Mechanisms for Generating Power-Law Size Distributions, Part 2

Last updated: 2022/08/28, 08:34:20 EDT
Principles of Complex Systems, Vols. 1, 2, \& 3D CSYS/MATH 300, 303, \& 394, 2022-2023| @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center

 Santa Fe Institute | University of Vermont

The PoCSverse
Power-Law
Mechanisms, Pt. 2 1 of 20

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

Basics

Holtsmark's Distribution PLIPLO

References

These slides are also brought to you by:

Special Guest Executive Producer

The PoCSverse
Power-Law
Mechanisms, Pt. 2
3 of 20
Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

O On Instagram at pratchett_the_cat[

Outline

Power-Law
Mechanisms, Pt. 2
4 of 20
Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References
Variable transformation Basics Holtsmark's Distribution PLIPLO

References

The Boggoracle Speaks:

5 of 20

Variable

trāns̄̄̄ōrmation
Basics
Holtsmark's Distribution PLIPLO

References

Outline

The PoCSverse
Power-Law
Mechanisms, Pt. 2
7 of 20
Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

Variable transformation Basics

Variable Transformation

The PoCSverse
Power-Law
Mechanisms, Pt. 2
8 of 20
Understand power laws as arising from
Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

Variable Transformation

The PoCSverse Power-Law
Mechanisms, Pt. 2 8 of 20

Understand power laws as arising from

1. Elementary distributions (e.g., exponentials).

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

Variable Transformation

 Power-Law Mechanisms, Pt. 2 8 of 20
Understand power laws as arising from

1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

Variable
transformation

Basics

Holtsmark's Distribution PLIPLO

References

Variable Transformation

Understand power laws as arising from

1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

Random variable X with known distribution P_{x}

Variable Transformation

Understand power laws as arising from

1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

Random variable X with known distribution P_{x}
Second random variable Y with $y=f(x)$.

Variable Transformation

Understand power laws as arising from

1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

Random variable X with known distribution P_{x}

- Second random variable Y with $y=f(x)$.

$$
\begin{aligned}
& P_{Y}(y) \mathrm{d} y= \\
& \sum_{x \mid f(x)=y} P_{X}(x) \mathrm{d} x \\
& = \\
& \sum_{y \mid f(x)=y} P_{X}\left(f^{-1}(y)\right)_{\frac{d}{\left|f^{\prime}\left(f f^{-1}(y)\right)\right|}}
\end{aligned}
$$

Variable Transformation

Understand power laws as arising from

1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

Random variable X with known distribution P_{x}
Second random variable Y with $y=f(x)$.
(鸰 $P_{Y}(y) \mathrm{d} y=$
$\sum_{x \mid f(x)=y} P_{X}(x) \mathrm{d} x$
$\sum_{y \mid f(x)=y} P_{X}\left(f^{-1}(y)\right)_{\frac{d y}{\left|f^{\prime}\left(f^{-1}(y)\right)\right|}}$
Often easier to do by hand...

General Example

9 of 20
Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

General Example

Assume relationship between x and y is 1-1.

The PoCSverse
Power-Law
Mechanisms, Pt. 2
9 of 20
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

General Example

Assume relationship between x and y is 1-1.
Power-law relationship between variables:
$y=c x^{-\alpha}, \alpha>0$

The PoCSverse Power-Law
Mechanisms, Pt. 2 9 of 20

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

General Example

Assume relationship between x and y is 1-1.
\& Power-law relationship between variables:

$$
y=c x^{-\alpha}, \alpha>0
$$

Look at y large and x small

The PoCSverse Power-Law

Variable
transformation

Basics

Holtsmark's Distribution PLIPLO

References

General Example

Assume relationship between x and y is 1-1.

Power-law relationship between variables:

$$
y=c x^{-\alpha}, \alpha>0
$$

Look at y large and x small

The PoCSverse Power-Law

$$
\mathrm{d} y=\mathrm{d}\left(c x^{-\alpha}\right)
$$

General Example

Assume relationship between x and y is 1-1.
P Power-law relationship between variables:

$$
y=c x^{-\alpha}, \alpha>0
$$

Look at y large and x small
The PoCSverse Power-Law

$$
\begin{gathered}
d y=d\left(c x^{-\alpha}\right) \\
=c(-\alpha) x^{-\alpha-1} d x
\end{gathered}
$$

General Example

Assume relationship between x and y is 1-1.
P Power-law relationship between variables:

$$
y=c x^{-\alpha}, \alpha>0
$$

Look at y large and x small

The PoCSverse Power-Law
Mechanisms, Pt. 2 9 of 20

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

$$
\begin{aligned}
& \qquad \mathrm{d} y=\mathrm{d}\left(c x^{-\alpha}\right) \\
& \qquad=c(-\alpha) x^{-\alpha-1} \mathrm{~d} x \\
& \text { invert: } \mathrm{d} x=\frac{-1}{c \alpha} x^{\alpha+1} \mathrm{~d} y
\end{aligned}
$$

General Example

Assume relationship between x and y is 1-1.
P Power-law relationship between variables:

$$
y=c x^{-\alpha}, \alpha>0
$$

Look at y large and x small

The PoCSverse Power-Law Mechanisms, Pt. 2 9 of 20

Variable
transformation

Basics

Holtsmark's Distribution PLIPLO

References

$$
\begin{gathered}
\mathrm{d} y=\mathrm{d}\left(c x^{-\alpha}\right) \\
\qquad=c(-\alpha) x^{-\alpha-1} \mathrm{~d} x \\
\text { invert: } \mathrm{d} x=\frac{-1}{c \alpha} x^{\alpha+1} \mathrm{~d} y \\
\mathrm{~d} x=\frac{-1}{c \alpha}\left(\frac{y}{c}\right)^{-(\alpha+1) / \alpha} \mathrm{d} y
\end{gathered}
$$

General Example

The PoCSverse Power-Law Mechanisms, Pt. 2 9 of 20

Variable
transformation

Basics

Holtsmark's Distribution PLIPLO

References

$$
\begin{gathered}
\mathrm{d} y=\mathrm{d}\left(c x^{-\alpha}\right) \\
=c(-\alpha) x^{-\alpha-1} \mathrm{~d} x \\
\text { invert: } \mathrm{d} x=\frac{-1}{c \alpha} x^{\alpha+1} \mathrm{~d} y \\
\mathrm{~d} x=\frac{-1}{c \alpha}\left(\frac{y}{c}\right)^{-(\alpha+1) / \alpha} \mathrm{d} y \\
\mathrm{~d} x=\frac{-c^{1 / \alpha}}{\alpha} y^{-1-1 / \alpha} \mathrm{d} y
\end{gathered}
$$

Now make transformation:

$$
P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x
$$

10 of 20
Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

Now make transformation:

$$
\begin{gathered}
P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x \\
P_{y}(y) \mathrm{d} y=P_{x} \overbrace{\left(\left(\frac{y}{c}\right)^{-1 / \alpha}\right) \frac{(x)}{\frac{c^{1 / \alpha}}{\alpha} y^{-1-1 / \alpha} \mathrm{d} y}}^{\mathrm{d} x}
\end{gathered}
$$

The PoCSverse

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

Now make transformation:

$$
\begin{gathered}
P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x \\
P_{y}(y) \mathrm{d} y=P_{x} \overbrace{\left(\left(\frac{y}{c}\right)^{-1 / \alpha}\right) \frac{(x)}{\frac{c^{1 / \alpha}}{\alpha} y^{-1-1 / \alpha} \mathrm{d} y}}^{\mathrm{d} x}
\end{gathered}
$$

The PoCSverse

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

Now make transformation:

$$
\begin{gathered}
P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x \\
P_{y}(y) \mathrm{d} y=P_{x} \overbrace{\left(\left(\frac{y}{c}\right)^{-1 / \alpha}\right)}^{(x)} \overbrace{\frac{c^{1 / \alpha}}{\alpha} y^{-1-1 / \alpha} \mathrm{d} y}^{\mathrm{d} x}
\end{gathered}
$$

The PoCSverse Power-Law
Mechanisms, Pt. 2 10 of 20

Variable
transformation

Basics

Holtsmark's Distribution PLIPLO

References

Example

The PoCSverse
Power-Law
Mechanisms, Pt. 2
11 of 20
Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

Exponential distribution

References

Given $P_{x}(x)=\frac{1}{\lambda} e^{-x / \lambda}$ and $y=c x^{-\alpha}$, then

$$
P(y) \propto y^{-1-1 / \alpha}+O\left(y^{-1-2 / \alpha}\right)
$$

Example

 Power-LawMechanisms, Pt. 2
11 of 20
Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

Exponential distribution

References

Given $P_{x}(x)=\frac{1}{\lambda} e^{-x / \lambda}$ and $y=c x^{-\alpha}$, then

$$
P(y) \propto y^{-1-1 / \alpha}+O\left(y^{-1-2 / \alpha}\right)
$$

Exponentials arise from randomness (easy) ...

Example

Power-Law
Mechanisms, Pt. 2
11 of 20
Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

Exponential distribution

Given $P_{x}(x)=\frac{1}{\lambda} e^{-x / \lambda}$ and $y=c x^{-\alpha}$, then

$$
P(y) \propto y^{-1-1 / \alpha}+O\left(y^{-1-2 / \alpha}\right)
$$

Exponentials arise from randomness (easy) ...
More later when we cover robustness.

Outline

Variable transformation
Basics
Holtsmark's Distribution

Gravity

Select a random point in the universe \vec{x}.
'Stigler's Law of Eponymy ${ }^{\text {C. }}$.

Gravity

The PoCSverse
Power-Law
Mechanisms, Pt. 2
13 of 20
Select a random point in the universe \vec{x}.
Measure the force of gravity $F(\vec{x})$.
'Stigler's Law of Eponymy [.

Gravity

Select a random point in the universe \vec{x}.
Measure the force of gravity $F(\vec{x})$.
Observe that $P_{F}(F) \sim F^{-5 / 2}$.

Variable
transformation Basics

Holtsmark's Distribution
-------------------PLIPLO

References

${ }^{1}$ Stigler's Law of Eponymy [].

Gravity

Select a random point in the universe \vec{x}.
Measure the force of gravity $F(\vec{x})$.
SBserve that $P_{F}(F) \sim F^{-5 / 2}$.
Distribution named after Holtsmark who was thinking about electrostatics and plasma ${ }^{[1]}$.

[^0]
Gravity

Select a random point in the universe \vec{x}.
. Measure the force of gravity $F(\vec{x})$.
. Observe that $P_{F}(F) \sim F^{-5 / 2}$.
Distribution named after Holtsmark who was thinking about electrostatics and plasma ${ }^{[1]}$.
Again, the humans naming things after humans, poorly. ${ }^{1}$

Variable
transformation Basics

Holtsmark's Distribution PLIPLO

References

[^1]
Matter is concentrated in stars: ${ }^{[2]}$

- F is distributed unevenly

Mechanisms, Pt. 2
14 of 20
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

Matter is concentrated in stars: ${ }^{[2]}$

\& is distributed unevenly
. Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$:

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

The PoCSverse Power-Law

Variable
transformation

Matter is concentrated in stars: ${ }^{[2]}$

\& F is distributed unevenly
. Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$:

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

Assume stars are distributed randomly in space (oops?)

Matter is concentrated in stars: ${ }^{[2]}$

\& F is distributed unevenly
. Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$:

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

. Assume stars are distributed randomly in space (oops?)
Assume only one star has significant effect at \vec{x}.

Matter is concentrated in stars: ${ }^{[2]}$

\& F is distributed unevenly
. Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$:

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

- Assume stars are distributed randomly in space (oops?)
Assume only one star has significant effect at \vec{x}.
L Law of gravity:

$$
F \propto r^{-2}
$$

Matter is concentrated in stars: ${ }^{[2]}$

\& F is distributed unevenly
. Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$:

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

- Assume stars are distributed randomly in space (oops?)
Assume only one star has significant effect at \vec{x}.
L Law of gravity:

$$
F \propto r^{-2}
$$

invert:

$$
r \propto F^{-\frac{1}{2}}
$$

Matter is concentrated in stars: ${ }^{[2]}$

\& F is distributed unevenly
. Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$:

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

- Assume stars are distributed randomly in space (oops?)
Assume only one star has significant effect at \vec{x}.
Law of gravity:

$$
F \propto r^{-2}
$$

invert:

$$
r \propto F^{-\frac{1}{2}}
$$

Connect differentials: $\mathrm{d} r \propto \mathrm{~d} F^{-\frac{1}{2}} \propto F^{-\frac{3}{2}} \mathrm{~d} F$

Transformation:

The PoCSverse Power-Law
Mechanisms, Pt. 2
15 of 20
Using $r \propto F^{-1 / 2}, \mathrm{~d} r \propto F^{-3 / 2} \mathrm{~d} F$, and $P_{r}(r) \propto r^{2}$
Variable
transformation
Basics
Holtsmark's Distribution

PLIPLO
References

Transformation:

The PoCSverse Power-Law
Mechanisms, Pt. 2
15 of 20
Using $r \propto F^{-1 / 2}, \mathrm{~d} r \propto F^{-3 / 2} \mathrm{~d} F$, and $P_{r}(r) \propto r^{2}$

$$
P_{F}(F) \mathrm{d} F=P_{r}(r) \mathrm{d} r
$$

Variable
transformation
Basics
Holtsmark's Distribution

PLIPLO

Transformation:

The PoCSverse Power-Law
Mechanisms, Pt. 2 15 of 20
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO

$$
P_{F}(F) \mathrm{d} F=P_{r}(r) \mathrm{d} r
$$

$\propto P_{r}\left(\right.$ const $\left.\times F^{-1 / 2}\right) F^{-3 / 2} \mathrm{~d} F$

Transformation:

The PoCSverse Power-Law
Mechanisms, Pt. 2 15 of 20

Using $r \propto F^{-1 / 2}, \mathrm{~d} r \propto F^{-3 / 2} \mathrm{~d} F$, and $P_{r}(r) \propto r^{2}$

$$
P_{F}(F) \mathrm{d} F=P_{r}(r) \mathrm{d} r
$$

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO

References

$$
\propto P_{r}\left(\text { const } \times F^{-1 / 2}\right) F^{-3 / 2} \mathrm{~d} F
$$

$$
\propto\left(F^{-1 / 2}\right)^{2} F^{-3 / 2} \mathrm{~d} F
$$

Transformation:

The PoCSverse Power-Law
Mechanisms, Pt. 2 15 of 20

Using $r \propto F^{-1 / 2}, \mathrm{~d} r \propto F^{-3 / 2} \mathrm{~d} F$, and $P_{r}(r) \propto r^{2}$

$$
P_{F}(F) \mathrm{d} F=P_{r}(r) \mathrm{d} r
$$

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO

References

$$
\propto P_{r}\left(\text { const } \times F^{-1 / 2}\right) F^{-3 / 2} \mathrm{~d} F
$$

$$
\begin{gathered}
\propto\left(F^{-1 / 2}\right)^{2} F^{-3 / 2} \mathrm{~d} F \\
\quad=F^{-1-3 / 2} \mathrm{~d} F
\end{gathered}
$$

Transformation:

The PoCSverse Power-Law
Mechanisms, Pt. 2 15 of 20
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO

References

$$
\propto P_{r}\left(\text { const } \times F^{-1 / 2}\right) F^{-3 / 2} \mathrm{~d} F
$$

$$
\begin{gathered}
\propto\left(F^{-1 / 2}\right)^{2} F^{-3 / 2} \mathrm{~d} F \\
\quad=F^{-1-3 / 2} \mathrm{~d} F \\
\quad=F^{-5 / 2} \mathrm{~d} F
\end{gathered}
$$

Gravity:

The PoCSverse
Power-Law
Mechanisms, Pt. 2
16 of 20
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

Gravity:

The PoCSverse
Power-Law
Mechanisms, Pt. 2
16 of 20
Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

$$
P_{F}(H)=H-5 / 2 \mathrm{H}
$$

$$
\gamma=5 / 2
$$

Gravity:

The PoCSverse
Power-Law
Mechanisms, Pt. 2
16 of 20
Variable
transformation
Basics
Holtsmark's Distribution

$$
P_{F}(F)=F^{-5 / 2} \mathrm{~d} F
$$

$$
\gamma=5 / 2
$$

Mean is finite.

Gravity:

The PoCSverse
Power-Law
Mechanisms, Pt. 2
16 of 20
Variable
transformation
Basics
Holtsmark's Distribution

$$
P_{F}(F)=F^{-5 / 2} \mathrm{~d} F
$$

PLIPLO

References

$$
\gamma=5 / 2
$$

Mean is finite.
 R Variance $=\infty$.

Gravity:

$$
P_{F}(F)=F^{-5 / 2} \mathrm{~d} F
$$

PLIPLO

$$
\gamma=5 / 2
$$

. Mean is finite.
. Variance $=\infty$.
A wild distribution.

Gravity:

 Power-LawMechanisms, Pt. 2 16 of 20
Variable
transformation
Basics
Holtsmark's Distribution

$$
P_{F}(F)=F^{-5 / 2} \mathrm{~d} F
$$

Mean is finite.
R Variance $=\infty$.
A wild distribution.
PLIPLO
References

$$
\gamma=5 / 2
$$

Upshot: Random sampling of space usually safe but can end badly...

\square Todo: Build Dalek army.

Outline

The PoCSverse
Power-Law
Mechanisms, Pt. 2
18 of 20
Variable
transformation
Basics
Holtsmark's Distribution

Variable transformation
Basics
Holismark's Distribution

PLIPLO

Extreme Caution!

The PoCSverse

Variable
transformation
Basics
Holtsmark's Distribution
8 PLIPLO = Power law in, power law out

Extreme Caution!

\& PLIPLO = Power law in, power law out

References

Explain a power law as resulting from another unexplained power law.

Extreme Caution!

R PLIPLO = Power law in, power law out
Explain a power law as resulting from another unexplained power law.

- Yet another homunculus argument [B... 3

Extreme Caution!

R PLIPLO = Power law in, power law out
Explain a power law as resulting from another unexplained power law.
\& Yet another homunculus argument C^{7}...
Don't do this!!! (slap, slap)

Extreme Caution!

R PLIPLO = Power law in, power law out
Explain a power law as resulting from another unexplained power law.
\& Yet another homunculus argument \mathbb{C}...
Don't do this!!! (slap, slap)
BIWO = Mild in, Wild out is the stuff.

Extreme Caution!

. PLIPLO = Power law in, power law out
. Explain a power law as resulting from another unexplained power law.
\& Yet another homunculus argument[J...

- Don't do this!!! (slap, slap)

MIWO = Mild in, Wild out is the stuff.
In general: We need mechanisms!

References I

[1] J. Holtsmark.
Über die verbreiterung von spektrallinien.
Ann. Phys., 58:577-630, 1919. pdf®
[2] D. Sornette.
Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 1st edition, 2003.

[^0]: Ttigler's Law of Eponymy[].

[^1]: ${ }^{1}$ Stigler's Law of Eponymy[].

