Quantifying Language Evolution with Lexical Turbulence

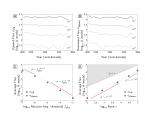
Last updated: 2022/08/29, 00:04:32 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 300, 303, & 394, 2022-2023 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License


Outline

References

"Is language evolution grinding to a halt? The scaling of lexical turbulence in English fiction suggests it is not"

Pechenick, Danforth, and Dodds. Journal of Computational Science, 21, 24-37, 2017. [1

A bit of a worry—language is slowing down: Turbulence

@pocsvox

References

.... |S

PoCS

Lexical

@pocsvox

Turbulence

References

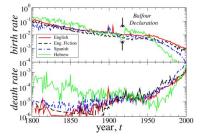
.... |S

PoCS

Lexical

@pocsvox

Turbulence


•9 q (→ 2 of 21

少 Q (~ 1 of 21

Lexical

"Statistical laws governing fluctuations in word use from word birth to word death"

Petersen et al., Scientific Reports, **2**, 313, 2012. [2]

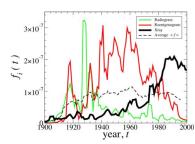


Figure 1 | Word extinction. The English word "Roentgenogram" derives from the Nobel prize winning scientist and discoverer of the X-ray, Wilhelm Röntgen (1845-1923). The prevalence of this word was quickly challenged by two main competitors, "X-ray" (recorded as "Xray" in the database) and "Radiogram." The arithmetic mean frequency of these three time series is relatively constant over the 80-year period 1920–2000, $\langle f \rangle \approx$ 10-7, illustrating the limited linguistic "market share" that can be achieved by any competitor. We conjecture that the main reason "Xray" has a higher frequency is due to the "fitness gain" from its efficient short word length and also due to the fact that English has become the base language for scientific publication.

Petersen et al. define the birth year and death year of an individual word as the first and last year, respectively, that the given word's relative frequency $f_{w:y}$ is found to be equal to or greater than a cutoff frequency $f_{w:y_1,y_2}^{\rm cut}$ equal to one twentieth its median relative frequency $f_{w;y_1,y_2}^{\text{med}}$:

$$f_{w;y} \geq f_{w;y_1,y_2}^{\mathrm{cut}} = 0.05 f_{w;y_1,y_2}^{\mathrm{med}}.$$


- x_1 and x_2 = the first and last year of the overall time period.
- & Excluded: words appearing in only one year (this turns out to be a problem) and words appearing for the first time before
- Rates of word birth and death found by normalizing the numbers of word births and deaths by the total number of unique words in a given year.

PoCS @pocsvox Lexical Turbulence

Reference

For following pages:

that the entry-exit forces largely depend on the relative use of the word. Fo se, (Med(f,)), for all words born in year t (top panel) and for all words tha died in year t (bottom panel), which shows a 5-year n (dashed black line). There is a dramatic increase in the relat ("utility") of newborn words over the last 20–30 years, likel corresponding to new technical terms, which are necessary

Petersen et al. present a range of other interesting observations—all worth looking at [2]

Our focus will be on life and death of words.

@pocsvox

Turbulence

References

Lexical

少 Q (~ 7 of 21

PoCS

@pocsvox Lexical

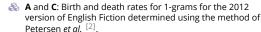
References

.... |S 少 < ℃ 4 of 21

PoCS @pocsvox Lexical Turbulence

References

W | 8

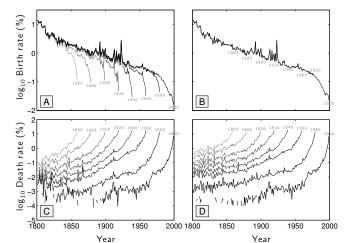

PoCS

Lexical

Turbulence

References

•9 q (→ 5 of 21



Curves correspond to different end-of-history boundaries with history running from y_1 =1800 to y_2 =1860 to 2000 in 20 year increments.

- Birth rates show clear departures from an overall form as each end of history year is approached.
- Including words that appear in only one year in a time range eliminates these discrepancies (plot B).
- Death rates however are strongly affected by the choice of when history ends and this cannot be remedied by modifying the rule for 1-gram death.
- As the end of history moves forward in time, words that seemed dead are no longer dead for a number of reasons.
- B and D: Birth and death rates as per plots A and C in all respects except now including words that appear only once in a time range—i.e., have a non-zero relative frequency in only one year.
- Birth rates are now well determined retrospectively from any vantage point of history and an exponential decay appears

夕 Q (~ 8 of 21

•9 a (~ 3 of 21

🚳 Upshot: Not dead yet.

少 Q (~ 6 of 21

Why?

- & Following: Two examples of how a 1-gram may be variously labeled dead or alive depending on the end of history using the criterion in ^[2].
- & A. The word 'CHAP' declines in relative frequency over time, from a high of $10^{-3.5}$ to as low as $10^{-7.5}$.
- & Using a twentieth of the median frequency of a 1-gram as a threshold for birth and death, we see 'CHAP' appears to have "run down the curtain" in 1850 but then re-emerged as alive for 8 subsequent decadal end points.
- & 'CHAP' once again succumbs in 1940 only to stagger on through 2000.
- This dead-undead cycling can be seen for many words and leads us to exploring how words pass above and drop below fixed relative frequency thresholds.
- In both plots, the blue region marks the lowest possible relative frequency for each year achieved when a 1-gram has a count of 1. B.
- The word 'Coryphaeus' is a much less frequent word than 'CHAP', and its time series contains a substantial number of zeroes and ones (resting on the top of the blue region).
- A The criterion in [2] leads to a flinning back and forth between

References

.... |S

少∢(~ 10 of 21

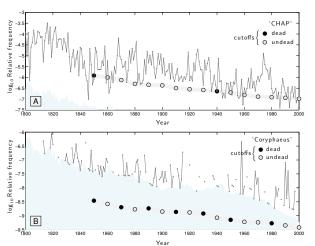
Lexical turbulence:

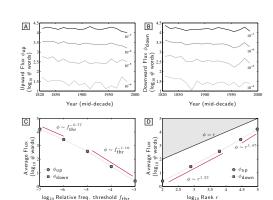
Zipf's law has two scaling regimes: [3]

$$f \sim \left\{ egin{array}{l} r^{-lpha} ext{ for } r \ll r_{ ext{b}}, \ r^{-lpha'} ext{ for } r \gg r_{ ext{b}}, \end{array}
ight.$$

When comparing two texts, define Lexical turbulence as flux of words across a frequency threshold:

$$\phi \sim \left\{ egin{array}{l} f_{
m thr}^{-\mu} \ {
m for} \ f_{
m thr} \ll f_{
m b}, \ f_{
m thr}^{-\mu'} \ {
m for} \ f_{
m thr} \gg f_{
m b}, \end{array}
ight.$$

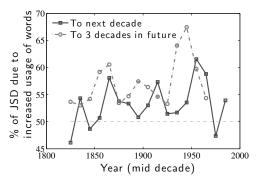

Estimates: $\mu \simeq 0.77$ and $\mu' \simeq 1.10$, and $f_{\rm b}$ is the scaling break point.


$$\phi \sim \left\{ egin{array}{l} r^
u = r^{lpha \mu'} ext{ for } r \ll r_{
m b} \ r^{
u'} = r^{lpha' \mu} ext{ for } r \gg r_{
m b} \end{array}
ight.$$

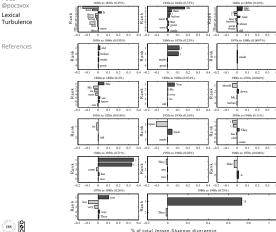
Estimates: Lower and upper exponents $\nu \simeq 1.23$ and $\nu' \simeq 1.47$.

Exponents match up:

au/ a/ 1 14 v 1 10 a/ 1 25

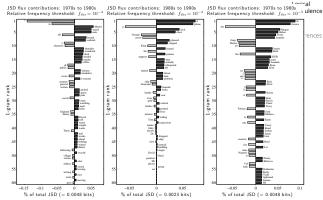


Α В Top 1-gram (comma) Top 10 1-grams Relative frequency Top 100 1-grams Top 1000 1-grams Relati Top 10.000 1-grams Top 100,000 1-grams


Year (mid-decade)

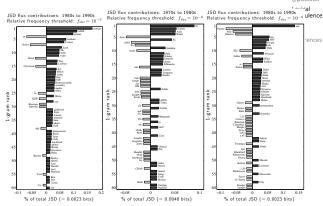
 $\mathsf{log}_{10}\;\mathsf{Rank}\;r$

Inter-decade ISD comparisons:


Note: Have moved beyond ISD to rank-turbulence divergence and probability-turbulence divergence.

PoCS @pocsvox Lexical Turbulence

夕 Q № 13 of 21


References

UIM O •9 q (→ 14 of 21

PoCS @pocsvox Lexical Turbulence

References

少 Q (№ 18 of 21

@pocsvox Lexical Turbulence

References

W | |

夕 Q № 16 of 21

@pocsvox

WW |8

夕 Q (→ 17 of 21

References I

pdf 🗹

�� **19 of 21**

[1] E. A. Pechenick, C. M. Danforth, and P. S. Dodds. Is language evolution grinding to a halt? The scaling of lexical turbulence in English fiction suggests it is not.

Journal of Computational Science, 21:24–37, 2017.

[2] A. M. Petersen, J. Tenenbaum, S. Havlin, and H. E. Stanley.

Statistical laws governing fluctuations in word use from word birth to word death.

Scientific Reports, 2:313, 2012. pdf

•20 of 21

PoCS @pocsvox

Turbulence

References

Lexical

References II

UIN OO

PoCS @pocsvox Lexical Turbulence

References

[3] J. R. Williams, J. P. Bagrow, C. M. Danforth, and P. S. Dodds.

Text mixing shapes the anatomy of rank-frequency distributions.

Physical Review E, 91:052811, 2015. pdf

≈ 191

少 Q (№ 21 of 21