Mixed, correlated random networks

Last updated: 2022/08/29, 00:04:32 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 300, 303, & 394, 2022-2023 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Outline

Directed random networks

Mixed random networks

Definition Correlations

Mixed Random Network Contagion

Spreading condition Full generalization Triggering probabilities

Nutshell

References

Random directed networks:

- So far, we've largely studied networks with undirected, unweighted edges.
- Now consider directed, unweighted edges.

- Nodes have k_i and k_0 incoming and outgoing edges, otherwise random.
- Network defined by joint in- and out-degree distribution: P_{k_i,k_o}
- \Re Normalization: $\sum_{k=0}^{\infty} \sum_{k=0}^{\infty} P_{k_i,k_0} = 1$
- Marginal in-degree and out-degree distributions:

$$P_{k_{\rm i}} = \sum_{k_{\rm o}=0}^{\infty} P_{k_{\rm i},k_{\rm o}} \text{ and } P_{k_{\rm o}} = \sum_{k_{\rm i}=0}^{\infty} P_{k_{\rm i},k_{\rm o}}$$

Required balance:

$$\langle k_{\rm i}\rangle = \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} k_{\rm i} P_{k_{\rm i},k_{\rm o}} = \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} k_{\rm o} P_{k_{\rm i},k_{\rm o}} = \langle k_{\rm o}\rangle$$

@pocsvox Mixed, correlated

Directed random

Mixed random

Mixed Random Contagion

Nutshell

.... |S

PoCS

@pocsvox

Mixed, correlated

Mixed random

Mixed Random

Contagion

Nutshell

.... |S

PoCS

@pocsvox

networks

◆) < (→ 2 of 33

Mixed, correlated

Directed random

Mixed random

Mixed Random

Triggering probabiliti

Contagion

Nutshell

Full generalization

Important observation:

From Boguñá and Serano. [1]

- Directed and undirected random networks are separate families ...
- ...and analyses are also disjoint.

Directed network structure:

Need to examine a larger family of random networks with mixed directed and undirected edges.

2. k_i incoming directed edges,

GWCC = Giant Weakly

In-Component;

Out-Component;

DC = Disconnected

GSCC = Giant Strongly

Components (finite).

Connected Component;

备 GIN = Giant

GOUT = Giant

Connected Component

(directions removed);

- 3. k_0 outgoing directed edges.
- Define a node by generalized degree:

$$\vec{k} = [\ k_{\mathsf{u}} \ k_{\mathsf{i}} \ k_{\mathsf{o}} \]^{\mathsf{T}}.$$

A Joint degree distribution:

 $P_{\vec{k}}$ where $\vec{k} = [k_{11} \ k_{1} \ k_{0}]^{\mathsf{T}}$.

As for directed networks, require in- and out-degree averages to match up:

$$\langle k_{\rm i} \rangle = \sum_{k_{\rm u}=0}^{\infty} \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} k_{\rm i} P_{\vec{k}} = \sum_{k_{\rm u}=0}^{\infty} \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} k_{\rm o} P_{\vec{k}} = \langle k_{\rm o} \rangle$$

- Otherwise, no other restrictions and connections are random.
- Directed and undirected random networks are disjoint subfamilies:

Undirected:
$$P_{\vec{k}} = P_{k_{\parallel}} \delta_{k_{\parallel},0} \delta_{k_{\parallel},0}$$
,

Directed:
$$P_{\vec{k}} = \delta_{k_{\mathrm{u}},0} P_{k_{\mathrm{i}},k_{\mathrm{o}}}.$$

Correlations: @nocsvox Mixed, correlated

random networks

Directed random

Mixed random

Mixed Random

Contagion

Nutshell

References

UIN O

@pocsvox

少 q (→ 6 of 33

Mixed, correlated

Directed random

Mixed random

Mixed Random

Triggering probabilitie

Contagion

Nutshell

References

.... |S

PoCS

@pocsvox Mixed, correlated

少 q (→ 8 of 33

random networks

Directed random

Mixed random

Mixed Random

Spreading condition Full generalization Triggering probabilitie

Contagion

Nutshell

References

networks

Now add correlations (two point or Markovian) □:

1. $P^{(u)}(\vec{k} \mid \vec{k}')$ = probability that an undirected edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node.

2. $P^{(i)}(\vec{k} | \vec{k}')$ = probability that an edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node is an in-directed edge relative to the destination node.

3. $P^{(0)}(\vec{k} | \vec{k}')$ = probability that an edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node is an out-directed edge relative to the destination node.

Now require more refined (detailed) balance.

Conditional probabilities cannot be arbitrary.

- 1. $P^{(u)}(\vec{k} | \vec{k}')$ must be related to $P^{(u)}(\vec{k}' | \vec{k})$.
- 2. $P^{(0)}(\vec{k} | \vec{k}')$ and $P^{(i)}(\vec{k} | \vec{k}')$ must be connected.

PoCS

少 q (№ 11 of 33

Correlations—Undirected edge balance:

Randomly choose an edge, and randomly choose

 \clubsuit Say we find a degree \vec{k} node at this end, and a degree \vec{k}' node at the other end.

 \clubsuit Define probability this happens as $P^{(u)}(\vec{k}, \vec{k}')$.

Correlations—Directed edge balance:

 \clubsuit Observe we must have $P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k}', \vec{k})$.

The quantities

 $\frac{k_{\mathrm{o}}P(\vec{k})}{\langle k_{\mathrm{o}} \rangle}$ and $\frac{k_{\mathrm{i}}P(\vec{k})}{\langle k_{\mathrm{i}} \rangle}$

give the probabilities that in

randomly selected edge, we

begin at a degree \vec{k} node and

then find ourselves travelling:

We therefore have

1. along an outgoing edge, or

starting at a random end of a

Conditional probability

$$P^{(\mathrm{u})}(\vec{k},\vec{k}') \ = \ P^{(\mathrm{u})}(\vec{k}\,|\,\vec{k}') \tfrac{k'_\mathrm{u}P(\vec{k}')}{\langle k'_\mathrm{u}\rangle}$$

$$P^{(\mathrm{u})}(\vec{k}',\vec{k}) \ = \ P^{(\mathrm{u})}(\vec{k}'\,|\,\vec{k}) \frac{k_{\mathrm{u}}P(\vec{k})}{\langle k_{\mathrm{u}} \rangle} \label{eq:purple}$$

UM O

PoCS

Mixed, correlated

Directed random

Mixed Randon Contagion

Nutshell

 $P^{(\mathrm{dir})}(\vec{k}, \vec{k}') = P^{(\mathrm{i})}(\vec{k} \,|\, \vec{k}') \frac{k_{\mathrm{o}}' P(\vec{k}')}{\langle k'_{\mathrm{o}} \rangle} = P^{(\mathrm{o})}(\vec{k}' \,|\, \vec{k}) \frac{k_{\mathrm{i}} P(\vec{k})}{\langle k_{\mathrm{o}} \rangle}.$

2. against the direction of an incoming edge.

 $\ref{Note that } P^{(\operatorname{dir})}(\vec{k}, \vec{k}') \text{ and } P^{(\operatorname{dir})}(\vec{k}', \vec{k}) \text{ are in general}$

Directed random networks Mixed random

Correlations

PoCS

@pocsvox

Mixed, correlated

Mixed Random Contagion

Full generalization Triggering probabi Nutshell

References

UM O

@pocsvox Mixed, correlated

Directed random

Mixed random

networks Correlations

Mixed Random Contagion Spreading condition Full generalization

Triggering probabili Nutshell

夕 Q № 12 of 33

Mixed random

夕 Q № 13 of 33

not related if $\vec{k} \neq \vec{k}'$. 少 Q (~ 9 of 33 •9 q (≈ 5 of 33

Global spreading condition: [2]

When are cascades possible?:

- Consider uncorrelated mixed networks first.
- Recall our first result for undirected random networks, that edge gain ratio must exceed 1:

$$\mathbf{R} = \sum_{k_{\mathrm{u}}=0}^{\infty} \frac{k_{\mathrm{u}} P_{k_{\mathrm{u}}}}{\langle k_{\mathrm{u}} \rangle} \bullet (k_{\mathrm{u}} - 1) \bullet B_{k_{\mathrm{u}},\, 1} > 1.$$

Similar form for purely directed networks:

$$\mathbf{R} = \sum_{k_{\mathrm{i}}=0}^{\infty} \sum_{k_{\mathrm{o}}=0}^{\infty} \frac{k_{\mathrm{i}} P_{k_{\mathrm{i}},k_{\mathrm{o}}}}{\langle k_{\mathrm{i}} \rangle} \bullet k_{\mathrm{o}} \bullet B_{k_{\mathrm{i}},1} > 1.$$

Both are composed of (1) probability of connection to a node of a given type; (2) number of newly infected edges if successful; and (3) probability of infection.

Global spreading condition:

Local growth equation:

- Define number of infected edges leading to nodes a distance d away from the original seed as f(d).
- Infected edge growth equation:

$$f(d+1) = \mathbf{R}f(d).$$

- Applies for discrete time and continuous time contagion processes.
- & Now see $B_{k...1}$ is the probability that an infected edge eventually infects a node.
- Also allows for recovery of nodes (SIR).

Global spreading condition:

Mixed, uncorrelated random netwoks:

- Now have two types of edges spreading infection: directed and undirected.
- Gain ratio now more complicated:
 - 1. Infected directed edges can lead to infected directed or undirected edges.
 - 2. Infected undirected edges can lead to infected directed or undirected edges.
- \clubsuit Define $f^{(u)}(d)$ and $f^{(o)}(d)$ as the expected number of infected undirected and directed edges leading to nodes a distance d from seed.

@pocsvox

Gain ratio now has a matrix form:

$$\left[\begin{array}{c} f^{(\mathsf{u})}(d+1) \\ f^{(\mathsf{o})}(d+1) \end{array} \right] = \mathbf{R} \left[\begin{array}{c} f^{(\mathsf{u})}(d) \\ f^{(\mathsf{o})}(d) \end{array} \right]$$

Two separate gain equations:

$$f^{(\mathbf{0})}(d+1) = \sum_{\vec{k}} \left[\frac{k_{\mathrm{u}} P_{\vec{k}}}{\langle k_{\mathrm{u}} \rangle} \bullet k_{\mathrm{o}} B_{k_{\mathrm{u}} + k_{\mathrm{i}}, 1} f^{(\mathbf{u})}(d) + \frac{k_{\mathrm{i}} P_{\vec{k}}}{\langle k_{\mathrm{i}} \rangle} \bullet k_{\mathrm{o}} \bullet B_{k_{\mathrm{u}} + k_{\mathrm{i}}, 1} f^{(\mathbf{o})}(d) \right]$$

$$\mathbf{R} = \sum_{\vec{k}} \left[\begin{array}{cc} \frac{k_{\mathrm{u}} P_{\vec{k}}}{\langle k_{\mathrm{u}} \rangle} \bullet (k_{\mathrm{u}} - 1) & \frac{k_{\mathrm{i}} P_{\vec{k}}}{\langle k_{\mathrm{d}} \rangle} \bullet k_{\mathrm{u}} \\ \frac{k_{\mathrm{u}} P_{\vec{k}}}{\langle k_{\mathrm{u}} \rangle} \bullet k_{\mathrm{o}} & \frac{k_{\mathrm{i}} P_{\vec{k}}}{\langle k_{\mathrm{i}} \rangle} \bullet k_{\mathrm{o}} \end{array} \right] \bullet B_{k_{\mathrm{u}} + k_{\mathrm{i}}},$$

& Spreading condition: max eigenvalue of $\mathbf{R} > 1$.

Global spreading condition:

- Useful change of notation for making results more general: write $P^{(\mathsf{u})}(\vec{k}\,|\,*)=rac{k_{\mathsf{u}}P_{\vec{k}}}{\langle k_{\mathsf{u}}
 angle}$ and $P^{(i)}(\vec{k} \mid *) = \frac{k_i P_{\vec{k}}}{\langle k_i \rangle}$ where * indicates the starting node's degree is irrelevant (no correlations).
- \clubsuit Also write $B_{k..k_1,*}$ to indicate a more general infection probability, but one that does not depend on the edge's origin.
- Now have, for the example of mixed, uncorrelated random networks:

$$\mathbf{R} = \sum_{\vec{k}} \left[\begin{array}{cc} P^{(\mathbf{u})}(\vec{k} \mid *) \bullet (k_{\mathbf{u}} - 1) & P^{(\mathbf{i})}(\vec{k} \mid *) \bullet k_{\mathbf{u}} \\ P^{(\mathbf{u})}(\vec{k} \mid *) \bullet k_{\mathbf{o}} & P^{(\mathbf{i})}(\vec{k} \mid *) \bullet k_{\mathbf{o}} \end{array} \right] \bullet B_{k_{\mathbf{u}}k_{\mathbf{i}},*}$$

Summary of contagion conditions for uncorrelated networks:

 \mathbb{A} I. Undirected, Uncorrelated— $f(d+1) = \mathbf{f}(d)$:

$$\mathbf{R} = \sum_{k_{\mathrm{II}}} P^{(\mathrm{U})}(k_{\mathrm{U}} \, | \, \ast) \bullet (k_{\mathrm{U}} - 1) \bullet B_{k_{\mathrm{U}}, \ast}$$

 \mathbb{R} II. Directed, Uncorrelated— $f(d+1) = \mathbf{f}(d)$:

$$\mathbf{R} = \sum_{k_{\mathrm{i}}, k_{\mathrm{o}}} P^{(\mathrm{i})}(k_{\mathrm{i}}, k_{\mathrm{o}} \, | \, *) \bullet k_{\mathrm{o}} \bullet B_{k_{\mathrm{i}}, *}$$

🚵 III. Mixed Directed and Undirected, Uncorrelated—

$$\left[\begin{array}{c} f^{(\mathsf{u})}(d+1) \\ f^{(\mathsf{o})}(d+1) \end{array} \right] = \mathbf{R} \left[\begin{array}{c} f^{(\mathsf{u})}(d) \\ f^{(\mathsf{o})}(d) \end{array} \right]$$

$$\mathbf{R} = \sum_{\vec{k}} \left[\begin{array}{cc} P^{(\mathbf{u})}(\vec{k} \mid *) \bullet (k_{\mathbf{u}} - 1) & P^{(\mathbf{i})}(\vec{k} \mid *) \bullet k_{\mathbf{u}} \\ P^{(\mathbf{u})}(\vec{k} \mid *) \bullet k_{\mathbf{0}} & P^{(\mathbf{i})}(\vec{k} \mid *) \bullet k_{\mathbf{0}} \end{array} \right] \bullet B_{k_{\mathbf{u}}k_{\mathbf{i}}, *} \text{ with } \mathbf{g}$$

edges emanating from degree \vec{k}' nodes to edges emanating from degree \vec{k} nodes. Replace $P^{(i)}(\vec{k} \mid *)$ with $P^{(i)}(\vec{k} \mid \vec{k}')$ and so on.

Now have to think of transfer of infection from

Edge types are now more diverse beyond directed and undirected as originating node type matters.

\$ Sums are now over \vec{k}' .

Correlated version:

少 q (21 of 33

Directed random

Mixed Random Contagion Spreading condition Full generalization Triggering probabiliti

VI. Mixed Directed and Undirected, Correlated—

Correlated— $f_{k_{ij}}(d+1) = \sum_{k'} R_{k_{ij}k'_{ij}} f_{k'_{ij}}(d)$

$$\left[\begin{array}{c} f_{\vec{k}}^{(\mathsf{u})}(d+1) \\ f_{\vec{k}}^{(\mathsf{o})}(d+1) \end{array} \right] = \sum_{k'} \mathbf{R}_{\vec{k}\vec{k'}} \left[\begin{array}{c} f_{\vec{k'}}^{(\mathsf{u})}(d) \\ f_{\vec{k'}}^{(\mathsf{o})}(d) \end{array} \right]$$

 $R_{k_{\cdot \cdot},k'_{\cdot \cdot}} = P^{(\mathsf{u})}(k_{\mathsf{u}} \,|\, k'_{\mathsf{u}}) \bullet (k_{\mathsf{u}} - 1) \bullet B_{k_{\cdot \cdot},k'_{\cdot}}$

 $R_{k:k_{-}k',k'_{0}} = P^{(i)}(k_{i},k_{0}|k'_{i},k'_{0}) \bullet k_{0} \bullet B_{k:k_{-}k',k'_{0}}$

Correlated— $f_{k_ik_o}(d+1)=\sum_{k',\,k'_o}R_{k_ik_ok'_ik'_o}f_{k'_ik'_o}(d)$

$$\mathbf{R}_{\vec{k}\vec{k}'} = \left[\begin{array}{cc} P^{(\mathrm{u})}(\vec{k}\,|\,\vec{k}') \bullet (k_{\mathrm{u}}-1) & P^{(\mathrm{i})}(\vec{k}\,|\,\vec{k}') \bullet k_{\mathrm{u}} \\ P^{(\mathrm{u})}(\vec{k}\,|\,\vec{k}') \bullet k_{\mathrm{o}} & P^{(\mathrm{i})}(\vec{k}\,|\,\vec{k}') \bullet k_{\mathrm{o}} \end{array} \right] \bullet B_{\vec{k}\vec{k}'}$$

 $\vec{\alpha} = (\nu, \lambda)$ $R_{\vec{\alpha} \vec{\alpha}'} \text{ is the gain ratio}$ matrix and has the form:

 $f_{\vec{\alpha}}(d+1) = \sum_{\vec{\alpha}'} R_{\vec{\alpha}\vec{\alpha}'} f_{\vec{\alpha}'}(d)$

PoCS

Mixed random

 $R_{\vec{\alpha}\vec{\alpha}'} = P_{\vec{\alpha}\vec{\alpha}'} \bullet k_{\vec{\alpha}\vec{\alpha}'} \bullet B_{\vec{\alpha}\vec{\alpha}'}.$ Contagion

Full generalization Nutshell

 $\Re B_{\vec{\alpha}\vec{\alpha}'}$ = probability that a type ν node is eventually

infected by a single infected type λ' link arriving

emanating from a type ν' node leads to a type ν

of type λ emanating from nodes of type ν .

 $\max |\mu| : \mu \in \sigma(\mathbf{R}) > 1$

UNN O

•9 q (> 17 of 33

Mixed, correlated

Directed random

Mixed random

Mixed Random

Spreading condition Full generalization Triggering probabilit

Contagion

Nutshell

W | |

@pocsvox

•೧ q (~ 15 of 33

Mixed, correlated

Mixed random

Mixed Random

Spreading condition Full generalization

Contagion

Nutshell

.... |S

PoCS

•9 q (→ 16 of 33

Mixed, correlated

Directed random

Mixed random

Mixed Random

Spreading condition

Triggering probabilities

Contagion

Nutshell

References

References

$$f^{(\mathbf{u})}(d+1) = \sum_{\vec{k}} \left[\frac{k_{\mathbf{u}} P_{\vec{k}}}{\langle k_{\mathbf{u}} \rangle} \bullet (k_{\mathbf{u}} - 1) \bullet B_{k_{\mathbf{u}} + k_{\mathbf{i}}, 1} f^{(\mathbf{u})}(d) + \frac{k_{\mathbf{i}} P_{\vec{k}}}{\langle k_{\mathbf{i}} \rangle} \bullet k_{\mathbf{u}} \bullet B_{k_{\mathbf{u}} + k_{\mathbf{i}}, 1} f^{(\mathbf{o})}(d) \right] + \frac{k_{\mathbf{i}} P_{\vec{k}}}{\langle k_{\mathbf{i}} \rangle} \bullet k_{\mathbf{u}} \bullet B_{k_{\mathbf{u}} + k_{\mathbf{i}}, 1} f^{(\mathbf{o})}(d)$$

Gain ratio matrix:

$$\mathbf{R} = \sum_{\vec{k}} \left[\begin{array}{ccc} \frac{k_{\mathrm{u}}P_{\mathrm{k}}}{\langle k_{\mathrm{u}}\rangle} \bullet (k_{\mathrm{u}}-1) & \frac{k_{\mathrm{i}}P_{\mathrm{k}}}{\langle k_{\mathrm{i}}\rangle} \bullet k_{\mathrm{u}} \\ \frac{k_{\mathrm{u}}P_{\mathrm{k}}}{\langle k_{\mathrm{u}}\rangle} \bullet k_{\mathrm{o}} & \frac{k_{\mathrm{i}}P_{\mathrm{k}}}{\langle k_{\mathrm{i}}\rangle} \bullet k_{\mathrm{o}} \end{array} \right] \bullet B_{k_{\mathrm{u}}+k_{\mathrm{i}},1}$$

Summary of contagion conditions for correlated @pocsvox Mixed, correlated networks: IV. Undirected,

Directed random Mixed random

Correlations

Mixed Random Contagion Spreading condition Triggering probabiliti

Nutshell References

UM |OS

•9 q (→ 19 of 33

Mixed, correlated

Directed randon

Mixed random networks

> Mixed Random Contagion Spreading condition Full generalization Triggering probabilities Nutshell

Full generalization:

 $\vec{\alpha}' = (\nu', \lambda')$

•9 a (№ 20 of 33

 $\Re P_{\vec{\alpha}\vec{\alpha}'}$ = conditional probability that a type λ' edge $\& k_{\vec{\alpha}\vec{\alpha}'}$ = potential number of newly infected edges

Generalized contagion condition:

from a neighboring node of type ν' .

Mixed Random

@pocsvox

Mixed, correlated

Directed random

Mixed random

Contagion Spreading condition Full generalization Triggering probabilitie

Nutshell References

UM O

@pocsvox

Mixed, correlated

Mixed random

Nutshell

UIM O

•9 a (№ 22 of 33

Mixed, correlated

Directed random

Mixed Random

24 of 33

As we saw earlier, the triggering probability for simple contagion on random networks can be determined with a straightforward physical argument.

Two good things:

$$Q_{\mathrm{trig}} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet B_{k1} \bullet \left[1 - \left(1 - Q_{\mathrm{trig}} \right)^{k-1} \right],$$

$$P_{\mathrm{trig}} = S_{\mathrm{trig}} = \sum_k P_k \bullet \left[1 - (1 - Q_{\mathrm{trig}})^k \right] \,. \label{eq:ptrig}$$

- Equivalent to result found via the eldritch route of generating functions.
- Generating functions arguably make some kinds of calculations easier (but perhaps we don't care about component sizes that much).
- A On the other hand, a plainspoken physical argument helps us generalize to correlated networks more easily.

@pocsvox Mixed, correlated

networks:

Mixed Random Contagion Triggering probabilitie

Nutshell

W | |

• n q ∩ 26 of 33

 $S_{\mathrm{trig}} = \sum_{k^\prime} P(k^\prime_{\mathrm{U}}) \left[1 - (1 - Q_{\mathrm{trig}}(k^\prime_{\mathrm{U}}))^{k^\prime_{\mathrm{U}}} \right]$ $\red{solution}$ V. Directed, Correlated— $Q_{\rm trig}(k_{\rm i},k_{\rm o})=$ $\sum_{k',k'} P^{(\mathsf{U})}(k'_{\mathsf{i}},k'_{\mathsf{o}}|k_{\mathsf{i}},k_{\mathsf{o}}) B_{k'_{\mathsf{i}}1} \left[1 - (1 - Q_{\mathsf{trig}}(k'_{\mathsf{i}},k'_{\mathsf{o}}))^{k'_{\mathsf{o}}} \right]$

 $\sum_{k'} P^{(\mathsf{u})}(k'_{\mathsf{u}} | k_{\mathsf{u}}) B_{k'_{\mathsf{u}} 1} \left[1 - (1 - Q_{\mathsf{trig}}(k'_{\mathsf{u}}))^{k'_{\mathsf{u}} - 1} \right]$

 \mathcal{L} IV. Undirected, Correlated— $Q_{trig}(k_{II}) =$

Summary of triggering probabilities for correlated

$$S_{\mathrm{trig}} = \sum_{k_{\mathrm{i}}^{\prime}, k_{\mathrm{o}}^{\prime}} P(k_{\mathrm{i}}^{\prime}, k_{\mathrm{o}}^{\prime}) \left[1 - (1 - Q_{\mathrm{trig}}(k_{\mathrm{i}}^{\prime}, k_{\mathrm{o}}^{\prime}))^{k_{\mathrm{o}}^{\prime}} \right]$$

@nocsvox Mixed, correlated

Directed random networks

Mixed Random Contagion Triggering probabilities Nutshell

References

UM |OS

◆) < (~ 29 of 33

References I

[1] M. Boguñá and M. Ángeles Serrano. Generalized percolation in random directed networks. Phys. Rev. E, 72:016106, 2005. pdf

[2] P. S. Dodds, K. D. Harris, and J. L. Payne. Direct, phyiscally motivated derivation of the contagion condition for spreading processes on generalized random networks. Phys. Rev. E, 83:056122, 2011. pdf

[3] K. D. Harris, J. L. Payne, and P. S. Dodds. Direct, physically-motivated derivation of triggering probabilities for contagion processes acting on correlated random networks. http://arxiv.org/abs/1108.5398, 2014.

@pocsvox

Mixed, correlated

Directed random

Mixed random

Mixed Random

Triggering probabil

Contagion Spreading condition Full generalization

Nutshell

References

•2 9 0 € 32 of 33

@pocsvox Mixed, correlated

References II

[4] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distributions and their applications.

Phys. Rev. E, 64:026118, 2001. pdf

Directed random

Mixed random

Mixed Random Contagion

Full generalization Triggering probabiliti

Nutshell

References

UM O

◆) q (> 33 of 33

Summary of triggering probabilities for uncorrelated networks: [3] □

I. Undirected, Uncorrelated—

$$Q_{\mathrm{trig}} = \sum_{k_{\mathrm{u}}'} P^{(\mathrm{u})}(k_{\mathrm{u}}' \, | \, \cdot) B_{k_{\mathrm{u}}'1} \left[1 - (1 - Q_{\mathrm{trig}})^{k_{\mathrm{u}}'-1} \right] \label{eq:Qtrig}$$

$$P_{\rm trig} = S_{\rm trig} = \sum_{k_{\rm u}'} P(k_{\rm u}') \left[1 - (1 - Q_{\rm trig})^{k_{\rm u}'}\right] \label{eq:ptrig}$$

II. Directed, Uncorrelated—

$$Q_{\mathrm{trig}} = \sum_{k_{\mathrm{i}}^{\prime}, k_{\mathrm{o}}^{\prime}} P^{(\mathrm{U})}(k_{\mathrm{i}}^{\prime}, k_{\mathrm{o}}^{\prime}|\cdot) B_{k_{\mathrm{i}}^{\prime}1} \left[1 - (1 - Q_{\mathrm{trig}})^{k_{\mathrm{o}}^{\prime}} \right]$$

$$S_{\rm trig} = \sum_{k_{\rm i}^\prime, k_{\rm o}^\prime} P(k_{\rm i}^\prime, k_{\rm o}^\prime) \left[1 - (1 - Q_{\rm trig})^{k_{\rm o}^\prime} \right] \label{eq:Strig}$$

Summary of triggering probabilities for correlated networks:

VI. Mixed Directed and Undirected, Correlated—

$$Q_{\rm trig}^{\rm (U)}(\vec{k}) = \sum_{\vec{k}'} P^{\rm (U)}(\vec{k}'|\,\vec{k}) B_{\vec{k}'1} \left[1 - (1 - Q_{\rm trig}^{\rm (U)}(\vec{k}'))^{k'_{\rm U}-1} (1 - Q_{\rm trig}^{\rm (O)}(\vec{k}'))^{k'_{\rm O}} \right]$$

$$\begin{split} Q_{\mathrm{trig}}^{(\mathrm{o})}(\vec{k}) &= \sum_{\vec{k}'} P^{(\mathrm{i})}(\vec{k}'|\vec{k}) B_{\vec{k}'1} \left[1 - (1 - Q_{\mathrm{trig}}^{(\mathrm{u})}(\vec{k}'))^{k'_{\mathrm{u}}} (1 - Q_{\mathrm{trig}}^{(\mathrm{o})}(\vec{k}'))^{k'_{\mathrm{o}}} \right] \\ S_{\mathrm{trig}} &= \sum P(\vec{k}') \left[1 - (1 - Q_{\mathrm{trig}}^{(\mathrm{u})}(\vec{k}'))^{k'_{\mathrm{u}}} (1 - Q_{\mathrm{trig}}^{(\mathrm{o})}(\vec{k}'))^{k'_{\mathrm{o}}} \right] \end{split}$$

Summary of triggering probabilities for uncorrelated networks:

III. Mixed Directed and Undirected, Uncorrelated—

$$Q_{\rm trig}^{\rm (u)} = \sum_{\vec{k}'} P^{\rm (u)}(\vec{k}'|\cdot) B_{\vec{k}'1} \left[1 - (1 - Q_{\rm trig}^{\rm (u)})^{k'_{\rm u}-1} (1 - Q_{\rm trig}^{\rm (o)})^{k'_{\rm o}} \right]$$

$$Q_{\rm trig}^{\rm (o)} = \sum_{\vec{k}'} P^{\rm (i)}(\vec{k}'|\cdot) B_{\vec{k}'1} \left[1 - (1 - Q_{\rm trig}^{\rm (u)})^{k'_{\rm u}} (1 - Q_{\rm trig}^{\rm (o)})^{k'_{\rm o}} \right]$$

$$S_{\mathrm{trig}} = \sum_{\vec{k}\prime} P(\vec{k}\prime) \left[1 - (1 - Q_{\mathrm{trig}}^{\mathrm{(u)}})^{k_{\mathrm{u}}\prime} (1 - Q_{\mathrm{trig}}^{\mathrm{(o)}})^{k_{\mathrm{o}}\prime} \right]$$

@pocsvox Mixed, correlated

Directed random

Mixed random

Mixed Random Contagion Triggering probabilitie Nutshell

Nutshell:

Mixed, correlated random networks with undirected and directed edges form natural inclusive generalization of purely undirected and purely directed random networks.

Spreading conditions and triggering probabilities of contagion processes can be determined using a direct, physical approach.

These conditions can be generalized to arbitrary random networks with arbitrary node and edge

A More generalizations: bipartite affiliation graphs and multilayer networks.

Mixed, correlated

Directed randon

Mixed random

Mixed Random Contagion Spreading condition Full generalization Triggering probabilitie

Nutshell References

•9 q (→ 28 of 33

III |

少 q (~ 31 of 33