Lognormals and friends

Last updated: 2022/08/27, 23:54:10 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 300, 303, & 394, 2022-2023 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

000 Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

lognormals @pocsvox

Lognormals and friends

PoCS

Lognormals

References

Random Multiplicative Growth Model

The lognormal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

- \bigotimes lnx is distributed according to a normal distribution with mean μ and variance σ .
- Appears in economics and biology where growth increments are distributed normally.

00

PoCS

Lognormals

References

Random Multiplicative Growth Model

•ე ရ (∾ 1 of 24

lognormals

@pocsvox Lognormals and friends

> \Im Standard form reveals the mean μ and variance σ^2 of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals:

$$\begin{split} \mu_{\rm lognormal} &= e^{\mu + \frac{1}{2}\sigma^2}, \qquad {\rm median}_{\rm lognormal} = e^{\mu}, \\ \sigma_{\rm lognormal} &= (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \qquad {\rm mode}_{\rm lognormal} = e^{\mu - \sigma^2}. \end{split}$$

All moments of lognormals are finite.

PoCS

@pocsvox

Lognormals

References

(in |S • ୨ ୦ (२ 5 of 24

Empirical Confusability

friends

Lognormals and

Derivation from a normal distribution Take *Y* as distributed normally:

$$P(y) dy = rac{1}{\sqrt{2\pi}\sigma} \exp\left(-rac{(y-\mu)^2}{2\sigma^2}
ight)$$

Set
$$Y = \ln X$$
:
Transform according to $P(x)dx = P(y)dy$:
 $\frac{dy}{dx} = 1/x \Rightarrow dy = dx/x$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi\sigma}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Confusion between lognormals and pure @pocsvox Lognormals and power laws friends

(III) ୬ < ເ∿ 9 of 24

PoCS

friends

@pocsvo>

Lognormals

References

Empirical Confusability

Lognormals and

PoCS @pocsvox Lognormals and friends

Lognormals Empirical Confusability References

$$= -\frac{1}{2\sigma^2}(\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right)\ln x - \ln\sqrt{2\pi}\sigma - \frac{\mu^2}{2\sigma^2}.$$

 $\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi\sigma}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$

 $= -\ln x - \ln \sqrt{2\pi}\sigma - \frac{(\ln x - \mu)^2}{2\sigma^2}$

If the first term is relatively small,

(III) ቃ∢୍ 10 of 24

PoCS @pocsvox Lognormals and

Lognormals Empirical Confusability

References

Solution Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$:

$$\begin{split} &-\frac{1}{2\sigma^2}(\mathrm{ln}x)^2 \simeq 0.05 \left(\frac{\mu}{\sigma^2} - 1\right) \mathrm{ln}x \\ \Rightarrow &\log_{10}x \lesssim 0.05 \times 2(\sigma^2 - \mu) \mathrm{log}_{10}e \simeq 0.05(\sigma^2 - \mu) \mathrm{ln}x \end{split}$$

 \Rightarrow lf you find a -1 exponent, you may have a lognormal distribution...

() () •ጋ < ເ∿ 11 of 24

Alternative distributions

There are other 'heavy-tailed' distributions:

1. The Log-normal distribution

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions

$$P(x) \mathrm{d}x \, = \frac{k}{\lambda} \left(\frac{x}{\lambda} \right)^{\mu-1} e^{-(x/\lambda)^{\mu}} \mathrm{d}x$$

CCDF = stretched exponential \square . 3. Also: Gamma distribution C, Erlang distribution **C**, and more.

Lognormals

Outline

Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

$$P(y) \mathrm{d} y \, = \, \frac{1}{\sqrt{2\pi}\sigma} \mathrm{exp}\left(-\frac{(y-\mu)^2}{2\sigma^2}\right) \mathrm{d} y$$

∽ < <>> 7 of 24

PoCS

References

(III)

PoCS

friends

@pocsvox

Lognormals

References

Empirical Confusability

୬ ବ (관 6 of 24

Lognormals and

PoCS Confusion @pocsvox Lognormals and friends

Lognormals Empirical Confusabilit

References

(in |

& If $\mu < 0$, $\gamma > 1$ which is totally cool.

 \clubsuit If $\sigma^2 \gg 1$ and μ ,

Confusion

What's happening:

& If $\mu > 0$, $\gamma < 1$, not so much.

 $\ln P(x) \sim -\ln x + \text{const.}$

Generating lognormals:

Random multiplicative growth:

 $x_{n+1} = rx_n$

- where r > 0 is a random growth variable
- (Shrinkage is allowed)
- ln log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

 $\mathfrak{R} \Rightarrow \ln x_n$ is normally distributed $\Re \Rightarrow x_n$ is lognormally distributed

Lognormals or power laws?

- Sibrat^[2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- & But Robert Axtell^[1] (2001) shows a power law fits the data very well with $\gamma=2$, not $\gamma=1$ (!)
- Problem of data censusing (missing small firms).

One piece in Gibrat's model seems okay empirically: Growth rate *r* appears to be independent of firm size.^[1].

An explanation

- Axtel cites Malcai et al.'s (1999) argument ^[5] for why power laws appear with exponent $\gamma \simeq 2$
- \clubsuit The set up: N entities with size $x_i(t)$

Generally:

 $x_i(t+1) = rx_i(t)$

where r is drawn from some happy distribution

- 🚳 Same as for lognormal but one extra piece.
- \mathbf{s}_{i} Each x_{i} cannot drop too low with respect to the other sizes:

$$x_i(t+1) = \max(rx_i(t), c\left< x_i \right>$$

Some math later... Lognormals and Insert question from assignment 7 🗹

Find $P(x) \sim x^{-\gamma}$

 \Re where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N =total number of firms.

PoCS

friends

@pocsvox

Lognormals

References

(in |S

PoCS

friends

@pocsvox

Lognormals

References

•ე < (∾ 13 of 24

Lognormals and

Random Multiplicative Growth Model

Random Multiplicative Growth Model

Now, if
$$c/N \ll 1$$
 and $\gamma > 2$ $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

 So Groovy... c small $\Rightarrow \gamma \simeq 2$

Ages of firms/people/... may not be the same

- \Re Allow the number of updates for each size x_i to vary
- \Re Example: $P(t)dt = ae^{-at}dt$ where t = age.
- \Re Back to no bottom limit: each x_i follows a lognormal
- Sizes are distributed as ^[6]

$$P(x) = \int_{t=0}^{\infty} a e^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) \mathrm{d} x$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$) Now averaging different lognormal distributions.

PoCS

friends

@pocsvox

Lognormals and

Random Multiplicative Growth Model

References

Averaging lognormals

```
Lognormals
```

æ

$$P(x) = \int_{t=0}^{\infty} a e^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln \frac{x}{m})^2}{2t}\right)$$

ous calculation (team is spared). 🚳 Insert 🚳 Some able suffering leads to:

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln \frac{x}{m})^2}}$$

The second tweak Lognormals and

$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln \frac{x}{m})^2}}$

 \Re Depends on sign of $\ln \frac{x}{m}$, i.e., whether $\frac{x}{m} > 1$ or $\frac{x}{m} < 1.$

$$P(x) \propto \left\{ \begin{array}{ll} x^{-1+\sqrt{2\lambda}} & \text{if } \frac{x}{m} < 1 \\ x^{-1-\sqrt{2\lambda}} & \text{if } \frac{x}{m} > 1 \end{array} \right.$$

- Break' in scaling (not uncommon)
- 🚳 Double-Pareto distribution 🗹
- First noticed by Montroll and Shlesinger^[7, 8]
- & Later: Huberman and Adamic^[3, 4]: Number of pages per website

୬ ବ 🕞 16 of 24

(III)

PoCS

friends

@pocsvox

Lognormals and

Random Growth with Variable Lifespan

References

PoCS

friends

@pocsvox

Lognormals

References

Random Multiplicative Growth Model

Summary of these exciting developments:

Lognormals Empirical Confusabili Random Multiplicative Growth Model

- lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- law tail a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears

References I

[1] R. Axtell.

Zipf distribution of U.S. firm sizes. Science, 293(5536):1818–1820, 2001. pdf

[2] R. Gibrat. Les inégalités économiques.

Librairie du Recueil Sirey, Paris, France, 1931.

- [3] B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the World Wide Web. Technical report, Xerox Palo Alto Research Center, 1999.
- [4] B. A. Huberman and L. A. Adamic. The nature of markets in the World Wide Web. Quarterly Journal of Economic Commerce, 1:5-12, 2000.

୬ ୦ ୦ ୦ ୩ ୦ f 24

Lognormals Empirical Confusal Random Growth with Variable Lifespan

References

PoCS

@pocsvox

Lognormals and

00

• ⊅ < C+ 20 of 24 PoCS

@pocsvox Lognormals and friends

Lognormals Random Multiplicativ Growth Model Random Growth with Variable Lifespan References

PoCS

@pocsvox

Lognormals

References

friends

୬ ବ ଦ 21 of 24

Lognormals and

PoCS

@pocsvox

Lognormals

Variable Lifes

References

Random Multiplicativ Growth Model

friends

Lognormals and

dt

∙୨ ୦ ୦ ୦ 18 of 24

(in |

(in |S

UVH) ୬ < ୧୦ 15 of 24

References II	PoCS @pocsvox Lognormals and friends	References III	PoCS @pocsvox Lognormals and friends
 [5] O. Malcai, O. Biham, and S. Solomon. Power-law distributions and lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements. <u>Phys. Rev. E</u>, 60(2):1299–1303, 1999. pdf ^[2] 	Lognormals Empirical Confusability Random Multiplicative Growth Wadom Growth with Variable Lifespan References	 [8] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/<i>f</i> noise: a tale of tails. J. Stat. Phys., 32:209–230, 1983. 	Lognormals Empirical Confrashility Random Multiplicative Grandth Model Randrom Growth with Vanidate Linepan References
[6] M. Mitzenmacher. A brief history of generative models for power law and lognormal distributions. <u>Internet Mathematics</u> , 1:226–251, 2003. pdf			
 [7] E. W. Montroll and M. W. Shlesinger. On 1/<i>f</i> noise and other distributions with long tails. Proc. Natl. Acad. Sci., 79:3380–3383, 1982. pdf C[*] 	(III)		(iii) 🕅
	∽९୯ 23 of 24		• ን ዓ (• 24 of 24