Power-Law Size Distributions
Last updated: 2022/08/27, 23:54:10 EDT
Principles of Complex Systems, Vols. 1, 2, \& 3D CSYS/MATH 300, 303, \& 394, 2022-2023| @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds
Computational Story Lab I Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Outline

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs
Zipf's law
Zipf \Leftrightarrow CCDF
References

Two of the many things we struggle with cognitively:

1. Probability.
(- Ex. The Monty Hall Problem. (

- Ex. Daughter/Son born on Tuesday. ©

2. Logarithmic scales

On counting and logarithms:

. Listen to Radiolab's 2009 piece "Numbers." ${ }^{\text {" }}$.
R Later: Benford's Law 3 .

Size distributions:

Usually, only the tail of the distribution obeys a power law:

$$
P(x) \sim c x^{-\gamma} \text { for } x \text { large. }
$$

Still use term 'power-law size distribution.

B Other terms:

- Fat-tailed distributions.
- Heavy-tailed distributions.

Beware:

- Inverse power laws aren't the only ones:
lognormals \subseteq, Weibull distributions $[\overparen{C}$, ..

Size distributions:

Many systems have discrete sizes k
Word frequency
Node degree in networks: \# friends, \# hyperlinks, etc.
\# citations for articles, court decisions, etc

$$
P(k) \sim c k^{-\gamma}
$$

$$
\text { where } k_{\min } \leq k \leq k_{\max }
$$

Obvious fail for $k=0$
Again, typically a description of distribution's tail.

Word frequency:
Brown Corpus ${ }^{\boldsymbol{\beta}}$ ($\sim 10^{6}$ words):

rank	word	\% q	rank	word	\% q
1.	the	6.8872	1945.	apply	0.0055
2.	of	3.5839	1946.	vital	0.0055
3.	and	2.8401	1947.	September	0.0055
4.	to	2.5744	1948.	review	0.0055
5.	a	2.2996	1949.	wage	0.0055
6.	in	2.1010	1950.	motor	0.0055
7.	that	1.0428	1951.	fifteen	0.0055
8.	is	0.9943	1952.	regarded	0.0055
9.	was	0.9661	1953.	draw	0.0055
10.	he	0.9392	1954.	wheel	0.0055
11.	for	0.9340	1955.	organized	0.0055
12.	it	0.8623	1956.	vision	0.0055
13.	with	0.7176	1957.	wild	0.0055
14.	as	0.7137	1958.	Palmer	0.0055
15.	his	0.6886	1959.	intensity	0.0055

Jonathan Harris's Wordcount: \square A word frequency distribution explorer:
cs Powe--Law Size
Distributions
ur Intuition
Pefinition
Examples
Nild vs. Mild
cCDFs
Zipfs liaw CCDP
eferences
smpitsbergeneylesturboproppahdra|

7m ${ }^{\text {a }}$
Pocs @pocsvox
Power-Law Size
Distributions
Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs
Zipfs law
Zipf $¢$ CCDF
References

(in) \mid 辰
sac 14 of 65
Pocs
@pocsvox

@pocsvox
$\begin{array}{l}\text { Power-Law Size } \\ \text { Distributions }\end{array}$

Definition
Examples
wild vs
cCDFs
Zipfs law
Zipf \Leftrightarrow CCDF

References

Upgoer five [

The long tail of knowledge:

Take a scrolling voyage to the citational abyss, starting at the surface with he lonely, giant citaceans, moving down
to the legion of strange, sometimes misplaced, nloved creatures
that dwell in
\qquad
@opcrvvox
Power-Law Size
istributions

Kahneman's Google Scholar page

The statistics of surprise-words:
First—a Gaussian example:
Pocs
Oposyy Power-Law Size
Distributions
mean $\mu=10$, variance $\sigma^{2}=1$
Activity: Sketch $P(x) \sim x^{-1}$ for $x=1$ to $x=10^{7}$.

解 $q_{w}=$ normalized frequency of occurrence of word w (\%).

- $N_{q}=$ number of distinct words that have a normalized frequency of occurrence q.
e.g, $q_{\text {the }} \simeq 6.9 \%, N_{q_{\text {the }}}=1$.

The statistics of surprise-words:

My，what big words you have ．．．

 heavily skewed frequency distribution with a decaying power－law tail．

This Man Can Pronounce Every Word in the Dictionary
－Best of Dr．Bailly ${ }^{\top}$
The statistics of surprise：
Gutenberg－Richter law $\begin{array}{r}\pi \\ \hline\end{array}$

－From both the very awkwardly similar Christensen et al．and Bak et al．：
＂Unified scaling law for earthquakes＂${ }^{[4,1]}$

The statistics of surprise：
From：＂Quake Moves Japan Closer to U．S．and Alters Earth＇s Spin＂${ }^{\prime \prime}$＇by Kenneth Chang，Märch 13， 2011 ，NYT：
What is perhaps most surprising about the Japan earthquake is how misleading history can be．In the past 300 years，no earthquake nearly that
large－nothing larger than magnitude eight－had struck in the Japan subduction zone．That，in turn，led to assumptions about how large a tsunami might strike the coast．＇
＂II did them a giant disservice，＂said Dr．Stein of the geological survey．That is not the first time that the earthquake potential of a fault has been
underestimated．Most geophysicists did not think the Sumatra fault could generate a magnitude 9.1 earthquake，．．．＇
$\underset{\text { Pocs }}{\text {＠pocsvox }}$
＂Geography and similarity of regional cuisines in China＂
Z̄hu et al．，
PLoS ONE，8，e79161，2013．${ }^{[18]}$

－Fraction of ingredients that appear in at least k recipes．
Oops in notation：$P(k)$ is the Complementary Cumulative Distribution $P_{\geq}(k)$

Contemporary Physics，46，323－351， 2005．${ }^{[11]}$
＂Power－law distributions in empirical
$\underset{\text { Pocs }}{\substack{\text { Pocssox }}}$
Size distributions： Power－Law Size
Distributions

Pur intuition
Definition
Examples
Wild vs．Mild CCDFs
Zipfs law
Zipf \Leftrightarrow CCDF References

Some examples：

＊Earthquake magnitude（Gutenberg－Richter law［］）：${ }^{[8,1]} P(M) \propto M^{-2}$
\＃\＃－war deaths：${ }^{[14]} P(d) \propto d^{-1.8}$
Sizes of forest fires ${ }^{[7]}$
Sizes of cities：${ }^{[15]} P(n) \propto n^{-2.1}$
\＃links to and from websites ${ }^{[2]}$

Note：Exponents range in error
（니｜
⿹勹ac 23 of 65

Pocs
＠pocsvox

Distributions

Our Intuition

Definition
Examples
Wild vs．Mild
cCDFs
Zipfs law
Zipf \Leftrightarrow CCDF

かac 24 of 65

 data＂ \bar{z}
C̄̄auset，Shalizi，and Newman，
SIAM Review，51，661－703，2009．${ }^{\text {［5］}}$

⿹勹a 25 of 65
Pocs
＠pocsvox Power－Law Size
Distributions
ur intuition
Definition
Examples
Wild vs．Mild
cCDFs
zipfslaw
Zipf \Rightarrow CCDF
References

\section*{| Pocs |
| :--- |
| ＠pocsvox |} ＠pocsvox

Power－Law Size
Distributions
\qquad
Size distributions：
More examples：
\＃citations to papers：${ }^{[6,13]} P(k) \propto k^{-3}$ ．
\＆Individual wealth（maybe）：$P(W) \propto W^{-2}$ ．
Distributions of tree trunk diameters：$P(d) \propto d^{-2}$ ．
The gravitational force at a random point in the universe：${ }^{[9]} P(F) \propto F^{-5 / 2}$ ．（See the Holtsmark distribution $\bar{\beta}$ and stable distributions $\overline{\bar{\sigma}} \overline{\bar{\beta}}$.
，Diameter of moon craters：${ }^{[11]} P(d) \propto d^{-3}$ ．
Word frequency：${ }^{[15]}$ e．g．，$P(k) \propto k^{-2.2}$（variable）．
\＆religious adherents in cults：${ }^{[5]} P(k) \propto k^{-1.8 \pm 0.1}$
\＆sightings of birds per species（North American Breeding Bird Survey for 2003）：${ }^{[5]}$

$$
P(k) \propto k^{-2.1 \pm 0.1}
$$

\＃species per genus：${ }^{[17,15,5]} P(k) \propto k^{-2.4 \pm 0.2}$

$\frac{\text { Cuantiv }}{\text { chem }}$			\％	，max			${ }^{\text {naill }}$	
（canter	${ }^{1886}$	${ }_{2,3}$		${ }_{56} 5$	${ }_{5 \pm 2}$	${ }_{3}^{1313,3)}$		${ }_{\text {a，．31 }}^{0.95}$
		${ }_{\text {5，} 5.68}^{5.68}$	$\underbrace{}_{\substack{1781 \\ 3783}}$	${ }_{\substack{4685 \\ 2585}}^{4}$	－	$\underbrace{\substack{\text { a }}}_{\substack{28129 \\ 2129}}$		${ }_{\substack{0.00 \\ 0.29}}^{0.0}$
	${ }_{51360423}^{125}$	$\substack{3.888 \\ 15.70}_{\substack{\text { a }}}$		${ }^{375746}$		${ }_{\text {a }}^{20,72)^{2092}}$	$\substack{1025252101 \\ 0 \times \pm 14}$	${ }_{\text {a }}^{\substack{0.63 \\ 0.20}}$
		${ }_{7}^{4.35}$	$\underbrace{}_{\substack{315.58 \\ 57.4}}$	（27991				$\underbrace{0.088}_{0}$
Speriesper emusion	${ }_{5}^{509} 5$	${ }^{358.59}$	${ }^{1095924}$	${ }_{138785}{ }^{565}$		（ente	$\substack{233+138 \\ 6 ¢ 441}$	0．105 0.05
	${ }_{\substack{211 \\ 633}}^{20}$		${ }_{\substack{6 \\ 130650.60}}^{16.31}$	（isori			（inctis	0．6．
	${ }_{\substack{19447 \\ 4 \\ 488}}^{1}$	${ }_{12,45}^{\text {19，00 }}$	${ }_{\substack{77.48 \\ 27.4}}$	${ }_{8}^{809}$				${ }_{0.16}^{0.76}$
		${ }_{\text {cosen }}^{\substack{0.90}}$	${ }_{\substack{\text { 202，59 }}}^{2.09}$	221．300	$\underbrace{\substack{\text { a }}}_{\substack{63243 \\ 323 \pm 88}}$	${ }_{\substack{2,73 \\ 1.792}}^{2}$		${ }_{\text {a }}^{0.005}$
		$\substack{\text { 24，54 } \\ 27.76}^{\text {che }}$	$\underbrace{\substack{\text { che }}}_{\substack{56383 \\ 136.4}}$	（is0		${ }_{\text {l }}^{1.68(4)}$	$11697+2159$ $39+29$	－
	${ }_{\substack{2733}}^{\text {ata }}$	${ }_{\substack{\text { 238．59 } \\ \text { 29 }}}$	${ }_{\substack{11399 \\ 41675}}$			${ }_{\text {2 }}^{253}$		（0．20
		51．17	${ }_{10.52}^{44.02}$	${ }_{\substack{\text { spat } \\ 1416}}$			$\substack{3455+1850 \\ 9888 \text { 377 }}$	（0．00 ${ }^{0.20}$
	2288	0.83	（39．52，		（ $\begin{gathered}2 \pm 13 \\ 3684 \pm 151\end{gathered}$	$\underset{\substack{1.818) \\ 2.386)}}{ }$		0.00

$\stackrel{\text { Pocs }}{\text {＠opsuo }}$

Ourinturition

Definition
Examples

We＇ll explore various exponent measurement techniques in assignments．

A turkey before and after Thanksgiving．The history of a process over a thousand days ture trom the past

From＂The Black Swan＂${ }^{[16]}$
Taleb＇s table ${ }^{[16]}$

Mediocristan／Extremistan

Most typical member is mediocre／Most typical is either giant or tiny
Winners get a small segment／Winner take almost all effects
When you observe for a while，you know what＇s going on／It takes a very long time to figure out what＇s going on
Prediction is easy／Prediction is hard
History crawls／History makes jumps
R Tyranny of the collective／Tyranny of the rare and accidental

Rerrible if successful framing： Black swans are not that surprising ．．．

Turkeys ．．．

FIGURE 1：ONE THOUSAND AND ONE DAYS OF HISTOR

$\underset{\substack{\text { pocs } \\ \text { Qpocsuox }}}{ }$ Power－Law Size
Distributions

Moments

$$
\begin{aligned}
& \text { Our Intuition } \\
& \text { Definition } \\
& \text { Examples } \\
& \text { Wild vs....ild } \\
& \text { CCDFs } \\
& \text { Zipfs law } \\
& \text { Zipf } \leftrightarrows \text { CCDF } \\
& \text { References }
\end{aligned}
$$ distributed unevenly（80－20 rule； misleading）．

Rerm used especially by practitioners of the Dismal Science $\boxed{ }$ ．

Devilish power－law size distribution details：

Exhibit A：
昭 Given $P(x)=c x^{-\gamma}$ with $0<x_{\text {min }}<x<x_{\text {max }}$ ， the mean is $(\gamma \neq 2)$ ：

$$
\langle x\rangle=\frac{c}{2-\gamma}\left(x_{\max }^{2-\gamma}-x_{\min }^{2-\gamma}\right)
$$

Mean＇blows up＇with upper cutoff if $\gamma<2$ ．
Mean depends on lower cutoff if $\gamma>2$ ．
\＆$\gamma<2$ ：Typical sample is large．
\＆$\gamma>2$ ：Typical sample is small．
Insert question from assignment 2 ©
（니｜
nac 32 of 65
PoCs
＠pocsvo ＠ocssvox
Power－Law Size
Distributions

Our Intuition
Defintion
Definition
Examples
Wild vs．Mild
ccops
zipfs law
Zipf \Leftrightarrow CDDF
Zipfecto
References
or many real size distributions： $2<\gamma<3$
纺 mean is finite（depends on lower cutoff）
暗 $\sigma^{2}=$ variance is＇infinite＇（depends on upper cutoff） Width of distribution is＇infinite＇
If $\gamma>3$ ，distribution is less terrifying and may be easily confused with other kinds of distributions．
And in general ．．

Moments：
All moments depend only on cutoffs．
S No internal scale that dominates／matters．
Sompare to a Gaussian，exponential，etc．

Standard deviation is a mathematical
$\xrightarrow[\substack{\text { Pocs } \\ \text {＠oncryox }}]{ }$ Power－Law Size
Distributions convenience：
．Variance is nice analytically ．．．
\＆Another measure of distribution width：

$$
\text { Mean average deviation }(\text { MAD })=\langle | x-\langle x\rangle| \rangle
$$

For a pure power law with $2<\gamma<3$ ：

$$
\langle | x-\langle x\rangle| \rangle \text { is finite. }
$$

But MAD is mildly unpleasant analytically ．．．
We still speak of infinite＇width＇if $\gamma<3$ ．

（un） 10

Sac 34 of 65

Pocs
＠pocsvox

Distributions
our intuition
Definition
Examples
Wild vs．Mild
Wildvs． M
CCDFs
Zipfs
Zipfs law
References
R a much slower growth with n
e．g．，for $P(x)=\lambda e^{-\lambda x}$ ，we find

$$
x_{1} \gtrsim \frac{1}{\lambda} \ln n .
$$

Insert question from assignment 4 ©
Insert question from assignment 6 －
${ }^{1}$ Later，we see that the largest sample grows as n^{ρ} where ρ is the Zipf exponent
\＆$\gamma=5 / 2$ ，maxima of N samples，$n=1000$ sets of samples：

How sample sizes grow ．．．
Given $P(x) \sim c x^{-\gamma}$ ：
We can show that after n samples，we expect the largest sample to be ${ }^{1}$

$$
x_{1} \gtrsim c^{\prime} n^{1 /(\gamma-1)}
$$

Our inturition

Definition
Examples
Wild vs．Mild
${ }^{-1} \mathrm{CDDFs}$
Zipfs law
Zinf \Leftrightarrow CcDe Zipf \Leftrightarrow CCDF
References

组 $\gamma=3 / 2$ ，maxima of N samples，$n=1000$ sets of

 samples：

$$
\begin{aligned}
& \gamma=3 / 2 \text {, maxima of } N \text { samples, } n=1000 \text { sets of }
\end{aligned}
$$ samples：

Scaling of expected largest value as a function of sample size N

（sit for $\gamma=5 / 2:^{2} k_{\max } \sim N^{0.660 \pm 0.066}$（sublinear）
R Fit for $\gamma=3 / 2: k_{\max } \sim N^{2.063 \pm 0.215}$（superlinear）
${ }^{\text {Pocs }}$ Qposvox power－Law Size wer－Law Size

ur Intuition

efinition
Examples Wild vs．Mild
cCDFs

Zipfs law
Zipf \Leftrightarrow cCDF

（m）${ }^{\circ}$
Dac 43 of 65
Pocs
＠pocsvox Power－Law Size
Distributions

Our Intutition
Definition
Vild vs．Mild
CCDFs
Zipfs law
Zipf \Leftrightarrow CCDF
（im）${ }^{\circ}$
Dace 44 of 65
Pocs
＠possvox Power－Law Size
Distributions

Our Intuition
Definition
Examples
wild vs．Mild
Wild vs． M
CcD．
Zipps
Zaw
2ipfs law
ipf \Rightarrow CCDF

295\％confidence interval

Complementary Cumulative Distribution Function

$$
=\left.\frac{1}{-\gamma+1}\left(x^{\prime}\right)^{-\gamma+1}\right|_{x^{\prime}=x} ^{\infty}
$$

8
$\propto x^{-(\gamma-1)}$

Use integrals to approximate sums．

Zipfian rank－frequency plots

$\underset{\substack{\text { Pocs } \\ \text { Qpossuox }}}{ }$ | Power－laun Size |
| :---: |
| OStribuions |

George Kingsley Zipf：
Noted various rank distributions
have power－law tails，often with exponent－1
（word frequency，city sizes，．．．）
Ripf＇s 1949 Magnum Opus［ㄷ：

We＇ll study Zipf＇s law in depth ．．．

Zipfian rank－frequency plots

Zipf＇s way：
Given a collection of entities，rank them by size， largest to smallest．
\＆$x_{r}=$ the size of the r th ranked entity．
$r=1$ corresponds to the largest size．
Example：x_{1} could be the frequency of occurrence of the most common word in a text．
R Zipf＇s observation：

$$
x_{r} \propto r^{-\alpha}
$$

Nature（2014）：

Most cited papers
of all time
ur Intuition
Definition
Examples wild vs．Mild
WIIdvs．MI
ccops
Zips slaw Zipf \Leftrightarrow CCDF References
（네
sac 51 of 65
Pocs
＠pocsvox
Qos． Power－Law Size
Distributions

Our Intuition
Defintion
Examples Wild vs．Mild
CCDFs Zipf \Leftrightarrow CCD Ziff $\Leftrightarrow \mathrm{CCD}$

Size distributions：
Brown Corpus（1，015，945 words）：

$\underset{\substack{\text { pocs } \\ \text { Qpocsuox }}}{ }$

 Power－Law SizeDistributions Our Intuition Definition Definition
Examples Wild vs．Mild wid vs． M
ccops
zipes law

Ziipfs law
Zipf
in cCop References

R The，of，and，to， $\mathrm{a}, \ldots=$＇．．objects＇
，＇Size＇＝word frequency
Beep：（Important）CCDF and Zipf plots are related

Size distributions：
Brown Corpus（1，015，945 words）：

淂 The，of，and，to，a, ．．．＝＇objects＇
，＇Size＇＝word frequency
Beep：（Important）CCDF and Zipf plots are related

Observe：
\＆$N P_{\geq}(x)=$ the number of objects with size at least x where $N=$ total number of objects．
\＆If an object has size x_{r} ，then $N P_{>}\left(x_{r}\right)$ is its rank r ．
So

$$
x_{r} \propto r^{-\alpha}=\left(N P_{\geq}\left(x_{r}\right)\right)^{-\alpha}
$$

We therefore have $1=-(\gamma-1)(-\alpha)$ or：

$$
\alpha=\frac{1}{\gamma-1}
$$

A rank distribution exponent of $\alpha=1$ corresponds to a size distribution exponent $\gamma=2$ ．

${ }^{\text {Pocs }}$

Power－Law Size
Distributions

Pur Intuition

Definition
Examples
wild vs．Mild
cCDFs
CCDFs

$$
\propto x_{r}^{-(\gamma-1)(-\alpha)} \text { since } P_{\geq}(x) \sim x^{-(\gamma-1)} .
$$

Zipf A CCDF
Zipfec CDPF

$$
\begin{aligned}
& \text { (im) }{ }^{\circ} \\
& \text { 万ace } 54 \text { of } 65
\end{aligned}
$$

＂Zipf＇s Law in the Popularity Distribution of Chess Openings＂$\overline{\text { co }}$
Blasius and Tönjes，
Phys．Rev．Lett．，103，218701，2009．${ }^{[3]}$

Examined all games of varying game depth d in a set of chess databases．
\＆n＝popularity＝how many times a specific game path appears in databases．
．$S(n ; d)=$ number of depth d games with popularity n ．
Show＂the frequencies of opening moves are distributed according to a power law with an exponent that increases linearly with the game depth，whereas the pooled distribution of all opening weights follows Zipf＇s law with universal exponent．＂

The Don．©
Extreme deviations in test cricket：

\＆Don Bradman＇s batting average［ $=166 \%$ next best．
That＇s pretty solid．
\＆Later in the course：Understanding success－
[5] A. Clauset, C. R. Shalizi, and M. E. J. Newman Power-law distributions in empirical data. SIAM Review, 51:661-703, 2009. pdfĆㅜ
[6] D. J. de Solla Price.
Networks of scientific papers.
Science, 149:510-515, 1965. pdf■
[7] P. Grassberger.
Critical behaviour of the Drossel-Schwabl forest fire model.
New Journal of Physics, 4:17.1-17.15, 2002. pdf■
[8] B. Gutenberg and C. F. Richter.
Earthquake magnitude, intensity, energy, and acceleration.
Bull. Seism. Soc. Am., 499:105-145, 1942. pdf[\boldsymbol{Z}

References III
[9] J. Holtsmark.
Über die verbreiterung von spektrallinien Ann. Phys., 58:577-630, 1919. pdf̉
[10] R. Munroe.
Thing Explainer: Complicated Stuff in Simple Words. Houghton Mifflin Harcourt, 2015
[11] M. E. J. Newman. Power laws, Pareto distributions and Zipf's law. Contemporary Physics, 46:323-351, 2005. pdfC
12] M. I. Norton and D. Ariely.
Building a better America-One wealth quintile at a time.
Perspectives on Psychological Science, 6:9-12, 2011. pdfr
$\underset{\substack{\text { Pocs } \\ \text { Opocsuox }}}{ }$
Power-Law Size
Distributions

ur Intuition

efinition
xamples
Wild vs. Mild
cCDFs
pf $\xlongequal[A C D F]{ }$ Eeferences

Sac 62 of 65
Pocs
@pocsvox
Power-Law Size
Distributions
Dur Intuition
Definition
Examples
Wild vs. Mild
widus.
ccops
zipes
law
ipfs law
Zipf \Leftrightarrow CCDF
References
ㄴ․ |

のacc 63 of 65

References IV
$\stackrel{\text { Pocs }}{\text { @ocsvo }}$
Power-Law Size
Distributions
[13] D. D. S. Price.
A general theory of bibliometric and other cumulative advantage processes.
[14] L. F. Richardson.
Variation of the frequency of fatal quarrels with magnitude.

On a class of skew distribution functions.
Biometrika, 42:425-440, 1955. pdf[^
[16] N. N. Taleb.
The Black Swan.
Random House, New York, 2007,
References V
[17] G. U. Yule.
A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S.
Phil. Trans. B, 213:21-87, 1925. pdf[
[18] Y.-X. Zhu, J. Huang, Z.-K. Zhang, Q.-M. Zhang, T. Zhou, and Y.-Y. Ahn.

Geography and similarity of regional cuisines in China.
PLoS ONE, 8:e79161, 2013. pdf[T
[19] G. K. Zipf.
Human Behaviour and the Principle of Least-Effort.
Addison-Wesley, Cambridge, MA, 1949.

