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Alternative distributions

There are other ‘heavy-tailed’ distributions:
1. The Log-normal distribution

𝑃(𝑥) = 1
𝑥

√
2𝜋𝜎exp(−(ln𝑥 − 𝜇)2

2𝜎2 )

2. Weibull distributions

𝑃(𝑥)d𝑥 = 𝑘
𝜆 (𝑥

𝜆)
𝜇−1

𝑒−(𝑥/𝜆)𝜇d𝑥

CCDF = stretched exponential.
3. Also: Gamma distribution, Erlang

distribution, and more.
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lognormals

The lognormal distribution:

𝑃(𝑥) = 1
𝑥

√
2𝜋𝜎exp(−(ln𝑥 − 𝜇)2

2𝜎2 )

 ln𝑥 is distributed according to a normal
distribution with mean 𝜇 and variance 𝜎.

 Appears in economics and biology where growth
increments are distributed normally.
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lognormals

 Standard form reveals the mean 𝜇 and variance 𝜎2

of the underlying normal distribution:

𝑃(𝑥) = 1
𝑥

√
2𝜋𝜎exp(−(ln𝑥 − 𝜇)2

2𝜎2 )

 For lognormals:

𝜇lognormal = 𝑒𝜇+ 1
2 𝜎2 , medianlognormal = 𝑒𝜇,

𝜎lognormal = (𝑒𝜎2 −1)𝑒2𝜇+𝜎2 , modelognormal = 𝑒𝜇−𝜎2 .
 All moments of lognormals are finite.
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Derivation from a normal distribution
Take 𝑌 as distributed normally:


𝑃(𝑦)d𝑦 = 1√
2𝜋𝜎exp(−(𝑦 − 𝜇)2

2𝜎2 )d𝑦

Set 𝑌 = ln𝑋:
 Transform according to 𝑃(𝑥)d𝑥 = 𝑃(𝑦)d𝑦 :


d𝑦
d𝑥 = 1/𝑥 ⇒ d𝑦 = d𝑥 /𝑥



⇒ 𝑃(𝑥)d𝑥 = 1
𝑥

√
2𝜋𝜎exp(−(ln𝑥 − 𝜇)2

2𝜎2 )d𝑥
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Confusion between lognormals and pure
power laws
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Near agreement
over four orders
of magnitude!

 For lognormal (blue), 𝜇 = 0 and 𝜎 = 10.
 For power law (red), 𝛾 = 1 and 𝑐 = 0.03.
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Confusion
What’s happening:

ln𝑃(𝑥) = ln{ 1
𝑥

√
2𝜋𝜎exp(−(ln𝑥 − 𝜇)2

2𝜎2 )}

= −ln𝑥 − ln
√

2𝜋𝜎 − (ln𝑥 − 𝜇)2

2𝜎2

= − 1
2𝜎2 (ln𝑥)2 + ( 𝜇

𝜎2 − 1) ln𝑥 − ln
√

2𝜋𝜎 − 𝜇2

2𝜎2 .

If the first term is relatively small,

ln𝑃(𝑥) ∼ − (1 − 𝜇
𝜎2 ) ln𝑥 + const. ⇛ 𝛾 = 1 − 𝜇

𝜎2
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Confusion

 If 𝜇 < 0, 𝛾 > 1 which is totally cool.

 If 𝜇 > 0, 𝛾 < 1, not so much.

 If 𝜎2 ≫ 1 and 𝜇,

ln𝑃(𝑥) ∼ −ln𝑥 + const.

 Expect -1 scaling to hold until (ln𝑥)2 term becomes
significant compared to (ln𝑥):
− 1

2𝜎2 (ln𝑥)2 ≃ 0.05 ( 𝜇
𝜎2 − 1) ln𝑥

⇒ log10𝑥 ≲ 0.05 × 2(𝜎2 − 𝜇)log10𝑒 ≃ 0.05(𝜎2 − 𝜇)
 ⇒ If you find a -1 exponent,

you may have a lognormal distribution...
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Generating lognormals:

Random multiplicative growth:


𝑥𝑛+1 = 𝑟𝑥𝑛

where 𝑟 > 0 is a random growth variable
 (Shrinkage is allowed)
 In log space, growth is by addition:

ln𝑥𝑛+1 = ln𝑟 + ln𝑥𝑛

 ⇒ ln𝑥𝑛 is normally distributed
 ⇒ 𝑥𝑛 is lognormally distributed
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Lognormals or power laws?

 Gibrat [2] (1931) uses preceding argument to explain
lognormal distribution of firm sizes (𝛾 ≃ 1).

 But Robert Axtell [1] (2001) shows a power law fits the
data very well with 𝛾 = 2, not 𝛾 = 1 (!)

 Problem of data censusing (missing small firms).

19.0 (21.8 for firms larger than 0). Clearly,
the COMPUSTAT data are heavily censored
with respect to small firms. Such firms play
important roles in the economy (15, 16).

For further analysis, I used a tabulation from
Census in which successive bins are of increas-
ing size in powers of three. The modal firm size
is 1, whereas the median is 3 (4 if size 0 firms
are not counted) These data are approximately
Zipf-distributed (! " 1.059), as determined by
ordinary least squares (OLS) regression in log-
log coordinates (Fig. 1). There are too few very
small and very large firms with respect to the
Zipf fit, presumably due to finite size effects,
yet the power law distribution well describes
the data over nearly six decades of firm size
(from 100 to 106 employees). This result sug-
gests both that a common mechanism of firm
growth operates on firms of all sizes, and that
the fundamental unit of analysis is the individ-
ual employee.

But firms having a single employee are
not the smallest economic entities in the U.S.
economy. Although there were some 5.5 mil-
lion firms that had at least one employee at
some time during 1997, there were another
15.4 million business entities in that year
with no employees. These are predominantly
self-employed individuals and partnerships,
and are called “nonemployer” firms by Cen-
sus. These smallest of firms account for near-
ly $600 billion in receipts in 1997. Yet, if
these firms are included in the overall firm
size distribution, the Zipf distribution still fits
the data well. To see this, Eq. 1 must be
modified to accommodate firms having no
employees

Pr[S ! si ] " ! s0

si#1" !

, si ! 0, ! # 0 (2)

Here, OLS yields an estimate of ! " 1.098
(SE " 0.064), and the adjusted R2 " 0.977.
Including self-employment drives the aver-
age firm size down to 5.0 employees/firm,
and makes the median number of employees
0.

An interesting property of firm size distri-
butions noted in previous studies of large
firms is that the qualitative character of such
distributions is independent of how size is
defined (1). Although the position of individ-
ual firms in a size distribution does depend on
the definition of size, the shape of the distri-
bution does not. This also holds for the Cen-
sus data. Basing firm size on receipts, a Zipf
distribution describes the data (! " 0.994)
(Fig. 2). Here, modal and median firm reve-
nues are each less than $100,000, and the
average is $173,000/firm.

As a further test on the robustness of these
results, I repeated these analyses for Census
data from 1992. Average firm size was slight-
ly smaller then, at 20.9 employees/firm (ex-
cluding size 0 firms). But overall, the Zipf
distribution is as strong (Table 2).

Virtually all U.S. firms experienced sig-
nificant changes in revenue and work force
from 1992 to 1997. Thus, individual firms
migrated up and down the Zipf distribution,
but economic forces seem to have rendered
any systematic deviations from it short-lived.
Even the substantial merger and acquisition
activity of this period seemed to have little

effect on the overall firm size distribution.
There are a variety of stochastic growth

processes that converge to Pareto and Zipf
distributions (1, 5, 17, 18). Empirically, there
is support for Gibrat-like processes in which
average growth rates are independent of size
(19, 20) and growth rate variance declines
with size (21, 22). Consider a variation of the
Gibrat process known as the Kesten process
(23-25), in which sizes are bounded from
below; i.e.,

si$t $ 1% " max&s0,'$t%si$t%( (3)

where ' is a random growth rate. For nearly
any growth rate distribution, this process
yields Pareto distributions that have the ex-
ponent ! defined implicitly by (26)

N "
! % 1

! # ! s0

A"!

% 1

! s0

A"!

% ! s0

A"$ (4)

where N is the total number of firms and A is
the number of employees. For N " 5.5 ) 106

and A " 105 ) 106, as in 1997 (excluding
self-employment), s0 " 1 implies ! * 0.997,
a value close to my empirical finding. Similar
results are obtained for each year back
through 1988 (Table 3).

Fig. 1. Histogram of U.S. firm sizes,
by employees. Data are for 1997
from the U.S. Census Bureau, tab-
ulated in bins having width in-
creasing in powers of three (30).
The solid line is the OLS regression
line through the data, and it has a
slope of 2.059 (SE" 0.054; adjust-
ed R2 " 0.992), meaning that ! "
1.059; maximum likelihood and
nonparametric methods yield sim-
ilar results. The data are slightly
concave to the origin in log-log
coordinates, reflecting finite size
cutoffs at the limits of very small
and very large firms.

Fig. 2. Tail cumulative distribution function of
U.S. firm sizes, by receipts in dollars. Data are
for 1997 from the U.S. Census Bureau, tabulat-
ed in bins whose width increases in powers of
10. The solid line is the OLS regression line
through the data and has slope of 0.994 (SE "
0.064; adjusted R2 " 0.976).

Table 2. Power law exponent for U.S. firms in
1992, firms with employees and all firms. Results
using OLS regression on Census data, with stan-
dard errors in parentheses.

Type Estimated ! Adjusted R2

Firms with employees 0.994 (0.043) 0.995
All businesses 0.995 (0.031) 0.994

Table 3. Theoretical power law exponents for U.S. firms over a 10-year period. Note that even though
the number of firms and total employees each increased over this period, as did the average firm size, the
value of ! was approximately unchanged.

Year Firms Employees Mean firm size !, from (4)

1997 5,541,918 105,299,123 19.00 0.9966
1996 5,478,047 102,187,297 18.65 0.9986
1995 5,369,068 100,314,946 18.68 0.9983
1994 5,276,964 96,721,594 18.33 1.0004
1993 5,193,642 94,773,913 18.25 1.0008
1992 5,095,356 92,825,797 18.22 1.0009
1991 5,051,025 92,307,559 18.28 1.0004
1990 5,073,795 93,469,275 18.42 0.9995
1989 5,021,315 91,626,094 18.25 1.0006
1988 4,954,645 87,844,303 17.73 1.0039

R E P O R T S

www.sciencemag.org SCIENCE VOL 293 7 SEPTEMBER 2001 1819

Freq ∝ (size)−𝛾

𝛾 ≃ 2

 One piece in Gibrat’s model seems okay empirically:
Growth rate 𝑟 appears to be independent of firm
size. [1].

PoCS
@pocsvox

Lognormals and
friends

Lognormals
Empirical Confusability

Random Multiplicative
Growth Model

Random Growth with
Variable Lifespan

References

.
.
.
.
.

.
15 of 24

An explanation

 Axtel cites Malcai et al.’s (1999) argument [5] for
why power laws appear with exponent 𝛾 ≃ 2

 The set up: 𝑁 entities with size 𝑥𝑖(𝑡)
 Generally:

𝑥𝑖(𝑡 + 1) = 𝑟𝑥𝑖(𝑡)
where 𝑟 is drawn from some happy distribution

 Same as for lognormal but one extra piece.
 Each 𝑥𝑖 cannot drop too low with respect to the

other sizes:

𝑥𝑖(𝑡 + 1) = max(𝑟𝑥𝑖(𝑡), 𝑐 ⟨𝑥𝑖⟩)
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Some math later...
Insert question from assignment 7


Find 𝑃(𝑥) ∼ 𝑥−𝛾

 where 𝛾 is implicitly given by

𝑁 = (𝛾 − 2)
(𝛾 − 1) [ (𝑐/𝑁)𝛾−1 − 1

(𝑐/𝑁)𝛾−1 − (𝑐/𝑁)]

𝑁 = total number of firms.


Now, if 𝑐/𝑁 ≪ 1 and 𝛾 > 2 𝑁 = (𝛾 − 2)
(𝛾 − 1) [ −1

−(𝑐/𝑁)]



Which gives 𝛾 ∼ 1 + 1
1 − 𝑐

 Groovy... 𝑐 small ⇒ 𝛾 ≃ 2
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The second tweak

Ages of firms/people/... may not be the same
 Allow the number of updates for each size 𝑥𝑖 to

vary
 Example: 𝑃(𝑡)d𝑡 = 𝑎𝑒−𝑎𝑡d𝑡 where 𝑡 = age.
 Back to no bottom limit: each 𝑥𝑖 follows a

lognormal
 Sizes are distributed as [6]

𝑃(𝑥) = ∫
∞

𝑡=0
𝑎𝑒−𝑎𝑡 1

𝑥
√

2𝜋𝑡exp(−(ln𝑥 − 𝜇)2

2𝑡 )d𝑡

(Assume for this example that 𝜎 ∼ 𝑡 and 𝜇 = ln𝑚)
 Now averaging different lognormal distributions.
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Averaging lognormals



𝑃(𝑥) = ∫
∞

𝑡=0
𝑎𝑒−𝑎𝑡 1

𝑥
√

2𝜋𝑡exp(−(ln 𝑥
𝑚)2

2𝑡 )d𝑡

 Insert fabulous calculation (team is spared).
 Some enjoyable suffering leads to:

𝑃(𝑥) ∝ 𝑥−1𝑒−√2𝜆(ln 𝑥
𝑚 )2
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The second tweak



𝑃(𝑥) ∝ 𝑥−1𝑒−√2𝜆(ln 𝑥
𝑚 )2

 Depends on sign of ln 𝑥
𝑚 , i.e., whether 𝑥

𝑚 > 1 or
𝑥
𝑚 < 1.



𝑃(𝑥) ∝ { 𝑥−1+
√

2𝜆 if 𝑥
𝑚 < 1

𝑥−1−
√

2𝜆 if 𝑥
𝑚 > 1

 ‘Break’ in scaling (not uncommon)
 Double-Pareto distribution
 First noticed by Montroll and Shlesinger [7, 8]

 Later: Huberman and Adamic [3, 4]: Number of
pages per website
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Summary of these exciting developments:

 Lognormals and power laws can be awfully similar
 Random Multiplicative Growth leads to lognormal

distributions
 Enforcing a minimum size leads to a power law tail
 With no minimum size but a distribution of

lifetimes, the double Pareto distribution appears
 Take-home message: Be careful out there...
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