Mechanisms for Generating
Power－Law Size Distributions，Part 1
Last updated：2022／08／27，23：54：10 EdT
Principles of Complex Systems，Vols．1，2，\＆3D
CSYS／MATH 300，303，\＆394，2022－2023｜＠pocsv
Prof．Peter Sheridan Dodds｜＠peterdodds
Computational Story Lab I Vermont Complex Systems Center
Santa Fe Institute｜University of Vermont

＠ロ®ロ

Licensed under the Creative Commons Attribution－Non Commercial－Sharealike 3．0 License．

Outline

Random Walks

The First Return Problem
Random River Networks
Scaling Relations
Death and Sports
Fractional Brownian Motion

References
$\underset{\substack{\text { Pocs } \\ \text {＠pocsvox }}}{ }$
Power－Law
Mechanisms，Pt． 1
Random Walks
The First Return
Problem
Random River
Networks
Scaling Relations
Death and Sports
Fractional
Brownian Motion
References
（7m）${ }^{\circ}$ 号
sac 1 of 46

Pocs
＠pocsvox

Power－Law
Mechanisms，Pt． 1

Random Waks
The First Return
Random River
vetworks
Scaling Relations
Death and Sports
eath and Sport
ractional
rownian
M
References

The essential random walk：
One spatial dimension．
－Time and space are discrete
R Random walker（e．g．，a zombie texter［］）starts at origin $x=0$ ．
Step at time t is ϵ_{t} ：

$$
\epsilon_{t}= \begin{cases}+1 & \text { with probability } 1 / 2 \\ -1 & \text { with probability } 1 / 2\end{cases}
$$

万ac 2 of 46
${ }_{\text {PoCs }}^{\text {＠pocsvox }}$ ＠pocssox
Power－Law
Mechanisms，pt．

A few random random walks：

Random Walks
$\underset{\substack{\text { The First Return } \\ \text { Problem }}}{\text { Pen }}$
Random River
Networks
Scaling Relations

ractional
rownian Motion

References

Random walks：
Displacement after t steps：
$\stackrel{\text { Pocs }}{\text {＠oposvox }}$
Power－Law
Mechanisms，pt．
\＆At any time step，we＇expect＇our zombie texter to be back at their starting place．
良 Obviously fails for odd number of steps．．．
But as time goes on，the chance of our texting
undead friend lurching back to $x=0$ must diminish right？

Variances sum：

$$
\begin{aligned}
& \operatorname{Var}\left(x_{t}\right)=\operatorname{Var}\left(\sum_{i=1}^{t} \epsilon_{i}\right) \\
& =\sum_{i=1}^{t} \operatorname{Var}\left(\epsilon_{i}\right)=\sum_{i=1}^{t} 1=t
\end{aligned}
$$

＊Sum rule $=$ a good reason for using the variance to measure spread；only works for independent distributions．

So typical displacement from the origin scales as：

$$
\sigma=t^{1 / 2}
$$

A non－trivial scaling law arises out of additive aggregation or accumulation．

Random walk basics：
Counting random walks
Each specific random walk of length t appears with a chance $1 / 2^{t}$ ．
We＇ll be more interested in how many random walks end up at the same place．
昭 Define $N(i, j, t)$ as \＃distinct walks that start at $x=i$ and end at $x=j$ after t time steps．
Random walk must displace by $+(j-i)$ after t steps．
8 Insert question from assignment 5 －

$$
N(i, j, t)=\binom{t}{(t+j-i) / 2}
$$

How does $P\left(x_{t}\right)$ behave for large t ？
Take time $t=2 n$ to help ourselves．
－$x_{2 n} \in\{0, \pm 2, \pm 4, \ldots, \pm 2 n\}$
．$x_{2 n}$ is even so set $x_{2 n}=2 k$ ．
Using our expression $N(i, j, t)$ with $i=0, j=2 k$ ， and $t=2 n$ ，we have

$$
\operatorname{Pr}\left(x_{2 n} \equiv 2 k\right) \propto\binom{2 n}{n+k}
$$

\＆For large n ，the binomial deliciously approaches the Normal Distribution of Snoredom：

$$
\operatorname{Pr}\left(x_{t} \equiv x\right) \simeq \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}
$$

Insert question from assignment 5 －
R The whole is different from the parts．\＃nutritious
\＆See also：Stable Distributions［
Universality π is also not left－handed：

㒾 This is Diffusion © ：the most essential kind of spreading（more later）．
R View as Random Additive Growth Mechanism．
So many things are connected：

Pascal＇s Triangle

Could have been the Pyramid of Pingala［ ${ }^{11}$ or the Triangle of Khayyam， Jia Xian，Tartaglia，．．

B Binomials tend towards the Normal．
昭 Counting encoded in algebraic forms（and much more）．
昭 $(h+t)^{n}=\sum_{k=0}^{n}\binom{n}{k} h^{k} t^{n-k}$ where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
嗨 $(h+t)^{3}=h h h+h h t+h t h+t h h+h t t+t h t+t t h+t t t$

（ㄴ․｜ \mid 잉
nac 14 of 46
Pocs
＠pocsvox Power－Law
Mechanisms，Pt． 1

Random Walks

$\underset{\substack{\text { The First Return } \\ \text { Problem }}}{\text { Pen }}$
Random River
Networks
Scaling Relations eath and Sports Fractional
Brownian Motion
References

Random walks are even weirder than you might think．．
$\xi_{r, t}=$ the probability that by time step t ，a random walk has crossed the origin r times
Think of a coin flip game with ten thousand tosses．
If you are behind early on，what are the chances you will make a comeback？
The most likely number of lead changes is．．． 0 ．
．In fact：$\xi_{0, t}>\xi_{1, t}>\xi_{2, t}>\cdots$
Even crazier：
The expected time between tied scores $=\infty$ See Feller，Intro to Probability Theory，Volume I ${ }^{[5]}$
${ }^{1}$ Stigler＇s Law of Eponymy［＾］showing excellent form again
$\underset{\text { Pocs }}{\text {＠pocsvox }}$ ower－Law

hechanisms，pt． 1 andom Walks The First Return | ne |
| :---: |
| problem |
| Ret |
| Retur | Random River

Networks Scaling Relations Ceatrand Sports
Brownian Motion References

Applied knot theory：
＂Designing tie knots by random walks＂ Fink and Mao， Nature，398，31－32，1999．${ }^{[6]}$

（un） \mid（\％）
のac 16 of 46

Pocs
＠pocsvox

Mechanisms，pt． 1

Random Wakss The First Return
problem Randoom River
Networks Scaling Relations Death and Sports Fractional
Brownian Motio References
（m．） $\left\lvert\, \begin{aligned} & \text { of } \\ & 0\end{aligned}\right.$
कのc 17 of 46
Pocs
＠pocsvox
Power－Law
Mechanisms，pt．

Random Waks
The First Return
problem
Random River
Networks
Saling Relations
eath and Sports
rractional
Brownian Motio
References

Reasons for caring：

1．We will find a power－law size distribution with an interesting exponent．
2．Some physical structures may result from random walks．
3．We＇ll start to see how different scalings relate to each other．

Pocs
＠oposvo
Power－Law
Mechanisms，pt．

For random walks in 1－d：

A return to origin can only happen when $t=2 n$ ．
In example above，returns occur at $t=8,10$ ，and 14.

Call $P_{\mathrm{fr}(2 n)}$ the probability of first return at $t=2 n$ ．
\＆Probability calculation \equiv Counting problem （combinatorics／statistical mechanics）．
\＆Idea：Transform first return problem into an easier return problem．

．Can assume zombie texter first lurches to $x=1$ ．
Observe walk first returning at $t=16$ stays at or above $x=1$ for $1 \leq t \leq 15$（dashed red line）．
Now want walks that can return many times to $x=1$ ．
\＆$P_{\mathrm{fr}}(2 n)=$
$2 \cdot \frac{1}{2} \operatorname{Pr}\left(x_{t} \geq 1,1 \leq t \leq 2 n-1\right.$, and $\left.x_{1}=x_{2 n-1}=1\right)$
The $\frac{1}{2}$ accounts for $x_{2 n}=2$ instead of 0 ．
R The 2 accounts for texters that first lurch to $x=-1$ ．

Counting first returns：

Approach：
．Move to counting numbers of walks．
Return to probability at end．
Again，$N(i, j, t)$ is the \＃of possible walks between $x=i$ and $x=j$ taking t steps．
B Consider all paths starting at $x=1$ and ending at $x=1$ after $t=2 n-2$ steps．
Idea：If we can compute the number of walks that hit $x=0$ at least once，then we can subtract this from the total number to find the ones that maintain $x \geq 1$ ．
Call walks that drop below $x=1$ excluded walks．
，We＇ll use a method of images to identify these excluded walks．

Examples of excluded walks：

Key observation for excluded walks：
For any path starting at $x=1$ that hits 0 ，there is a unique matching path starting at $x=-1$ ．
B Matching path first mirrors and then tracks after first reaching $x=0$ ．
\＃of t－step paths starting and ending at $x=1$ and hitting $x=0$ at least once
$=\#$ of t－step paths starting at $x=-1$ and ending at $x=1=N(-1,1, t)$
So $N_{\text {first return }}(2 n)=N(1,1,2 n-2)-N(-1,1,2 n-2)$
Probability of first return：
Insert question from assignment 5 C
re Find

$$
N_{\mathrm{fr}}(2 n) \sim \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}}
$$

Normalized number of paths gives probability．
Total number of possible paths $=2^{2 n}$ ．
\＆

$$
\begin{gathered}
P_{\mathrm{fr}}(2 n)=\frac{1}{2^{2 n}} N_{\mathrm{fr}}(2 n) \\
\simeq \frac{1}{2^{2 n}} \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}} \\
=\frac{1}{\sqrt{2 \pi}}(2 n)^{-3 / 2} \propto t^{-3 / 2} .
\end{gathered}
$$

We have $P(t) \propto t^{-3 / 2}, \gamma=3 / 2$
Same scaling holds for continuous space／time walks．
Random Walks

Random
$\substack{\text { Retwer } \\ \text { Networks }}$

Networks
Scaling Relations

Scaling Relations
Death and Sporis

Fractional
Brownian Motio

References
Recurrence：Random walker always returns to origin
．But mean，variance，and all higher moments are infinite．
\＃totalmadness
Ben though walker must return，expect a long wait．．．
\＆One moral：Repeated gambling against an infinitely wealthy opponent must lead to ruin

Higher dimensions［
Walker in $d=2$ dimensions must also return
Walker may not return in $d \geq 3$ dimensions
－Associated human genius：George Pólya［ B

$\stackrel{\text { Pocs }}{\text {＠oposvox }}$

power－Law ewher－Lisms，Pt．

Random Walks The First Return
Problifem
P－ Firobeè－－－－
Random River
Networks
Scaling Relations
Death and Sports Fractional
Brownian Motion References

Random walk with probabilistic pause
B Basin termination＝first return random walk problem．
B Basin length ℓ distribution：$P(\ell) \propto \ell^{-3 / 2}$
For real river networks，generalize to $P(\ell) \propto \ell^{-\gamma}$ ．
Random walks
On finite spaces：
In any finite homogeneous space，a random walker will visit every site with equal probability
Call this probability the Invariant Density of a dynamical system
\＆Non－trivial Invariant Densities arise in chaotic systems

On networks：
（s）On networks，a random walker visits each node with frequency \propto node degree \＃groovy
\＆Equal probability still present： walkers traverse edges with equal frequency \＃totallygroovy

R Random directed network on triangular lattice．
Toy model of real networks．
＇Flow＇is southeast or southwest with equal probability．

Scheidegger networks

Creates basins with random walk boundaries．
Observe that subtracting one random walk from another gives random walk with increments：

$$
\epsilon_{t}=\left\{\begin{array}{cl}
+1 & \text { with probability } 1 / 4 \\
0 & \text { with probability } 1 / 2 \\
-1 & \text { with probability } 1 / 4
\end{array}\right.
$$

Connections between exponents：
random Walks The First Return roblem Random River
Networks
Scaling Relations Death and Sport Fractional
Brownian Motion References
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$
$\times \ell^{-3 / 2} \mathrm{~d} \ell$
$\propto\left(a^{2 / 3}\right)^{-3 / 2} a^{-1 / 3} \mathrm{~d} a$
$=a^{-4 / 3} \mathrm{~d} a$
$=a^{-\tau} \mathrm{d} a$

Connections between exponents：
Both basin area and length obey power law distributions
R Observed for real river networks
Reportedly： $1.3<\tau<1.5$ and $1.5<\gamma<2$

Generalize relationship between area and length：
Hack＇s law ${ }^{[10]}$

$$
\ell \propto a^{h}
$$

．For real，large networks ${ }^{[13]} h \simeq 0.5$（isometric scaling）
Smaller basins possibly $h>1 / 2$（allometric scaling）．
Models exist with interesting values of h
Plan：Redo calc with γ, τ ，and h ．

Connections between exponents：
\＆Given

$$
\ell \propto a^{h}, P(a) \propto a^{-\tau}, \text { and } P(\ell) \propto \ell^{-\tau}
$$

哏 $\mathrm{d} \ell \propto \mathrm{d}\left(a^{h}\right)=h a^{h-1} \mathrm{~d} a$
Find τ in terms of γ and h ．
\＆ $\operatorname{Pr}($ basin area $=a) \mathrm{d} a$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$
$\propto \ell^{-\gamma} \mathrm{d} \ell$
$\propto\left(a^{h}\right)^{-\gamma} a^{h-1} \mathrm{~d} a$
$=a^{-(1+h(\gamma-1))} \mathrm{d}$
8

$$
\tau=1+h(\gamma-1)
$$

Ex Excellent example of the Scaling Relations found between exponents describing power laws for many systems．

회 ：
hace 31 of 46

pocs
Qpocsvox

Power－Law
Mechanisms，pt． 1

First Retur

The First Return
problem
Random River
Networks
Caling Relation
Death and Sports
Fractional
Brownian Mot
eferences
都
－
nac 32 of 46
Pocs
＠pocsvox
Power－Law
Mechanisms，Pt． 1
he First Return
The First Return
roblem
Random River
Networks
Scaling Relations
Scaling Relation
Death and Spor

ractional
Srownian Motio

References

Connections between exponents：

With more detailed description of network structure，$\tau=1+h(\gamma-1)$ simplifies to：${ }^{\text {［3］}}$
and

$\tau=2-h$

$\gamma=1 / h$
．Only one exponent is independent（take h ）
Simplifies system description．
Expect Scaling Relations where power laws are found．
Need only characterize Universality［J class with independent exponents．

Basketball and other sports ${ }^{[2]}$
昭 Three arcsine laws［ \AA（Lévy ${ }^{[12]}$ ）for continuous－time random walk last time T ：

$$
\frac{1}{\pi} \frac{1}{\sqrt{t(T-t)}} .
$$

The arcsine distribution applies for
（1）fraction of time positive，（2）the last time the walk changes sign，
and（3）the time the maximum is achieved．
Well approximated by basketball score lines ${ }^{[8,2]}$ ．
Australian Rules Football has some differences ${ }^{[11]}$ ．
Death ．．．

Failure：
A very simple model of failure／death
s $x_{t}=$ entity＇s＇health＇at time t
Start with $x_{0}>0$ ．
Entity fails when x hits 0 ．

＂Explaining mortality rate plateaus＂${ }^{-7}$
Weitz and Fraser，
Proc．Natl．Acad．Sci．，98，15383－15386， 2001．${ }^{\text {［18］}}$

Pocs Opocsy

 ower－Law Nechanisms，Pt．andom Waks The First Return
Problem roblem Random River
Networks Scaing Relations eath and Sports Fractional
Brownian Motion eferences

More than randomness
© Can generalize to Fractional Random Walks ${ }^{[15,16,14]}$
\＆Fractional Brownian Motion［ $\overparen{\square}$ ，Lévy flights［ $\boldsymbol{\beta}$
See Montroll and Shlesinger for example：${ }^{[14]}$ ＂On $1 / f$ noise and other distributions with long tails．＂
Proc．Natl．Acad．Sci．， 1982
In 1－d，standard deviation σ scales as
$\alpha=1 / 2$ - diffusive
$\alpha>1 / 2$ - superdiffusive
$\alpha<1 / 2$ - subdiffusive
．Extensive memory of path now matters．．．

First big studies of movement and interactions of people．
8 Brockmann et al．${ }^{[1]}$＂Where＇s George＂study．
Beyond Lévy：Superdiffusive in space but with long waiting times．
Tracking movement via cell phones ${ }^{[9]}$ and Twitter ${ }^{[7]}$ ．

[8] A. Gabel and S. Redner.
Random walk picture of basketball scoring.
Journal of Quantitative Analysis in Sports, 8:1-20, 2012.
[9] M. C. González, C. A. Hidalgo, and A.-L. Barabási. Understanding individual human mobility patterns.
Nature, 453:779-782, 2008. pdf[\quad º
[10] J. T. Hack.
Studies of longitudinal stream profiles in Virginia and Maryland.
United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdfC

Pocs
@pocsvox
Power-L-aw
Mechanisms, Pt. 1

Random Walks

The First Return
problem
roblem
Random River
Networks
Scaling Relations
Death and Sports
ractional
rownian Motion
References
Unified view of scaling laws for river networks. Physical Review E, 59(5):4865-4877, 1999. pdf[
[4] P. S. Dodds and D. H. Rothman.
Scaling, universality, and geomorphology.
Annu. Rev. Earth Planet. Sci., 28:571-610, 2000. pdf[

References II

[5] W. Feller.
An Introduction to Probability Theory and Its Applications, volume I.
ohn Wiley \& Sons, New York, third edition, 1968
[6] T. M. Fink and Y. Mao.
Designing tie knots by random walks
Nature, 398:31-32, 1999. pdf[
[7] M. R. Frank, L. Mitchell, P. S. Dodds, and C. M. Danforth.
Happiness and the patterns of life: A study of geolocated Tweets.
Nature Scientific Reports, 3:2625, 2013. pdf©

References IV
[11] D. P. Kiley, A. J. Reagan, L. Mitchell, C. M. Danforth and P. S. Dodds
The game story space of professional sports: Australian Rules Football.
Physical Review E, 93, 2016. pdf[^ß
[12] P. Lévy and M. Loeve
Processus stochastiques et mouvement brownien.
Gauthier-Villars Paris, 1965
[13] D. R. Montgomery and W. E. Dietrich. Channel initiation and the problem of landscape scale.
Science, 255:826-30, 1992. pdfCT

$\xrightarrow[\substack{\text { Pocs } \\ \text { @nocsyox }}]{ }$

References V Power-Law
Mechanisms, Pt. 1

Random Walks The First Return roblem Random River
Networks Scaling Relations Death and Sport Fractional
Brownian Motion References

acc 43 of 46
Pocs
@pocsvox
opowervaw
onechanisms, Pt. 1

Random Walks
The First Return
Problem
,
vetworks
caling Relations
Death and Sports
ractional
Brownian Motion
References

Sac 44 of 46 tails.

References VI
[17] A. E. Scheidegger. pdfer

Pocs
@oposvo
Power-Law
Mechanaisms, Pt. 1
[14] E. W. Montroll and M. F. Shlesinger On the wonderful world of random walks volume XI of Studies in statistical mechanics, chapter 1, pages 1-121.
New-Holland, New York, 1984.
[15] E. W. Montroll and M. W. Shlesinger On $1 / f$ noise and other distributions with long

Proc. Natl. Acad. Sci., 79:3380-3383, 1982. pdf[
[16] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and $1 / f$ noise: a tale of tails. J. Stat. Phys., 32:209-230, 1983.

The algebra of stream-order numbers
United States Geological Survey Professional Paper, 525-B:B187-B189, 1967. pdf[
[18] J. S. Weitz and H. B. Fraser Explaining mortality rate plateaus. Proc. Natl. Acad. Sci., 98:15383-15386, 2001

