Properties of Complex Networks

Last updated: 2022/08/27, 23:54:10 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 300, 303, & 394, 2022-2023 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

000

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

(m) [8] ୬ ବ ଦ 1 of 39

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of

Complex

Networks

Degree distrib

Clustering

Branching ratio

Nutshell

References

Motifs

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of Complex

Networks

A problem

Clustering

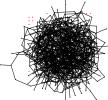
Motifs

Nutshell

References

Outline

Properties of Complex Networks


A problem	
Degree distributions	
Assortativity	
Clustering	
Motifs	
Concurrency	
Branching ratios	
Network distances	
Interconnectedness	

Nutshell

References

A notable feature of large-scale networks:

🚳 Graphical renderings are often just a big mess.

← Typical hairball number of nodes N = 500 \bigcirc number of edges m = 1000 \bigcirc average degree $\langle k \rangle$ = 4

And even when renderings somehow look good: "That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way" said Ponder [Stibbons] - Making Money, T. Pratchett.

We need to extract digestible, meaningful aspects.

Some key aspects of real complex networks:

degree distribution*

🚳 assortativity	🗞 concurrency
🚳 homophily	🗞 network distances
🚳 clustering	🚳 centrality
🚳 motifs	🗞 multilayerness
🚳 modularity	🗞 efficiency
&	🗞 robustness
🚳 hierarchical scaling	

- Plus coevolution of network structure and processes on networks.
- * Degree distribution is the elephant in the room that we are now all very aware of ...

Properties

1. degree distribution P_{i} .

- $\mathfrak{P}_{l_{k}}$ is the probability that a randomly selected node has degree k.
- k = node degree = number of connections.
- 🚓 ex 1: Erdős-Rényi random networks have Poisson degree distributions: Insert question from assignment 7 🗹

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

- $R_{\rm ex}$ ex 2: "Scale-free" networks: $P_{\rm ex} \propto k^{-\gamma} \Rightarrow$ 'hubs'.
- link cost controls skew.
- litate or impede contagion.

(I) (S • n q (→ 2 of 39

PoCS

@pocsvox

Complex

Networks

Properties of

Properties o

Networks

Branching ratio

Nutshell

000

わへで 5 of 39

References

A problem

Properties

Note:

- 🗞 Erdős-Rényi random networks are a *mathematical* construct.
- Scale-free' networks are growing networks that form according to a plausible mechanism.
- 🗞 Randomness is out there, just not to the degree of a completely random network.

Properties

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of

A problem Degree distribution

Complex

Networks

Assortativity

Clustering

Concurrency

Nutshell

References

@pocsvox

Complex

Networks

Properties of

Degree distribution

Branching ratio

Interconnectedne

Nutshell

References

(III)

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of

Degree distributions Assortativity Clustering

Branching ratios Network distances

Nutshell

Complex

Motifs

Networks

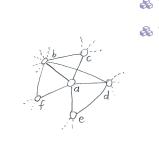
Complex

Networks

Properties of

Branching ratios Network distance

Motifs


2. Assortativity/3. Homophily:

- e.g., degree is standard property for sorting: measure degree-degree correlations.
- Assortative network: ^[5] similar degree nodes connecting to each other.
 - Often social: company directors, coauthors, actors.
- Bisassortative network: high degree nodes connecting to low degree nodes. Often techological or biological: Internet, WWW, protein interactions, neural networks, food webs.

(in 18 ୬ ବ. ୦୦ f 39 PoCS

Local socialness:

4. Clustering:

Example network:

h

Calculation of C_1 :

Cider

C.

A Your friends tend to know each other. 🚳 Two measures (explained on following slides):

1. Watts & Strogatz^[8]

$C_1 = \left\langle \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right.$

2. Newman^[6]

connected.

🗞 Fraction of pairs of

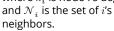
connected is

neighbors who are

 $3 \times \#$ triangles C_2 #triples

00 ୬ ବ 🕫 16 of 39

PoCS @pocsvox $\bigotimes C_1$ is the average fraction of Properties of Complex pairs of neighbors who are Networks


> Properties of Networks Degree distri Clustering

References

(in |

୬ ଏ. ୧୦ 17 of 39

 $\frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$ where k_i is node *i*'s degree, Nutshell

Averaging over all nodes, we have:

 $C_1 = \frac{1}{n} \sum_{i=1}^n \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} =$ $\frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$

PoCS @pocsvo> Properties of Complex Networks

Properties of

Networks

Assortativity

Motifs

Degree distribut

Branching ratios Network distance

Nutshell

References

A problem

00 ୬ ର. ୦୦ 14 of 39

PoCS @pocsvox Properties of Complex Networks

Properties of Complex Networks Degree distri Assortativity Clustering Motifs Concurrency Branching rati

Interconnectedn Nutshell References

Triples and triangles

Example network:

Triangles:

Triples:

 \bigotimes Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 . \mathbf{R} Nodes i_1, i_2 , and i_3 form a triangle if each pair of nodes is connected \clubsuit The definition $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triangles}}$ measures the fraction of closed triples

The '3' appears because for each triangle, we have 3 closed triples.

Social Network Analysis (SNA): fraction of transitive triples.

Clustering:

Sneaky counting for undirected, unweighted networks:

- \bigotimes If the path *i*-*j*- ℓ exists then $a_{ij}a_{j\ell} = 1$.
- \bigotimes Otherwise, $a_{ij}a_{j\ell} = 0$.

Los 10-200

- \mathfrak{R} We want $i \neq \ell$ for good triples.
- \Re In general, a path of *n* edges between nodes i_1 and i_n travelling through nodes i_2 , i_3 , ... i_{n-1} exists $\iff a_{i_1i_2}a_{i_2i_3}a_{i_3i_4}\cdots a_{i_{n-2}i_{n-1}}a_{i_{n-1}i_n} = 1.$

8

 $\# \text{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \text{Tr}A^2 \right)$

8

#triangles $=\frac{1}{6}$ Tr A^3

Properties

- \mathcal{R} For sparse networks, C_1 tends to discount highly connected nodes.
- \mathcal{C}_2 is a useful and often preferred variant
- \bigotimes In general, $C_1 \neq C_2$.
- $\bigotimes C_1$ is a global average of a local ratio.
- $\bigotimes C_2$ is a ratio of two global quantities.

Properties

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of Complex

Networks

Clustering

Nutshell

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of

Complex

Networks

Degree distrib

Clustering Motifs Concurrency

Nutshell

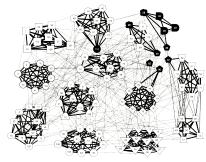
References

Branching ratio

References

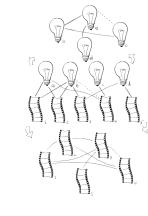
5. motifs:

- small, recurring functional subnetworks
- 🚳 e.g., Feed Forward Loop:




```
Shen-Orr, Uri Alon, et al. [7]
```

00 • 𝔍 𝔄 18 of 39


Properties

6. modularity and structure/community detection:

Clauset et al., 2006 [2]: NCAA football

Bipartite/multipartite affiliation structures:

Properties

7. concurrency:

- transmission of a contagious element only occurs during contact
- line a simple model 🗞
- & dynamic property—static networks are not enough
- line with the second se
- 🙈 beware cumulated network data
- 🗞 Kretzschmar and Morris, 1996^[4]
- "Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

(III)

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of Complex

Degree distribution

Networks

Assortativity

Clustering

Motifs Concurrency

Nutshell

References

Branching ratios Network distance

A problem

୬ ବ. ତ 22 of 39 PoCS

@pocsvox

Complex

Networks

Properties of

Properties of

Complex

A problem

Networks

Degree distrib

Motifs Concurrency

Nutshell

References

Branching ratio

Properties

Properties

j.)

9. network distances:

(a) shortest path length d_{ij} :

8. Horton-Strahler ratios:

Metrics for branching networks: Method for ordering streams hierarchically

- Number: $R_n = N_{\omega}/N_{\omega+1}$ Segment length: $R_l = \langle l_{\omega+1} \rangle / \langle l_{\omega} \rangle$ Area/Volume: $R_a = \langle a_{\omega+1} \rangle / \langle a_{\omega} \rangle$

(in 18

PoCS @pocsvox

Properties of Complex Networks

Properties of Networks Degree distri Assortativity Clustering Motifs Concurrency Branching rati Network distances Nutshell

(b) average path length $\langle d_{ij} \rangle$:

Average shortest path length in whole network.

& Fewest number of steps between nodes *i* and *j*.

& (Also called the chemical distance between *i* and

- 🚳 Good algorithms exist for calculation.
- Weighted links can be accommodated.

Properties of Networks A problem Clustering Motifs Concurrency Branching ratios Network distance Interconnectedne

PoCS

@pocsvo>

Complex

Networks

Properties of

Nutshell References

(III) ୬ ବ 🗠 26 of 39

PoCS @pocsvox Properties of Complex Networks

Properties of Complex Networks Degree distri Motifs

Branching ratios

Nutshell

References

୬ ବ ଦ 28 of 39

References

() () • 𝔍 𝔄 30 of 39

- 🗊 Films-actorsdirectors. Classes-teachers-
- students. 🗊 Upstairsdownstairs.

🚳 Unipartite networks may be induced or co-exist.

• n q (→ 23 of 39 PoCS @pocsvox

(III) • ୨ < C+ 24 of 39

(III)

Properties of Complex Networks

Nutshell References

Networks Properties of Complex Networks

A problem Degree distribu

Clustering Motifs

Branching ratios Network distances

References

୍ଲା 👸

•ე < (় 20 of 39

Properties

- 9. network distances:
- A network diameter d_{max} : Maximum shortest path length between any two nodes.
- & closeness $d_{cl} = [\sum_{ij} d_{ij}^{-1} / \binom{n}{2}]^{-1}$: Average 'distance' between any two nodes.
- Closeness handles disconnected networks $(d_{ij} = \infty)$
- $d_{cl} = \infty$ only when all nodes are isolated.
- loseness perhaps compresses too much into one number

(I) (S

PoCS

@pocsvox

Complex

Networks

Properties o

Complex

Networks

Degree distrib

Motifs

Branching ra

Network distance

References

(in 18

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of Complex Networks

A problem Degree distribu

Assortativity Clustering

Branching ratios Network distance

Interconnectednes Nutshell

References

(in |S

Motifs

わく(~ 32 of 39

Properties of

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of Complex

Networks

A problem

Assortativit

Clustering

Concurrency

Network distances

Nutshell

References

Motifs

Propert	ties

10. centrality:

- Many such measures of a node's 'importance.'
- \bigotimes ex 1: Degree centrality: k_i .
- ex 2: Node i's betweenness = fraction of shortest paths that pass through *i*.
- Sector Secto = fraction of shortest paths that travel along ℓ .
- 🗞 ex 4: Recursive centrality: Hubs and Authorities (Ion Kleinberg^[3])

Properties

Interconnected networks and robustness (two for one deal):

"Catastrophic cascade of failures in interdependent networks"^[1]. Buldyrev et al., Nature 2010.

	disconnected from the Internet communication network
ternet network (shifted above the map) that were	are removed (red nodes above map). As a result the pow
blackout that occurred in Italy in September	depending on them are removed from the power network
lrawn using the real geographical locations and	map). Again, the nodes that will be disconnected from the
nnected to the geographically nearest power	next step are marked in green. ¢, Additional nodes that v
on is removed (red node on map) from the power	from the giant component of the power network are reme
Internet nodes depending on it are removed from	map) as well as the nodes in the Internet network that dep
nodes above the map). The nodes that will be	nodes above map).
st cluster (a cluster that spans the entire network)	

Nutshell:

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- line that the second se systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley,

Nature, 464:1025–1028, 2010. pdf 🗹

[2] A. Clauset, C. Moore, and M. E. J. Newman.

Authoritative sources in a hyperlinked

Catastrophic cascade of failures in interdependent

Structural inference of hierarchies in networks,

- 🚳 Three main (blurred) categories:
 - 1. Physical (e.g., river networks),
 - 2. Interactional (e.g., social networks),
 - 3. Abstract (e.g., thesauri).

References II

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of Complex

Degree distribution

Networks

A problem

Assortativity

Clustering

Concurrency

Nutshell

References

(III)

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of

Complex

Networks

Degree distr

Clustering

Branching ratio

Nutshell

References

Motifs

୬ ବ ୯ 35 of 39

Branching ratios Network distance

Interconnectedne

Motifs

- Properties of Complex [4] M. Kretzschmar and M. Morris. Networks Measures of concurrency in networks and the Properties of spread of infectious disease. Complex Networks Math. Biosci., 133:165–95, 1996. pdf 🗷 A problem Assortativity [5] M. Newman. Clustering Motifs Assortative mixing in networks. Branching ratios Network distance Phys. Rev. Lett., 89:208701, 2002. pdf Interconnected [6] M. E. J. Newman. Nutshell The structure and function of complex networks. References SIAM Rev., 45(2):167-256, 2003. pdf [7] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31:64–68, 2002. pdf 00 • A C+ 38 of 39 PoCS References III @pocsvox Properties of Complex Networks Properties of Complex Networks Degree distri [8] D. J. Watts and S. J. Strogatz. Motifs
- Collective dynamics of 'small-world' networks.
- Nature, 393:440-442, 1998. pdf

References

Branching ratio

Interconnected

Nutshell

PoCS

@pocsvo>

00 • n q (→ 37 of 39

PoCS @pocsvox Properties of Complex Networks

Networks

Degree distribution

Assortativity Clustering

Motifs

Properties of Complex Branching ratios Network distances

Nutshell References

୍ଲା 👸 • n < c + 37 of 39 00 ୬ ଏ ୯୦ 39 of 39

Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf •ე < (~ 34 of 39

scale-free-networks

and S. Havlin.

networks.

2006. pdf 🕑

[3] J. M. Kleinberg.

environment.

References I