Mechanisms for Generating Power-Law Size Distributions, Part 1

Last updated: 2022/08/27, 23:54:10 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 300, 303, & 394, 2022-2023 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License

Outline

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References

PoCS @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks The First Return

Problem Random River

Scaling Relations Death and Sports

Fractional Brownian Motion References

UM O

少 Q (~ 1 of 46

PoCS @pocsvox Power-Law

Random Walks The First Return

Random River

Scaling Relations Death and Sports

Fractional References

Mechanisms:

A powerful story in the rise of complexity:

structure arises out of randomness.

Exhibit A: Random walks.

The essential random walk:

- One spatial dimension.
- Time and space are discrete
- Random walker (e.g., a zombie texter (2) starts at origin x = 0.
- \mathfrak{S} Step at time t is ϵ_t :

$$\epsilon_t = \left\{ \begin{array}{ll} +1 & \text{with probability 1/2} \\ -1 & \text{with probability 1/2} \end{array} \right.$$

◆) < (→ 2 of 46

PoCS @pocsvox Power-Law

Mechanisms, Pt.

Random Walks The First Return Random River Networks

Scaling Relations Death and Sports

III |

•9 a (~ 5 of 46

A few random random walks:

Random walks: @pocsvox

PoCS

Power-Law

Mechanisms, Pt. 1

Random Walks

The First Return

Scaling Relations

Death and Sports

Brownian Motion

Problem

Networks

Fractional

References

UM |OS

PoCS

@pocsvox

Power-Law

Random Walks

The First Return

Random River Networks

Scaling Relations

Death and Sports

Brownian Motion

Fractional

References

.... |S

PoCS

@pocsvox

Power-Law

Random Walks

The First Return

Random River

Scaling Relations

Death and Sports

Brownian Motion

Problem

Networks

Fractional

References

•> < (→ 7 of 46

Problem

少 Q (→ 6 of 46

Displacement after t steps:

Expected displacement:

Variances sum: 🗗

$$\langle x_t \rangle = \left\langle \sum_{i=1}^t \epsilon_i \right\rangle \\ = \sum_{i=1}^t \left\langle \epsilon_i \right\rangle \\ = 0$$

- At any time step, we 'expect' our zombie texter to be back at their starting place.
- Obviously fails for odd number of steps...
- But as time goes on, the chance of our texting undead friend lurching back to x=0 must diminish, right?

 $\operatorname{Var}(x_t) = \operatorname{Var}\left(\sum_{i=1}^t \epsilon_i\right)$

 $= \sum_{i=1}^{t} \mathsf{Var}\left(\epsilon_{i}\right) \\ = \sum_{i=1}^{t} 1 = t$

measure spread; only works for independent distributions.

* Sum rule = a good reason for using the variance to

PoCS

@pocsvox

Power-Law

Mechanisms, Pt. 1

Random Walks

The First Return

Random River

Scaling Relations

Death and Sports

Problem

Networks

Fractional

References

夕 Q ← 9 of 46

PoCS @pocsvox Power-Law

Random Walks

The First Return

Networks Scaling Relations

Death and Sports Fractional

References

So typical displacement from the origin scales as:

$$\sigma = t^{1/2}$$

A non-trivial scaling law arises out of additive aggregation or accumulation.

& Each specific random walk of length t appears

 \mathbb{A} Define N(i, j, t) as # distinct walks that start at

 \clubsuit Random walk must displace by +(j-i) after t

x = i and end at x = j after t time steps.

walks end up at the same place.

Insert question from assignment 5

Random walk basics:

Counting random walks:

with a chance $1/2^t$.

ൗ < രം 10 of 46

PoCS

Power-Law

Random Walks

Problem Random River

Networks Scaling Relations

Death and Sports Fractional

References

 $N(i,j,t) = \begin{pmatrix} t \\ (t+j-i)/2 \end{pmatrix}$

少 Q (~ 8 of 46

UNN O

2 9 9 € 12 of 46

How does $P(x_t)$ behave for large t?

- \clubsuit Take time t = 2n to help ourselves.
- $x_{2n} \in \{0, \pm 2, \pm 4, \dots, \pm 2n\}$
- x_{2n} is even so set $x_{2n} = 2k$.
- & Using our expression N(i, j, t) with i = 0, j = 2k, and t = 2n, we have

$$\Pr(x_{2n} \equiv 2k) \propto \binom{2n}{n+k}$$

For large n, the binomial deliciously approaches the Normal Distribution of Snoredom:

$$\mathbf{Pr}(x_t \equiv x) \simeq \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}.$$

Insert question from assignment 5 2

- The whole is different from the parts. #nutritious
- 🙈 See also: Stable Distributions 🗹

Universality **☑** is also not left-handed:

- ♣ This is Diffusion ☑: the most essential kind of spreading (more later).
- Niew as Random Additive Growth Mechanism.

So many things are connected:

Pascal's Triangle ☑

- Could have been the Pyramid of Pingala ✓¹ or the Triangle of Khayyam, Jia Xian, Tartaglia, ...
- Binomials tend towards the Normal.
- & Counting encoded in algebraic forms (and much
- $\{h+t\}^n = \sum_{k=0}^n {n \choose k} h^k t^{n-k} \text{ where } {n \choose k} = \frac{n!}{k!(n-k)!}$

@pocsvox Power-Law Mechanisms, Pt.

Random Walks The First Return

Random Rive Scaling Relations

Death and Sport Fractional

References

W | | 少 Q (№ 13 of 46

PoCS @pocsvox Power-Law

Random Walks

The First Return

Random River Scaling Relations

Death and Sports Fractional

Brownian Motion References

少 q (→ 14 of 46

PoCS @pocsvox Power-Law Mechanisms, Pt.

Random Walks

The First Return Random River

Scaling Relations Death and Sports

UN S

•9 a (→ 15 of 46

Random walks are even weirder than you might

- $\xi_{r,t}$ = the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- A If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is... 0.
- \Re In fact: $\xi_{0,t} > \xi_{1,t} > \xi_{2,t} > \cdots$

The Random Road

through the Forests of Forgettable Events

Even crazier: The expected time between tied scores = ∞

See Feller, Intro to Probability Theory, Volume I [5]

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return

Random Rive

Scaling Relations

Death and Sports

Problem

Networks

Fractional

References

.... |S

Applied knot theory:

'Designing tie knots by random walks" 🗹

era. Bests Fink and Mao,

Nature, 398, 31-32, 1999. [6]

ways of beginning a knot, Lo and Lo. For knots beginning with Lo, the tie must begin Four by The four-in-hand, denoted by the sequence $L_0 R_0 L_0 C_0 T$. \mathbf{c} , A knot may be represented persistent random walk on a triangular lattice. The example shown is the four-in-hand, indicated by the

@pocsvox Power-Law

少 Q (№ 16 of 46

Random Walks

Problem Random River

Networks Scaling Relations

Death and Sports References

UM |OS

PoCS

@pocsvox

Power-Law

Random Walks

The First Return

Random River

Scaling Relations

Death and Sports

Fractional Brownian Motion

References

Problem

Networks

•9 q (→ 17 of 46

Applied knot theory:

h	γ	γ/h	$K(h, \gamma)$	S	b	Name	Sequence
3	1	0.33	1	0	0		L _☉ R _⊚ C _☉ T
4	1	0.25	1	- 1	1	Four-in-hand	L _⊗ R _⊙ L _⊗ C _⊙ T
5	2	0.40	2	- 1	0	Pratt knot	L₀C⊗R₀L⊗C₀T
3	2	0.33	4	0	0	Half-Windsor	$L_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
7	2	0.29	6	- 1	1		$L_{\circ}R_{\otimes}L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
7	3	0.43	4	0	1		$L_{\circ}C_{\circ}R_{\circ}C_{\circ}L_{\circ}R_{\circ}C_{\circ}T$
3	2	0.25	8	0	2		L _® R ₀ L _® C ₀ R _® L ₀ R _® C ₀ 1
3	3	0.38	12	- 1	0	Windsor	L _o C _o R _o L _o C _o R _o L _o C _o 7
)	3	0.33	24	0	0		$L_{\circ}R_{\otimes}C_{\circ}L_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\otimes}$
)	4	0.44	8	-1	2		LoCoRoCoLoCoRoLoC

A = number ofmoves

center moves

 $\begin{array}{ll} & b = \frac{1}{2} \sum_{i=2}^{h-1} |\omega_i + \omega_{i-1}| \\ & \text{where } \omega = \pm 1 \end{array}$ represents winding direction.

Random walks #crazytownbananapants

The problem of first return:

- Nhat is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our zombie texter always return to the origin?
- What about higher dimensions?

Reasons for caring:

- 1. We will find a power-law size distribution with an interesting exponent.
- 2. Some physical structures may result from random walks.
- 3. We'll start to see how different scalings relate to each other.

•9 q (→ 18 of 46

少 Q (~ 21 of 46

Random Walks The First Return

Problem Random River

@pocsvox

Power-Law

Networks Scaling Relations

Death and Sports

Fractional

References

少 Q (~ 19 of 46

PoCS @pocsvox Power-Law

Random Walks

Scaling Relations Death and Sports

Fractional References

UM O

◆) q (→ 20 of 46

PoCS Power-Law

Random Walks

The First Return Problem

Scaling Relations Death and Sports

Fractional

References

¹Stigler's Law of Eponymy **™** showing excellent form again.

For random walks in 1-d:

- \triangle A return to origin can only happen when t = 2n.
- \clubsuit In example above, returns occur at t = 8, 10, and 14.
- \Leftrightarrow Call $P_{fr(2n)}$ the probability of first return at t=2n.
- ♣ Probability calculation = Counting problem (combinatorics/statistical mechanics).
- & Idea: Transform first return problem into an easier return problem.

- & Can assume zombie texter first lurches to x = 1.
- & Observe walk first returning at t = 16 stays at or above x = 1 for $1 \le t \le 15$ (dashed red line).
- & Now want walks that can return many times to x = 1.
- $P_{fr}(2n) =$ $2 \cdot \frac{1}{2} Pr(x_t \ge 1, 1 \le t \le 2n - 1, \text{ and } x_1 = x_{2n-1} = 1)$
- \Re The $\frac{1}{2}$ accounts for $x_{2n} = 2$ instead of 0.
- \clubsuit The 2 accounts for texters that first lurch to x = -1.

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- \mathbb{A} Again, N(i, j, t) is the # of possible walks between x = i and x = j taking t steps.
- & Consider all paths starting at x = 1 and ending at x=1 after t=2n-2 steps.
- & Idea: If we can compute the number of walks that hit x = 0 at least once, then we can subtract this from the total number to find the ones that maintain $x \ge 1$.
- & Call walks that drop below x = 1 excluded walks.
- We'll use a method of images to identify these excluded walks.

@pocsvox Power-Law Mechanisms, Pt. 1

Random Walks

The First Return

Scaling Relations

Death and Sports

Fractional

References

W | |

PoCS

@pocsvox

Power-Law

◆) q (~ 22 of 46

Mechanisms, Pt. 1

Random Walks

The First Return

Scaling Relations

Death and Sports

Fractional

References

.... |S

PoCS

@pocsvox

Power-Law

Mechanisms, Pt.

Random Walks

The First Return

Scaling Relations

Death and Sports

References

UH S

•> < € 24 of 46

Random Rive

◆) < (~ 23 of 46

Problem

Problem

Examples of excluded walks:

Key observation for excluded walks:

- \clubsuit For any path starting at x=1 that hits 0, there is a unique matching path starting at x=-1.
- Matching path first mirrors and then tracks after first reaching x=0.
- \clubsuit # of t-step paths starting and ending at x=1 and hitting x=0 at least once = # of t-step paths starting at x=-1 and ending at x=1 = N(-1, 1, t)
- \Re So $N_{\text{first return}}(2n) = N(1, 1, 2n 2) N(-1, 1, 2n 2)$

Probability of first return:

Insert question from assignment 5 2:

$$\boxed{N_{\rm fr}(2n) \sim \frac{2^{2n-3/2}}{\sqrt{2\pi}n^{3/2}}.}$$

- Normalized number of paths gives probability.
- \mathfrak{F} Total number of possible paths = 2^{2n} .
- 8

$$P_{\mathrm{fr}}(2n) = \frac{1}{2^{2n}} N_{\mathrm{fr}}(2n)$$

$$\simeq \frac{1}{2^{2n}} \frac{2^{2n-3/2}}{\sqrt{2\pi} n^{3/2}}$$

$$=\frac{1}{\sqrt{2\pi}}(2n)^{-3/2}\propto t^{-3/2}.$$

- \clubsuit We have $P(t) \propto t^{-3/2}$, $\gamma = 3/2$.
- Same scaling holds for continuous space/time walks.
- A P(t) is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are #totalmadness
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Higher dimensions **♂**:

- \$ Walker in d=2 dimensions must also return
- & Walker may not return in $d \geq 3$ dimensions
- Associated human genius: George Pólya 🗗

Random walks

On finite spaces:

@pocsvox

Power-Law

Mechanisms, Pt. 1

Random Walks

The First Return

Random Rive

Scaling Relations

Death and Sport

Fractional Brownian Motion

◆) Q (25 of 46

PoCS

@pocsvox

Power-Law

Random Walks

The First Return

Scaling Relations

Death and Sport

Problem

Networks

Fractional

References

References

Problem

Networks

- In any finite homogeneous space, a random walker will visit every site with equal probability
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

On networks:

- On networks, a random walker visits each node with frequency \propto node degree #groovy
- Equal probability still present: walkers traverse edges with equal frequency.

#totallygroovy

@pocsvox Power-Law

The First Return Problem

Random River

Scaling Relations

Fractional

- Random directed network on triangular lattice.
- Toy model of real networks.

Scheidegger Networks [17, 4]

🚓 'Flow' is southeast or southwest with equal probability.

◆) Q (→ 26 of 46

PoCS @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem Random River Networks

Scaling Relations Death and Sports

Fractional Brownian Motion

References

Scheidegger networks

- Creates basins with random walk boundaries.
- Observe that subtracting one random walk from another gives random walk with increments:

with probability 1/2 with probability 1/4

- Random walk with probabilistic pauses.
- Basin termination = first return random walk problem.
- & Basin length ℓ distribution: $P(\ell) \propto \ell^{-3/2}$
- \clubsuit For real river networks, generalize to $P(\ell) \propto \ell^{-\gamma}$.

少 Q (~ 27 of 46

Random Walks The First Return

Mechanisms, Pt. 1

@pocsvox

Power-Law

Problem Random River Networks

Scaling Relations Death and Sports

Fractional Brownian Motion

References

.... |S

PoCS

Random Walks

Networks

Death and Sports

References

UM O

◆) q (→ 29 of 46

PoCS Power-Law

Random Walks

Problem

Random River

Scaling Relations Death and Sports

Fractional

References

•9 q (~ 30 of 46

Connections between exponents:

- \red For a basin of length ℓ , width $\propto \ell^{1/2}$
- $\red Basin area <math>a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$
- A Invert: $\ell \propto a^{2/3}$
- $d\ell \propto d(a^{2/3}) = 2/3a^{-1/3}da$
- \Re **Pr**(basin area = a)da = **Pr**(basin length $= \ell$)d ℓ $\propto \ell^{-3/2} d\ell$ $\propto (a^{2/3})^{-3/2}a^{-1/3}da$ $= a^{-4/3} da$ $=a^{-\tau}da$

Connections between exponents:

- Both basin area and length obey power law distributions
- Observed for real river networks
- Reportedly: $1.3 < \tau < 1.5$ and $1.5 < \gamma < 2$

Generalize relationship between area and length:

A Hack's law [10]:

$$\ell \propto a^h$$
.

- $\ref{homograph}$ For real, large networks [13] $h \simeq 0.5$ (isometric scaling)
- \clubsuit Smaller basins possibly h > 1/2 (allometric
- Models exist with interesting values of h.
- \clubsuit Plan: Redo calc with γ , τ , and h.

Connections between exponents:

🖀 Given

$$\ell \propto a^h, \; P(a) \propto a^{-\tau}, \; {\rm and} \; P(\ell) \propto \ell^{-\gamma}$$

- \clubsuit Find τ in terms of γ and h.
- \Re **Pr**(basin area = a)da= **Pr**(basin length $= \ell$)d ℓ $\propto \ell^{-\gamma} \mathrm{d}\ell$ $\propto (a^h)^{-\gamma}a^{h-1}\mathrm{d}a$ $= a^{-(1+h(\gamma-1))} da$

$$\boxed{\tau = 1 + h(\gamma - 1)}$$

Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

Connections between exponents: @pocsvox Power-Law

With more detailed description of network structure, $\tau = 1 + h(\gamma - 1)$ simplifies to: [3]

$$\tau = 2 - h$$

and

$$\gamma = 1/h$$

- \triangle Only one exponent is independent (take h).
- Simplifies system description.
- & Expect Scaling Relations where power laws are found.
- Need only characterize Universality class with independent exponents.

PoCS

@pocsvox

Power-Law

少 Q (~ 31 of 46

Mechanisms, Pt. 1

Random Walks

The First Return

Random River

Scaling Relations

Death and Sports

Fractional

References

Mechanisms, Pt. 1

Random Walks

The First Return

Random River

Scaling Relations

Death and Sports

Brownian Motion

Fractional

References

Problem

Death ...

Failure:

- A very simple model of failure/death
- x_t = entity's 'health' at time t
- Start with $x_0 > 0$.
- Entity fails when xhits 0.

"Explaining mortality rate plateaus" Weitz and Fraser, Proc. Natl. Acad. Sci., 98, 15383-15386, 2001. [18]

UM | 8

◆) < (> 32 of 46

PoCS @pocsvox Power-Law

Mechanisms, Pt. 1

Random Walks

The First Return Random River

Scaling Relations

Death and Sports

III |

•9 q (> 33 of 46

... and the NBA:

Basketball and other sports [2]:

 Three arcsine laws
(Lévy [12]) for continuous-time random walk last time T:

$$\frac{1}{\pi} \frac{1}{\sqrt{t(T-t)}}.$$

The arcsine distribution **applies** for: (1) fraction of time positive, (2) the last time the walk changes sign, and (3) the time the maximum is achieved.

- Well approximated by basketball score lines [8, 2].
- Australian Rules Football has some differences [11].

More than randomness

@pocsvox

Power-Law

Mechanisms, Pt. 1

Random Walks

The First Return

Random River

Scaling Relations

Death and Sports

Brownian Motion

Problem

Networks

Fractional

References

W |S

PoCS

@pocsvox

Power-Law

Random Walks

The First Return

Random River Networks

Scaling Relations

Death and Sports

Brownian Motion

Fractional

References

.... |S

PoCS

@pocsvox

Power-Law

◆) Q (→ 35 of 46

Mechanisms, Pt. 1

Random Walks

The First Return Problem

Random River

Scaling Relations

Death and Sports

Brownian Motion

Fractional

References

Problem

少 q (→ 34 of 46

- Can generalize to Fractional Random Walks [15, 16, 14]
- 🙈 Fractional Brownian Motion 🗹, Lévy flights 🗹
- See Montroll and Shlesinger for example: [14] "On 1/f noise and other distributions with long tails." Proc. Natl. Acad. Sci., 1982.
- & In 1-d, standard deviation σ scales as

 $\sigma \sim t^{\alpha}$

 $\alpha = 1/2$ — diffusive

 $\alpha > 1/2$ — superdiffusive

 $\alpha < 1/2$ — subdiffusive

Extensive memory of path now matters...

少 q (№ 37 of 46

PoCS @pocsvox Power-Law

Random Walks The First Return Problem

Networks Scaling Relations

Death and Sports Fractional

Brownian Motion References

- First big studies of movement and interactions of
- & Brockmann et al. [1] "Where's George" study.
- Beyond Lévy: Superdiffusive in space but with long waiting times.

Very surprising

Tracking movement via cell phones [9] and Twitter [7].

0

少 Q (~ 38 of 46

PoCS Power-Law

Random Walks Problem

Random River Networks

Scaling Relations Death and Sports

Fractional Brownian Motion

References

Mt.

Exogenous

少 Q (~ 36 of 46

UNN O

Random Walks

The First Return Problem

PoCS

@pocsvox

Power-Law

Random River Networks

Scaling Relations

Death and Sports

Fractiona Brownian Motion

References

References I

- [1] D. Brockmann, L. Hufnagel, and T. Geisel. The scaling laws of human travel. Nature, pages 462-465, 2006. pdf
- A. Clauset, M. Kogan, and S. Redner. Safe leads and lead changes in competitive team sports. Phys. Rev. E, 91:062815, 2015. pdf
- P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf ☑
- P. S. Dodds and D. H. Rothman. Scaling, universality, and geomorphology. Annu. Rev. Earth Planet. Sci., 28:571-610, 2000. pdf 🖸

References II

- [5] W. Feller. An Introduction to Probability Theory and Its Applications, volume I. John Wiley & Sons, New York, third edition, 1968.
- [6] T. M. Fink and Y. Mao. Designing tie knots by random walks. Nature, 398:31-32, 1999. pdf
- [7] M. R. Frank, L. Mitchell, P. S. Dodds, and C. M. Danforth. Happiness and the patterns of life: A study of geolocated Tweets. Nature Scientific Reports, 3:2625, 2013. pdf ☑

PoCS @pocsvox Power-Law Mechanisms, Pt. 1

Scaling Relations

Death and Sports

Brownian Motion

Fractional

[8] A. Gabel and S. Redner. Random Walks Random walk picture of basketball scoring. The First Return Journal of Quantitative Analysis in Sports, 8:1-20,

References III

2012.

M. C. González, C. A. Hidalgo, and A.-L. Barabási. Understanding individual human mobility patterns. Nature, 453:779-782, 2008. pdf

[10] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf ☑

.... |S

◆9 < ○ 40 of 46

PoCS @pocsvox Power-Law

Mechanisms, Pt. 1 Random Walks

The First Return Random River Scaling Relations Death and Sports Fractional

References

UM O

PoCS

@pocsvox Power-Law Mechanisms, Pt.

Random Walks

Random River

Scaling Relations

Death and Sports

References

Problem

◆) < ○ 41 of 46

[13] D. R. Montgomery and W. E. Dietrich. scale.

References IV

[11] D. P. Kiley, A. J. Reagan, L. Mitchell, C. M. Danforth, and P. S. Dodds. The game story space of professional sports: Australian Rules Football. Physical Review E, 93, 2016. pdf ✓

[12] P. Lévy and M. Loeve. Processus stochastiques et mouvement brownien. Gauthier-Villars Paris, 1965.

Channel initiation and the problem of landscape Science, 255:826-30, 1992. pdf

@pocsvox Power-Law Mechanisms, Pt. 1

Problem

Networks

Fractional

References

Random River

Scaling Relations

Death and Sports

Brownian Motion

[14] E. W. Montroll and M. F. Shlesinger. Random Walks The First Return

References V

On the wonderful world of random walks, volume XI of Studies in statistical mechanics, chapter 1, pages 1–121. New-Holland, New York, 1984.

[15] E. W. Montroll and M. W. Shlesinger. On 1/f noise and other distributions with long Proc. Natl. Acad. Sci., 79:3380-3383, 1982. pdf

[16] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails. J. Stat. Phys., 32:209-230, 1983.

◆9 q (> 43 of 46

UIN O

PoCS @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks

The First Return

Random River

Scaling Relations

Death and Sports

Problem

Networks

Fractional

References

References VI

[17] A. E. Scheidegger. The algebra of stream-order numbers. United States Geological Survey Professional Paper, 525-B:B187-B189, 1967. pdf

[18] J. S. Weitz and H. B. Fraser. Explaining mortality rate plateaus. Proc. Natl. Acad. Sci., 98:15383-15386, 2001. pdf 🖸

PoCS

@pocsvox

Power-Law

Mechanisms, Pt. 1

Random Walks

The First Return

Random River

Scaling Relations

Death and Sports

Problem

Networks

Fractional

References

少 Q (≥ 45 of 46

PoCS @pocsvox Power-Law

Random Walks The First Return Problem

Scaling Relations Death and Sports

Fractional

References

UM O

夕 Q ← 46 of 46

UN S •> < ← 44 of 46

◆) q (* 42 of 46