veda Panneershelvam1, Marc Lanctot1, Sander Dieleman1, Dominik Grewe1, 
John Nham2, Nal Kalchbrenner1, Ilya Sutskever2, Timothy Lillicrap1, Madeleine Leach1, Koray Kavukcuoglu1,  
Thore Graepel1 & Demis Hassabis1

All games of perfect information have an optimal value function, v*(s), 
which determines the outcome of the game, from every board position 
or state s, under perfect play by all players. These games may be solved 
by recursively computing the optimal value function in a search tree 
containing approximately bd possible sequences of moves, where b is 
the game’s breadth (number of legal moves per position) and d is its 
depth (game length). In large games, such as chess (b ≈ 35, d ≈ 80)1 and 
especially Go (b ≈ 250, d ≈ 150)1, exhaustive search is infeasible2,3, but 
the effective search space can be reduced by two general principles. 
First, the depth of the search may be reduced by position evaluation: 
truncating the search tree at state s and replacing the subtree below s 
by an approximate value function v(s) ≈ v*(s) that predicts the outcome 
from state s. This approach has led to superhuman performance in 
chess4, checkers5 and othello6, but it was believed to be intractable in Go 
due to the complexity of the game7. Second, the breadth of the search 
may be reduced by sampling actions from a policy p(a|s) that is a prob-
ability distribution over possible moves a in position s. For example, 
Monte Carlo rollouts8 search to maximum depth without branching 
at all, by sampling long sequences of actions for both players from a 
policy p. Averaging over such rollouts can provide an effective position 
evaluation, achieving superhuman performance in backgammon8 and 
Scrabble9, and weak amateur level play in Go10.

Monte Carlo tree search (MCTS)11,12 uses Monte Carlo rollouts 
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant 
values become more accurate. The policy used to select actions during 
search is also improved over time, by selecting children with higher 
values. Asymptotically, this policy converges to optimal play, and the 
evaluations converge to the optimal value function12. The strongest 
current Go programs are based on MCTS, enhanced by policies that 
are trained to predict human expert moves13. These policies are used 
to narrow the search to a beam of high-probability actions, and to 
sample actions during rollouts. This approach has achieved strong 
amateur play13–15. However, prior work has been limited to shallow 

policies13–15 or value functions16 based on a linear combination of 
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion17, face recognition18, and playing Atari games19. They use many 
layers of neurons, each arranged in overlapping tiles, to construct 
increasingly abstract, localized representations of an image20. We 
employ a similar architecture for the game of Go. We pass in the board 
position as a 19 × 19 image and use convolutional layers to construct a 
representation of the position. We use these neural networks to reduce 
the effective depth and breadth of the search tree: evaluating positions 
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several 
stages of machine learning (Fig. 1). We begin by training a supervised 
learning (SL) policy network pσ directly from expert human moves. 
This provides fast, efficient learning updates with immediate feedback 
and high-quality gradients. Similar to prior work13,15, we also train a 
fast policy pπ that can rapidly sample actions during rollouts. Next, we 
train a reinforcement learning (RL) policy network pρ that improves 
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games, 
rather than maximizing predictive accuracy. Finally, we train a value 
network vθ that predicts the winner of games played by the RL policy 
network against itself. Our program AlphaGo efficiently combines the 
policy and value networks with MCTS.

Supervised learning of policy networks
For the first stage of the training pipeline, we build on prior work 
on predicting expert moves in the game of Go using supervised  
learning13,21–24. The SL policy network pσ(a |  s) alternates between con-
volutional layers with weights σ, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The 
input s to the policy network is a simple representation of the board state 
(see Extended Data Table 2). The policy network is trained on randomly  

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its 
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach 
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep 
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement 
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state- 
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a 
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, 
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go 
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the 
full-sized game of Go, a feat previously thought to be at least a decade away.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
*These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited. All rights reserved

“Mastering the game of Go with deep
neural networks and tree search”
Silver and Silver,
Nature, 529, 484–489, 2016. [36]
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learning of convolutional networks, won 11% of games against Pachi23 
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation, 
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E( )= | = ∼…v s z s s a p[ , ]p
t t t T

Ideally, we would like to know the optimal value function under 
perfect play v*(s); in practice, we instead estimate the value function 

ρv p  for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ, 

⁎( )≈ ( )≈ ( )θ ρv s v s v sp . This neural network has a similar architecture  
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to 
minimize the mean squared error (MSE) between the predicted value 
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ( )
∂
( − ( ))θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that 
successive positions are strongly correlated, differing by just one stone, 
but the regression target is shared for the entire game. When trained 
on the KGS data set in this way, the value network memorized the 
game outcomes rather than generalizing to new positions, achieving a 
minimum MSE of 0.37 on the test set, compared to 0.19 on the training 
set. To mitigate this problem, we generated a new self-play data set 
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and 
itself until the game terminated. Training on this data set led to MSEs 
of 0.226 and 0.234 on the training and test set respectively, indicating 
minimal overfitting. Figure 2b shows the position evaluation accuracy 
of the value network, compared to Monte Carlo rollouts using the fast 
rollout policy pπ; the value function was consistently more accurate. 
A single evaluation of vθ(s) also approached the accuracy of Monte 
Carlo rollouts using the RL policy network pρ, but using 15,000 times 
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge  

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a), 
and prior probability P(s, a). The tree is traversed by simulation (that 
is, descending the tree in complete games without backup), starting 
from the root state. At each time step t of each simulation, an action at 
is selected from state st

= ( ( )+ ( ))a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

( )∝
( )
+ ( )

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with  
repeated visits to encourage exploration. When the traversal reaches a 
leaf node sL at step L, the leaf node may be expanded. The leaf position 
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,  
( )= ( | )σP s a p a s,  . The leaf node is evaluated in two very different ways: 

first, by the value network vθ(sL); and second, by the outcome zL of a 
random rollout played out until terminal step T using the fast rollout 
policy pπ; these evaluations are combined, using a mixing parameter 
λ, into a leaf evaluation V(sL)

λ λ( )= ( − ) ( )+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all 
traversed edges are updated. Each edge accumulates the visit count and 
mean evaluation of all simulations passing through that edge
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where sL
i  is the leaf node from the ith simulation, and 1(s, a, i) indicates 

whether an edge (s, a) was traversed during the ith simulation. Once 
the search is complete, the algorithm chooses the most visited move 
from the root position.

It is worth noting that the SL policy network pσ performed better in 
AlphaGo than the stronger RL policy network pρ, presumably because 
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function 
( )≈ ( )θ ρv s v sp  derived from the stronger RL policy network performed 

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation 
traverses the tree by selecting the edge with maximum action value Q, 
plus a bonus u(P) that depends on a stored prior probability P for that 
edge. b, The leaf node may be expanded; the new node is processed once 
by the policy network pσ and the output probabilities are stored as prior 
probabilities P for each action. c, At the end of a simulation, the leaf node 

is evaluated in two ways: using the value network vθ; and by running 
a rollout to the end of the game with the fast rollout policy pπ, then 
computing the winner with function r. d, Action values Q are updated to 
track the mean value of all evaluations r(·) and vθ(·) in the subtree below 
that action.
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 Nature News (2016): Digital Intuition
 Wired (2012): Network Science of the game of

Go

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://pdodds.w3.uvm.edu//research/papers/others/everything/silver2016a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/silver2016a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/silver2016a.pdf
http://www.nature.com/news/digital-intuition-1.19230
http://www.wired.com/wiredscience/2012/04/network-science-of-the-game-of-go/
http://www.wired.com/wiredscience/2012/04/network-science-of-the-game-of-go/


PoCS
@pocsvox

Semester projects

The Plan

Suggestions for
Projects

Archive

References

.
.
.
.
.

.
39 of 74

topics:

 Explore patterns, designed and undesigned, of
cities and suburbs.
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topics:

 Study collective creativity arising out of social
interactions

 Productivity, wealth, creativity, disease, etc.
appear to increase superlinearly with population

 Start with Bettencourt et al.’s (2007) “Growth,
innovation, scaling, and the pace of life in cities” [3]

 Dig into Bettencourt (2013) “The Origins of Scaling
in Cities” [3]
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Study networks and creativity:

Lastly, agents that remain inactive for
longer than t time steps are removed from the
network. This rule is motivated by the obser-
vation that agents do not remain in the network
forever: agents age and retire, change careers,
and so on. The removal process enables the
network to reach a steady state after a transient
time. Our results do not depend in the specific
value of t (Materials and Methods).

Through participation in a team, agents
become part of a large network (30). This fact
prompted us to examine the topology of the
network of collaborations among the practi-
tioners of a given field. More specifically,
we asked, BIs there a large connected cluster
comprising most of the agents or is the net-
work composed of numerous smaller clus-
ters?[ A large connected cluster would be
supporting evidence for the so-called invisible
college, the web of social and professional
contacts linking scientists across universities
proposed by de Solla Price (31) and Merton
(32). A large number of small clusters would
be indicative of a field made up of isolated
schools of thought. For all five fields con-
sidered here, we find that the network con-
tains a large connected cluster.

As is typically done in the study of per-
colation phase transitions (33), we use the
fraction S of agents that belong to the largest
cluster of the network to quantify the tran-
sition between these two regimes: invisible
college or isolated schools. We explore sys-
tematically the (p,q) parameter space of the
model. We find that the system undergoes
a percolation transition (33) at a critical line,
pc(m,q). That is, the system experiences a
sharp transition from a multitude of small
clusters to a situation in which one large clus-
ter, comprising a substantial fraction S of the
individuals, emerges: the so-called giant com-
ponent (Fig. 3). The transition line pc(m,q)
therefore determines the tipping point for the
emergence of the invisible college (34). Our
analysis shows that the existence of this
transition is independent of the average number
of agents bmÀ in a collaboration, although the
precise value of pc(m,q) does depend on m.

The proximity to the transition line, which
depends on the distribution of the different
types of links, determines the structure of the
largest cluster (Fig. 3A). In the vicinity of the
transition, the largest cluster has an almost
linear or branched structure (Fig. 3A) ( p 0
0.30). As one moves toward larger p, the
largest cluster starts to have more and more
loops (Fig. 3A) (p 0 0.35), and, eventually, it
becomes a densely connected network (Fig.
3A) ( p 0 0.60).

Networks with the same fraction, S, of
nodes in the largest cluster do not necessarily
correspond to networks with identical prop-
erties. Each point in the (p,q) parameter space
is characterized by both S and the fraction,
fR, of repeat incumbent-incumbent links. For

example, in Fig. 3C, the line fR 0 0.32 cor-
responds to those values of p and q for which
32% of all links in new teams are between
repeat collaborators (35). The fR has a nota-
ble impact on the dynamics of the network.
When fR is large, collaborations are firmly
established, and therefore the structure of the
network changes very slowly. In contrast, low
values of fR correspond to enterprises with
high turnover and very fast dynamics. Inter-
mediate values of fR are related to situations
in which collaboration patterns with peers are
fluid (Materials and Methods).

For each of the five fields for which we
have empirical data, we measure the relative
size of the giant component S (Materials and
Methods). For all fields considered, S is
larger than 50% (Table 1). This result pro-
vides quantitative evidence for the existence
of an invisible college in all the fields. In-
triguingly, the relative sizes of the giant com-

ponent is similar for three of the four fields
considered: S 0 0.70, S 0 0.68, and S 0 0.75
for BMI, social psychology, and ecology,
respectively. However, for astronomy S was
significantly larger (0.92), whereas for eco-
nomics it was significantly smaller (0.54).

To gain further insight in the structure of
collaboration networks, we used our model
to estimate the values of p and q for each
field. Given the temporal sequence of teams
producing the network of collaborations, one
can calculate the fraction of incumbents and
the fraction of repeat incumbent-incumbent
links. These fractions and the model enable
us to then estimate the values of p and q that
are consistent with the data (36).

We estimated p and q for each field and
then simulated the model to predict the key
properties of the network of collaborations,
including the degree distribution of the
network and the fraction S of nodes in the

Fig. 2. Modeling the emergence of collaboration networks in creative enterprises. (A) Creation of a
team with m 0 3 agents. Consider, at time zero, a collaboration network comprising five agents, all
incumbents (blue circles). Along with the incumbents, there is a large pool of newcomers (green
circles) available to participate in new teams. Each agent in a team has a probability p of being
drawn from the pool of incumbents and a probability 1 j p of being drawn from the pool of new-
comers. For the second and subsequent agents selected from the incumbents’ pool: (i) with probability
q, the new agent is randomly selected from among the set of collaborators of a randomly selected
incumbent already in the team; (ii) otherwise, he or she is selected at random among all incumbents in
the network. For concreteness, let us assume that incumbent 4 is selected as the first agent in the new
team (leftmost box). Let us also assume that the second agent is an incumbent, too (center-left box). In
this example, the second agent is a past collaborator of agent 4, specifically agent 3 (center-right box).
Lastly, the third agent is selected from the pool of newcomers; this agent becomes incumbent 6
(rightmost box). In these boxes and in the following panels and figures, blue lines indicate newcomer-
newcomer collaborations, green lines indicate newcomer-incumbent collaborations, yellow lines indi-
cate new incumbent-incumbent collaborations, and red lines indicate repeat collaborations. (B) Time
evolution of the network of collaborations according to the model for p 0 0.5, q 0 0.5, and m 0 3.
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 Guimerà et al., Science
2005: [22] “Team
Assembly Mechanisms
Determine
Collaboration Network
Structure and Team
Performance”

 Broadway musical
industry

 Scientific collaboration
in Social Psychology,
Economics, Ecology,
and Astronomy.
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topics:
Vague/Large:
 Study Yelp: is there Accounting for Taste?
 Study Metacritic: the success of stories.
 Study TV Tropes
 Study proverbs.
 Study amazon’s recommender networks.

See work by Sornette et al..
 Vague/Large:

Study Netflix’s open data (movies and people form
a bipartite graph).

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://www.tvtropes.org
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topics:

More Vague/Large:
 How do countries depend on each other for water,

energy, people (immigration), investments?
 How is the media connected? Who copies whom?
 (Problem: Need to be able to measure

interactions.)
 Investigate memetics, the ‘science’ of memes.
 http://memetracker.org/
 Work on the evolution of proverbs and sayings.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://memetracker.org/
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topics:

More Vague/Large:
 How does advertising work collectively?
 Does one car manufacturers’ ads indirectly help

other car manufacturers?
 Ads for junk food versus fruits and vegetables.
 Ads for cars versus bikes versus walking.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Culturomics:
“Quantitative analysis of culture using millions of digitized
books” by Michel et al., Science, 2011 [30]

enter a regime marked by slower forgetting:
Collective memory has both a short-term and a
long-term component.

But there have been changes. The amplitude
of the plots is rising every year: Precise dates are
increasingly common. There is also a greater fo-
cus on the present. For instance, “1880” declined
to half its peak value in 1912, a lag of 32 years. In

contrast, “1973” declined to half its peak by
1983, a lag of only 10 years. We are forgetting
our past faster with each passing year (Fig. 3A).

We were curious whether our increasing
tendency to forget the old was accompanied by
more rapid assimilation of the new (21). We di-
vided a list of 147 inventions into time-resolved
cohorts based on the 40-year interval in which

they were first invented (1800–1840, 1840–1880,
and 1880–1920) (7). We tracked the frequency
of each invention in the nth year after it was
invented as compared to its maximum value and
plotted the median of these rescaled trajectories
for each cohort.

The inventions from the earliest cohort
(1800–1840) took over 66 years from invention
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Fig. 3. Cultural turnover is accelerating. (A) We forget: frequency of “1883”
(blue), “1910” (green), and “1950” (red). Inset: We forget faster. The half-life
of the curves (gray dots) is getting shorter (gray line: moving average). (B) Cultural
adoption is quicker. Median trajectory for three cohorts of inventions from three
different time periods (1800–1840, blue; 1840–1880, green; 1880–1920,
red). Inset: The telephone (green; date of invention, green arrow) and radio
(blue; date of invention, blue arrow). (C) Fame of various personalities born
between 1920 and 1930. (D) Frequency of the 50 most famous people born in

1871 (gray lines; median, thick dark gray line). Five examples are highlighted.
(E) The median trajectory of the 1865 cohort is characterized by four
parameters: (i) initial age of celebrity (34 years old, tick mark); (ii) doubling
time of the subsequent rise to fame (4 years, blue line); (iii) age of peak celebrity
(70 years after birth, tick mark), and (iv) half-life of the post-peak forgetting
phase (73 years, red line). Inset: The doubling time and half-life over time.
(F) The median trajectory of the 25 most famous personalities born between
1800 and 1920 in various careers.
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enter a regime marked by slower forgetting:
Collective memory has both a short-term and a
long-term component.

But there have been changes. The amplitude
of the plots is rising every year: Precise dates are
increasingly common. There is also a greater fo-
cus on the present. For instance, “1880” declined
to half its peak value in 1912, a lag of 32 years. In

contrast, “1973” declined to half its peak by
1983, a lag of only 10 years. We are forgetting
our past faster with each passing year (Fig. 3A).

We were curious whether our increasing
tendency to forget the old was accompanied by
more rapid assimilation of the new (21). We di-
vided a list of 147 inventions into time-resolved
cohorts based on the 40-year interval in which

they were first invented (1800–1840, 1840–1880,
and 1880–1920) (7). We tracked the frequency
of each invention in the nth year after it was
invented as compared to its maximum value and
plotted the median of these rescaled trajectories
for each cohort.
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Fig. 3. Cultural turnover is accelerating. (A) We forget: frequency of “1883”
(blue), “1910” (green), and “1950” (red). Inset: We forget faster. The half-life
of the curves (gray dots) is getting shorter (gray line: moving average). (B) Cultural
adoption is quicker. Median trajectory for three cohorts of inventions from three
different time periods (1800–1840, blue; 1840–1880, green; 1880–1920,
red). Inset: The telephone (green; date of invention, green arrow) and radio
(blue; date of invention, blue arrow). (C) Fame of various personalities born
between 1920 and 1930. (D) Frequency of the 50 most famous people born in

1871 (gray lines; median, thick dark gray line). Five examples are highlighted.
(E) The median trajectory of the 1865 cohort is characterized by four
parameters: (i) initial age of celebrity (34 years old, tick mark); (ii) doubling
time of the subsequent rise to fame (4 years, blue line); (iii) age of peak celebrity
(70 years after birth, tick mark), and (iv) half-life of the post-peak forgetting
phase (73 years, red line). Inset: The doubling time and half-life over time.
(F) The median trajectory of the 25 most famous personalities born between
1800 and 1920 in various careers.
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enter a regime marked by slower forgetting:
Collective memory has both a short-term and a
long-term component.

But there have been changes. The amplitude
of the plots is rising every year: Precise dates are
increasingly common. There is also a greater fo-
cus on the present. For instance, “1880” declined
to half its peak value in 1912, a lag of 32 years. In

contrast, “1973” declined to half its peak by
1983, a lag of only 10 years. We are forgetting
our past faster with each passing year (Fig. 3A).

We were curious whether our increasing
tendency to forget the old was accompanied by
more rapid assimilation of the new (21). We di-
vided a list of 147 inventions into time-resolved
cohorts based on the 40-year interval in which

they were first invented (1800–1840, 1840–1880,
and 1880–1920) (7). We tracked the frequency
of each invention in the nth year after it was
invented as compared to its maximum value and
plotted the median of these rescaled trajectories
for each cohort.

The inventions from the earliest cohort
(1800–1840) took over 66 years from invention
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Fig. 3. Cultural turnover is accelerating. (A) We forget: frequency of “1883”
(blue), “1910” (green), and “1950” (red). Inset: We forget faster. The half-life
of the curves (gray dots) is getting shorter (gray line: moving average). (B) Cultural
adoption is quicker. Median trajectory for three cohorts of inventions from three
different time periods (1800–1840, blue; 1840–1880, green; 1880–1920,
red). Inset: The telephone (green; date of invention, green arrow) and radio
(blue; date of invention, blue arrow). (C) Fame of various personalities born
between 1920 and 1930. (D) Frequency of the 50 most famous people born in

1871 (gray lines; median, thick dark gray line). Five examples are highlighted.
(E) The median trajectory of the 1865 cohort is characterized by four
parameters: (i) initial age of celebrity (34 years old, tick mark); (ii) doubling
time of the subsequent rise to fame (4 years, blue line); (iii) age of peak celebrity
(70 years after birth, tick mark), and (iv) half-life of the post-peak forgetting
phase (73 years, red line). Inset: The doubling time and half-life over time.
(F) The median trajectory of the 25 most famous personalities born between
1800 and 1920 in various careers.
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to widespread impact (frequency >25% of peak).
Since then, the cultural adoption of technology has
become more rapid. The 1840–1880 invention
cohort was widely adopted within 50 years; the
1880–1920 cohort within 27 (Fig. 3B and fig. S7).

“In the future, everyone will be famous for
7.5minutes” –Whatshisname. People, too, rise to
prominence, only to be forgotten (22). Fame can be
tracked by measuring the frequency of a person’s
name (Fig. 3C). We compared the rise to fame of
the most famous people of different eras. We took
all 740,000 people with entries in Wikipedia,
removed cases where several famous individuals
share a name, and sorted the rest by birth date and
frequency (23). For every year from 1800 to 1950,
we constructed a cohort consisting of the 50 most

famous people born in that year. For example, the
1882 cohort includes “Virginia Woolf” and “Felix
Frankfurter”; the 1946 cohort includes “Bill
Clinton” and “Steven Spielberg”. We plotted the
median frequency for the names in each cohort
over time (Fig. 3,D andE). The resulting trajectories
were all similar. Each cohort had a pre-celebrity
period (median frequency <10−9), followed by a
rapid rise to prominence, a peak, and a slow de-
cline.We therefore characterized each cohort using
four parameters: (i) the age of initial celebrity, (ii)
the doubling time of the initial rise, (iii) the age of
peak celebrity, and (iv) the half-life of the decline
(Fig. 3E). The age of peak celebrity has been con-
sistent over time: about 75 years after birth. But
the other parameters have been changing (fig. S8).

Fame comes sooner and rises faster. Between the
early 19th century and the mid-20th century, the
age of initial celebrity declined from 43 to 29
years, and the doubling time fell from 8.1 to 3.3
years. As a result, the most famous people alive
today are more famous—in books—than their
predecessors. Yet this fame is increasingly short-
lived: The post-peak half-life dropped from 120
to 71 years during the 19th century.

We repeated this analysis with all 42,358
people in the databases of the Encyclopaedia
Britannica (24), which reflect a process of expert
curation that began in 1768. The results were
similar (7) (fig. S9). Thus, people are getting more
famous than ever before but are being forgotten
more rapidly than ever.

Fig. 4. Culturomics can be used to
detect censorship. (A) Usage frequen-
cy of “Marc Chagall” in German (red)
as compared to English (blue). (B)
Suppression of Leon Trotsky (blue),
Grigory Zinoviev (green), and Lev
Kamenev (red) in Russian texts,
with noteworthy events indicated:
Trotsky’s assassination (blue arrow),
Zinoviev and Kamenev executed
(red arrow), the Great Purge (red
highlight), and perestroika (gray ar-
row). (C) The 1976 and 1989 Tianan-
men Square incidents both led to
elevated discussion in English texts
(scale shown on the right). Response
to the 1989 incident is largely ab-
sent inChinese texts (blue, scale shown
on the left), suggesting government
censorship. (D) While the Holly-
wood Ten were blacklisted (red
highlight) from U.S. movie studios,
their fame declined (median: thick
gray line). None of them were cred-
ited in a film until 1960’s (aptly
named) Exodus. (E) Artists and writ-
ers in various disciplines were sup-
pressed by the Nazi regime (red
highlight). In contrast, theNazis them-
selves (thick red line) exhibited a
strong fame peak during the war
years. (F) Distribution of suppres-
sion indices for both English (blue)
andGerman (red) for the period from
1933–1945. Three victims of Nazi
suppression are highlighted at left
(red arrows). Inset: Calculation of
the suppression index for “Henri
Matisse”.
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http://www.culturomics.org/
Google Books ngram viewer
Done!: Crushed by Pechenick, Danforth, Dodds [32, 33]

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://www.culturomics.org/
http://ngrams.googlelabs.com/
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topics:

matchings increases exponentially (Supplementary Information, sec-
tion IV.C) and, as a result, the chance that a link does not participate
in any control configuration decreases. For scale-free networks, we
observe the same behaviour, with the caveat that Ækæc decreases with c
(Fig. 5c, d).

Discussion and conclusions
Control is a central issue in most complex systems, but because a
general theory to explore it in a quantitative fashion has been lacking,
little is known about how we can control a weighted, directed net-
work—the configuration most often encountered in real systems.
Indeed, applying Kalman’s controllability rank condition (equation
(3)) to large networks is computationally prohibitive, limiting pre-
vious work to a few dozen nodes at most17–19. Here we have developed
the tools to address controllability for arbitrary network topologies
and sizes. Our key finding, thatND is determinedmainly by the degree
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Figure 4 | Link categories for robust control. The fractions of critical (red, lc),
redundant (green, lr) and ordinary (grey, lo) links for the real networks named
in Table 1. To make controllability robust to link failures, it is sufficient to
double only the critical links, formally making each of these links redundant
and therefore ensuring that there are no critical links in the system.
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Figure 5 | Control robustness. a, Dependence on Ækæ of the fraction of critical
(red, lc), redundant (green, lr) and ordinary (grey, lo) links for an Erdős–Rényi
network: lr peaks at Ækæ5 Ækæc5 2e and the derivative of lc is discontinuous at
Ækæ5 Ækæc.b, Core percolation for Erdős–Rényi network occurs at k5 Ækæc5 2e,
which explains the lr peak. c, d, Same as in a and b but for scale-free networks.
The Erdős–Rényi and scale-free networks38 have N5 104 and the results are

averaged over ten realizations with error bars defined as s.e.m. Dotted lines are
only a guide to the eye. e, The core (red) and leaves (green) for small Erdős–
Rényi networks (N5 30) at different Ækæ values (Ækæ5 4, 5, 7). Node sizes are
proportional to node degrees. f, The critical (red), redundant (green) and
ordinary (grey) links for the above Erdős–Rényi networks at the corresponding
Ækæ values.
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matchings increases exponentially (Supplementary Information, sec-
tion IV.C) and, as a result, the chance that a link does not participate
in any control configuration decreases. For scale-free networks, we
observe the same behaviour, with the caveat that Ækæc decreases with c
(Fig. 5c, d).

Discussion and conclusions
Control is a central issue in most complex systems, but because a
general theory to explore it in a quantitative fashion has been lacking,
little is known about how we can control a weighted, directed net-
work—the configuration most often encountered in real systems.
Indeed, applying Kalman’s controllability rank condition (equation
(3)) to large networks is computationally prohibitive, limiting pre-
vious work to a few dozen nodes at most17–19. Here we have developed
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redundant (green, lr) and ordinary (grey, lo) links for the real networks named
in Table 1. To make controllability robust to link failures, it is sufficient to
double only the critical links, formally making each of these links redundant
and therefore ensuring that there are no critical links in the system.

e

f

k  = 7k  = 5k  = 4

Core node

Critical link

Ordinary link
Redundant link

C
or

e 
pe

rc
ol

at
io

n
Li

nk
 c

at
eg

or
y

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12
2e

Core
Leaves

2 4 6 8 10 12 14
2e

lc
lr
lo

l c
n c

or
e

kk

SF != 2.6
SF
SF
SF
ER

!= 2.8
!= 3.0
!= 4.0

a

b

c

d

Leaf node

Scale-freeErdos–Rényi

Figure 5 | Control robustness. a, Dependence on Ækæ of the fraction of critical
(red, lc), redundant (green, lr) and ordinary (grey, lo) links for an Erdős–Rényi
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“Controllability of
complex networks” [29] Liu
et al., Nature 2011.
Controversial …

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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topics:

 Study phyllotaxis, how
plants grow new buds and
branches.

 Some delightful mathematics
appears involving the
Fibonacci series.

 Excellent work to start with:
“Phyllotaxis as a Dynamical
Self Organizing Process: Parts
I, II, and III” by Douady and
Couder [14, 15, 16]

http://andbug.blogspot.com/

Wikipedia

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://en.wikipedia.org/wiki/Phyllotaxis
http://andbug.blogspot.com/2009/02/phyllotaxis-01.html
http://en.wikipedia.org/wiki/Phyllotaxis
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topics:

The problem of missing data in networks:
 Clauset et al. (2008)

“Hierarchical structure and the prediction of
missing links in networks” [11]

 Kossinets (2006)
“Effects of missing data in social networks” [27]

 Much more ...

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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topics:

 Study Hidalgo et
al.’s “The Product
Space Conditions
the Development
of Nations” [23]

 How do products
depend on each
other, and how
does this
network evolve?

 How do countries
depend on each
other for water,
energy, people
(immigration),
investments?

node size (world trade [thousands of US$])
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6.6x10
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link color (proximity)
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φ >
0.55

φ >
0.4

φ <
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oil
cereals

forest 
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electronicsmetallurgy

tropical
agriculture

fishing

mining

vehicles/machinery

chemicals
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https://pdodds.w3.uvm.edu
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topics:

 Explore Dunbar’s number
 See here and here for some food for thought

regarding large-scale online games and Dunbar’s
number. [http://www.lifewithalacrity.com]

 Recent work: “Network scaling reveals consistent
fractal pattern in hierarchical mammalian
societies” Hill et al. (2008) [24].

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://en.wikipedia.org/wiki/Dunbar%27s_number
http://www.lifewithalacrity.com/2004/03/the_dunbar_numb.html
http://www.lifewithalacrity.com/2005/03/dunbar_altruist.html
http://www.lifewithalacrity.com
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topics:

 Study scientific collaboration networks.
 Mounds of data + good models.
 See seminal work by De Solla Price [13].

plus modern work by Redner, Newman, et al.
 We will study some of this in class...

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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topics:

 Study Kearns et al.’s experimental studies of
people solving classical graph theory problems [26]

 “An Experimental Study of the Coloring Problem
on Human Subject Networks”

 (Possibly) Run some of these experiments for our
class.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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topics:

 Study games (as in game theory) on networks.
 For cooperation: Review Martin Nowak’s piece in

Science, “Five rules for the evolution of
cooperation.” [31] and related works.

 Much work to explore: voter models,
contagion-type models, etc.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Resilient cooperators stabilize long-run
cooperation in the finitely repeated Prisoner’s
Dilemma
Mao et al., 2017.

https://www.nature.com/articles/ncomms13800

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://www.nature.com/articles/ncomms13800
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topics:

 Semantic networks: explore word-word
connection networks generated by linking
semantically related words.

 Also: Networks based on morphological or
phonetic similarity.

 More general: Explore language evolution
 One paper to start with: “The small world of

human language” by Ferrer i Cancho and Solé [18]

 Study spreading of neologisms.
 Examine new words relative to existing words—is

there a pattern? Phonetic and morphological
similarities.

 Crazy: Can new words be predicted?
 Use Google Books n-grams as a data source.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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topics:

 Explore work by Doyle, Alderson, et al. as well as
Pastor-Satorras et al. on the structure of the
Internet(s).

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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topics:

 Review: Study Castronova’s and others’ work on
massive multiplayer online games. How do social
networks form in these games? [8]

 See work by Johnson et al. on gang formation in
the real world and in World of Warcraft (really!).

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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topics:

Social networks:
 Study social networks as revealed by email

patterns, Facebook connections, tweets, etc.
 “Empirical analysis of evolving social networks”

Kossinets and Watts, Science, Vol 311, 88-90,
2006. [28]

 “Inferring friendship network structure by using
mobile phone data” Eagle, et al., PNAS, 2009.

 “Community Structure in Online Collegiate Social
Networks”
Traud et al., 2008.
http://arxiv.org/abs/0809.0690

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://arxiv.org/abs/0809.0690
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Voting

Score-based voting versus rank-based voting:
 Balinski and Laraki [2]

“A theory of measuring, electing, and ranking”
Proc. Natl. Acad. Sci., pp. 8720–8725 (2007)

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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topics:

More Vague/Large:
 Study spreading of anything where influence can

be measured (very hard).
 Study any interesting micro-macro story to do

with evolution, biology, ethics, religion, history,
food, international relations, …

 Data is key.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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topics:
Vague/Large:
 Study how the Wikipedia’s content is

interconnected.

Journal of Computational Science 19 (2017) 21–30

Contents lists available at ScienceDirect

Journal  of  Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Connecting  every  bit  of  knowledge:  The  structure  of  Wikipedia’s  First
Link  Network

Mark  Ibrahim ∗, Christopher  M.  Danforth,  Peter  Sheridan  Dodds
Department of Mathematics & Statistics, Computational Story Lab, Vermont Complex Systems Center, Vermont Advanced Computing Core, The University
of  Vermont, Burlington, VT 05401, United States
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a  b  s  t r  a  c  t

Apples,  porcupines,  and  the  most  obscure  Bob  Dylan  song—is  every  topic  a few  clicks  from Philosophy?
Within  Wikipedia,  the  surprising  answer  is  yes:  nearly  all  paths  lead  to Philosophy.  Wikipedia  is  the
largest,  most  meticulously  indexed  collection  of  human  knowledge  ever  amassed.  More  than  information
about  a topic,  Wikipedia  is a web of  naturally  emerging  relationships.  By  following  the first  link in  each
article,  we algorithmically  construct  a directed  network  of all  4.7 million  articles:  Wikipedia’s  First  Link
Network.  Here,  we study  the  English  edition  of Wikipedia’s  First  Link  Network  for insight  into  how  the
many articles  on inventions,  places,  people,  objects,  and  events  are  related  and  organized.

By traversing  every  path,  we  measure  the  accumulation  of  first  links,  path lengths,  groups  of path-
connected  articles,  and cycles.  We  also  develop  a new  method,  traversal  funnels,  to measure  the  influence
each  article  exerts  in  shaping  the  network.  Traversal  funnels  provide  a  new  measure  of  influence  for
directed networks  without  spill-over  into  cycles,  in contrast  to  traditional  network  centrality  measures.
Within  Wikipedia’s  First  Link Network,  we  find  scale-free  distributions  describe  path  length,  accumula-
tion,  and  influence.  Far  from  dispersed,  first  links  disproportionately  accumulate  at  a  few  articles—flowing
from  specific  to general  and  culminating  around  fundamental  notions  such  as  Community,  State,  and  Sci-
ence. Philosophy  directs  more  paths  than  any  other  article  by  two  orders  of  magnitude.  We  also  observe
a  gravitation  toward  topical  articles  such  as Health  Care and  Fossil  Fuel.  These  findings  enrich  our view
of  the  connections  and  structure  of  Wikipedia’s  ever  growing  store  of  knowledge.

© 2016  Published  by  Elsevier  B.V.

1. Introduction

Wikipedia is a towering achievement of the Internet age. At no
point in history has a larger or more meticulously indexed collec-
tion of human knowledge existed. Wikipedia contains 37 million
articles in 283 languages, with coverage spanning everything from
little known ancient battles to the latest pharmaceutical drugs [1,2].
Demonstrating its relevance to modern inquiry, Wikipedia is the
sixth most visited site in the world, surpassing 18 billion page views
and 10 million edits in January 2013 alone [3,4].

Wikipedia has naturally become the object of many studies.
Researchers have examined the cultural dynamics among editors
[5,6], the accuracy of the content relative to traditional encyclo-
pedias [7,8], the topics covered [9], and bias against portions of
the population [10]. Wikipedia’s content has also proven to be a

∗ Corresponding author.
E-mail addresses: mark.s.ibrahim@uvm.edu (M.  Ibrahim),

chris.danforth@uvm.edu (C.M. Danforth), peter.dodds@uvm.edu (P.S. Dodds).

powerful tool. Researchers have used Wikipedia to identify missing
dictionary entries [11], cluster short text [12], compute semantic
relatedness [13], and disambiguate meaning [14].

While these many studies have dissected and fruitfully applied
Wikipedia’s content, here we examine the connections among the
many articles. A hyperlink from one Wikipedia article to another
naturally indicates a relationship between the two articles [15]. The
notion that hyperlinks convey information about the content of a
page has proved enormously successful in multiple domains from
search engine algorithms such as PageRank [16] to topic classifi-
cation [17]. Here, we  treat a hyperlink as a mechanism connecting
two topics.

The authors of a Wikipedia article choose where and whether
to include a reference to another Wikipedia article in the HTML
markup. For example, as of November 2014, the authors of the
“Train” article had collectively chosen “Amtrak’s Acela Express,”
“steam,” and “head-end power” among others as relevant articles
to reference in describing “Train” [18].

By focusing our attention on the main body of an article—
excluding elements in side bars and headings—we attempt to

http://dx.doi.org/10.1016/j.jocs.2016.12.001
1877-7503/© 2016 Published by Elsevier B.V.

“Connecting every bit of knowledge: The
structure of Wikipedia’s First Link
Network”
Ibrahim, Danforth, and Dodds,
Available online at
https://arxiv.org/abs/1605.00309, 2016. [25]

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://pdodds.w3.uvm.edu//research/papers/others/everything/ibrahim2016a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/ibrahim2016a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/ibrahim2016a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/ibrahim2016a.pdf
https://arxiv.org/abs/1605.00309
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