$\underset{\substack{\text { pocs } \\ \text { Qpocsuox }}}{ } \quad$ Who are we?
Stories we tell about how we should/could/must behave vary enormously.

Linguistic Pollyanna Principle: The positivity bias of language
Last updated: 2022/08/29, 00:04:32 EDT

Principles of Complex Systems, Vols. 1, 2, \& 3D CSYS/MATH 300, 303, \& 394, 2022-2023| @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds
Computational Story Lab I Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-Sharealike 3.0 License.

Outline

Pollyanna Principle
English is happy

10 languages
Extras

		nace 2 of 54
		PoCS @pocsvox
		Pollyanna Principle
		Pollyanna Principle
		English is happy
	"Human language reveals a universal pósitivity būas" Dodds et al., Proc. Natl. Acad. Sci., 112, 2389-2394, 2015. ${ }^{[2]}$	10 languages
		$\underset{\substack{\text { Extras } \\ \text { Coroasa }}}{ }$
		${ }^{\text {Refeferences }}$

Pollyanna
Principle English is happ. 0 language References References

$$
\text { miv } \mid
$$

$$
\begin{aligned}
& \text { Pocs } \\
& \text { @pocsvox } \\
& \text { Polynana } \\
& \text { Principle }
\end{aligned}
$$

Corpora
Text parsing
Corpus generation

References
\qquad

$$
\text { hac } 1 \text { of } 54
$$

\qquad | Principle |
| :--- |
| Engish is happy | English is happy

10 languages xtras | Extras |
| :---: |
| Coporas |

\qquad References

Pollyanna
Principle

Pollyanna
frinciple
Engish is happy
,

Coporas
expessing
ent

ferences 2015. ${ }^{[2}$

Sainism to Rand's Objectivism

Language is our great social technology.
And we convey stories through language.

Basic question

What's the distribution of emotional content of the atoms of language?

Data we've generated:
English plus nine other languages.
Key: incorporate word usage frequency (= size).

English's scale-invariant, positive bias: ${ }^{[8]}$

Social organism story manifested in language.
. Pollyanna Hypothesis: Interactions are predominantly positive
. 8 Positive anchor of concepts: Unhappy but not unsad.
Many ways for things to go wrong: "All happy families are alike; each unhappy family is unhappy in its own way."
8 Guns, Germs, and Steel ${ }^{[1]}$ invokes the Anna Karenina Principle
But: must account for frequency of word usage ..
Pocs
@pocsvox
e.
Porlyanna
Principle English is happy 10 languages

\qquad
(2)
のac 7 of 54

PoCs Pollyanna Principle Principle
English is happy
10 languages
Extras texparasing Corpus gen

sac 5 of 54
Good buzz according to Altmetric ...(report
is no longer findable):
As of May 7, 2015:
Altmetric Score: 772.
Ranked 3rd out of 933 articles published in PNAS surrounding 12 weeks.
R Ranked 24nd out of 34,050 articles in PNAS all time. (Mean score 13.5.)
Ranked 60th out of all 109,841 tracked articles published in surrounding 12 weeks
Ranked 459th out of 3,724,005 tracked articles all time.
This doesn't mean it's a good article ... but it is.

The jellyfish knows：

 \qquad Scatterplot of $h_{\text {ave }}$ as a function of word usage frequency for the English Google Books word
ist generated by Garcia et al．．Uncontrolled subsampling of lower frequency words yields a lexicon that is not stataistically representative of any natural language corpus．The lower curve provides a coarse estimate of cumulative lexicon coverage as a function of usage
frequency f using Zipfs law $f_{r} \sim f_{1} r^{-1}$ inverted as $r \sim f_{1} / f_{r}$ ．The rapid drop off begins at around rank 5000 ，the involved lexicon size for Google Books in labMT［3，8］．B．and Scatterplot of $h_{\text {avg }}$ as a function of rank r for the 5000 words for Google Books contributing

$h_{\text {avg }} \simeq-3.04 \times 10^{-5}$ r 5.62 as reported in［3］．Notediference in signs and the far
$h_{\text {avg }} \sim-3.04 \times 10^{-5} r+5.62$（as reported in Bj ）．Note difference in igigns，and the far Correlation coefficients：$+0.105,-0.042$ ，and－-0.043 with p－values $6.15 \times 10^{-26}, 3.03 \times 10^{-3}$
and 2.57×10^{-3}.
Spearman correlation coefficienss：$+0.201,-0.013$ ，and -0.013 with p－values and 2.57×10^{-3} ．Spearman co．
$6.37 \times 10^{-92}, 0.350$, and 0.350 ．

Nutshell：
Linguistic positivity bias holds for 10 major languages．
Spread across 24 corpora：books，news，social media，movie titles，．．
Languages and evaluating groups spread around the world．
\＆Diverse in language origins．
Language appears to reflect social，cooperative tendency of people
领 Negative emotion is more variable－must be specific，Tolstoyfully．
Common scientific sense for text analysis：
Always look at the words．

Corpus：	\＃Words	Reference（s）
English：Twitter	5000	［？，6］
English：Google Books Project	5000	［10］
English：The New York Times	5000	${ }^{[12]}$
English：Music lyrics	5000	［5］
Portuguese：Google Web Crawl	7133	［？］
Portuguese：Twitter	7119	［？］
Spanish：Google Web Crawl	7189	［？］
Spanish：Twitter	6415	［？］
Spanish：Google Books Project	6379	［10］
French：Google Web Crawl	7056	［？］
French：Twitter	6569	［？］
French：Google Books Project	6192	${ }^{[10]}$
Arabic：Movie and TV subtitles	9999	MITRE
Indonesian：Twitter Indonesian：Movie subtitles	$\begin{aligned} & 7044 \\ & 6726 \end{aligned}$	$\begin{gathered} {[?]} \\ \text { MiTRE } \end{gathered}$
Russian：Twitter	6575	［？］
Russian：Google Books Project	5980	［10］
Russian：Movie and TV subtitles	6186	［？］
German：Google Web Crawl	6902	［？］
German：Twitter	6459	［？］
German：Google Books Project	6097	［10］
Korean：Twitter	${ }_{5}^{6728}$	［？］
Korean：Movie subtitles	5389	MITRE

Language	Participants＇＇ocation（s）	\＃of participants	Average words scored
Engish German	US，India Germany	384 196 1	1302 2551 1
German	Germany	196	2551
Indonesian	Indonesia	146	3425
$\underset{\substack{\text { Russian } \\ \text { Arabic }}}{\text { a }}$	$\underset{\substack{\text { Russia } \\ \text { Egypt }}}{ }$	125 185 189	4000 2703
French Spanish	France	179	2793
Spanish Portuguese	Mexico Brazil dea	236 208	2119 2404
Simplified Chinese	China Korea，US	$\begin{array}{r}128 \\ 109 \\ \hline\end{array}$	3906 4587
Korean	Korea，US	109	4587

Number and main country／countries of location for particicants sevaluating the 10,000
common words for each of the 10 languages we studiec．Also recorded is the average number of words evaluated by each participant（rounded to the nearest integer）．We note
that each word received 50 evaluations from distinct individuals．The English word list was that each word received 50 evaluations from distinct individuals．The English word list was evaluated via Mechanical Turk for our initial study 9 ．The nine languages evaluated
through Appen－Buturer Hill y yelded a higher particicipation rate likely due to better pay and the organization＇s quality of service．
$\underset{\substack{\text { Pocs } \\ \text { Qpocsvor }}}{ }$

Of our 24 corpora，we received 17 already parsed by the source：the Google Books Project（6 corpora），the Google Web Crawl（8 corpora），and Movie and TV subtitles（3 corpora）．For the other 7 corpora（Twitter， New York Times，and Music Lyrics），we extracted words by standard white space separation（more on Twitter below）．We acknowledge the many complications with inflections and variable orthography．We have found merit in not collapsing related words，which would require a more sophisticated treatment going beyond the present paper＇s bounds．Moreover，we have observed that allowing，say，different conjugation of verbs to stand in our corpora is valuable as human evaluations of such have proved to be distinguishable （e．g．，present versus past tense ${ }^{[6]}$ ）．

We used the services of Appen Butler Hill （http：／／www．appen．com）for all word evaluations excluding English，for which we had earlier employed Mechanical Turk（https：／／www．mturk．com／${ }^{[9]}$ ）．

English instructions were translated to all other languages and given to participants along with survey questions，and an example of the English instruction page is below．Non－english language experiments were conducted through a custom interactive website built by Appen Butler Hill，and all participants were required to pass a stringent aural proficiency test in their own language．

Twitter was easily the most variable and unruly of our text sources and required additional treatment. We first checked if a string contains at least one valid utf8 letter, discarding if not. Next we filtered out strings containing invisible control characters, as these symbols can be problematic. We ignored all strings that start with $<$ and end with $>$ (generally html code). We ignored strings with a leading @ or \&, or either preceded with standard punctuation (e.g., Twitter ID's), but kept hashtags. We also removed all strings starting with www. or http: or end in .com (all websites). We stripped the remaining strings of standard punctuation, and we replaced all double quotes (") by single quotes ('). Finally, we converted all Latin alphabet letters to lowercase.

Tokenization example:

Term	count			
love	10			
LoVE	5		Term	count
love!	2		love	19
\#love	3		\#love	3
love	2		love87	1
@love	1			
love87	1			

The term ‘@love’ is discarded, and all other terms map to either 'love' or 'love87'.

There is no single, principled way to merge corpora to create an ordered list of words for a given language. For example, it is impossible to weight the most commonly used words in the New York Times against those of Twitter. Nevertheless, we are obliged to choose some method for doing so to facilitate comparisons across languages and for the purposes of building adaptable linguistic instruments.
For each language where we had more than one corpus, we created a single quasi-ranked word list by finding the smallest integer r such that the union of all words with rank $\leq r$ in at least one corpus formed a set of at least 10,000 words.

Reduced Major Axis (RMA) regression fits for row language as a linear function of the column

 both variables.

Pearson correlation coefficients for translation-stable words for all language pairs. All
-values are $<10^{-118}$
Pearson correlation
p-values are $<10^{-118}$.

Spearman correlation coefficients for translation-stable words. All p-values are $<10^{-82}$.
Histograms of the change in average happiness for translation-stable words between each primary meaning (e.g.g. 'lying and 'd 'acostadodo). The inset पuantities are N. the number of translation-stable words, and Δ is the average difference in translation-stable word
happiness between the row language and column language.

Language: Corpus		p-value		value	${ }^{\alpha}$	β
Spanish: Google Web Craw	${ }^{0.114}$	3.38×10^{-22}	${ }^{-0.090}$	${ }^{1.85 \times 10^{-14}}$	-5.55 $\times 10^{-9}$	6.10
Spanish: Google Books	-0.040	1.51×10^{-3}	-0.016	1.90×10^{-1}	${ }^{-2.28 \times 10^{-5}}$	5.90
Spanish: Twitter	-0.048	1.14×10^{-4}	-0.032	1.10×10^{-2}	-3.10 $\times 10^{-5}$	5.94
Portuguese: Google Web Crawl	-0.085	6.33×10^{-13}	-0.060	3.23×10^{-7}	-3.98×10-5	5.96
Portuguese: Twitter	-0.041	5.98×10^{-4}	-0.030	1.15×10^{-2}	-2.40×10^{-5}	5.73
English: Google Books	-0.042	3.03×10^{-3}	-0.013	3.50×10^{-1}	${ }^{-3.04 \times 10^{-5}}$	5.62
English: New York Times	-0.056	6.93×10^{-5}	-0.044	1.99×10^{-3}	-4.17×10^{-5}	5.61
German: Google Web Crawl	-0.096	1.11×10^{-15}	-0.082	6.75×10^{-12}	-3.67×10^{-5}	5.65
French: Google Web Crawl	-0.105	9.20×10^{-19}	-0.080	1.99×10^{-11}	${ }^{-4.50 \times 10^{-5}}$	5.68
English: Twitter	-0.097	6.56×10^{-12}	-0.103	2.37×10^{-13}	-7.78×10^{-5}	5.67
Indonesian: Movie subtitles	-0.039	${ }^{1.48 \times 10^{-3}}$	-0.063	2.45×10^{-7}	-2.04×10^{-5}	5.45
German: Twitter	-0.054	${ }^{1.47 \times 10^{-5}}$	-0.036	4.02×10^{-3}	-2.5110 0^{-5}	5.58
Russian: Twitter	-0.052	2.38×10^{-5}	-0.028	2.42×10^{-2}	-2.55×10^{-5}	5.52
French: Google Books	-0.043	${ }^{6.80 \times 10^{-4}}$	-0.030	${ }^{1.71 \times 10^{-2}}$	-2.31×10^{-5}	5.49
German: Google Books	-0.003	8.12×10^{-1}	+0.014	2.74×10^{-1}	${ }^{-1.38 \times 10^{-6}}$	5.45
French: Twitter	-0.049	${ }^{6.08 \times 10^{-5}}$	-0.023	${ }^{6.31 \times 10^{-2}}$	-2.54×10^{-5}	5.54
Russian: Movie and TV subbitles	-0.029	2.36×10^{-2}	-0.033	9.17×10^{-3}	${ }^{-1.57 \times 10^{-5}}$	5.43
Arabic: Movie and TV subtitles Indonesian: Twitter	-0.045	7.10×10^{-6} 2.14×10^{-5}	--0.029 -0.018	4.19×10^{-3} 1.24×10^{-1}	-1.66×10^{-5} -2.50×10^{-5}	5.44 5.46
Korean: Twitter	-0.032	8.29×10^{-3}	-0.016	1.91×10^{-1}	${ }^{-1.24 \times 10^{-5}}$	5.38
Russian: Google Books	+0.030	2.09×10^{-2}	+0.070	5.08×10^{-8}	$+1.20 \times 10^{-5}$	5.35
English: Music Lyrics	-0.073	2.53×10^{-7}	-0.081	${ }^{1.05 \times 10^{-8}}$	-6.12×10^{-5}	5.45
Korean: Movie subtitles	-0.187	8.22×10^{-44}	-0.180	2.01×10^{-40}	-9.66x10-5	5.41
Chinese: Google Books	-0.067	1.48×10^{-11}	-0.050	5.01×10^{-7}	-1.72×10^{-5}	5.21

Pearson correlation coefficients and p-values, Spearman correlation coefficients and p-values, and linear fit coefficients, for average word happiness $h_{\text {ay }}$ as a function of word
usage frequency rank r. We use the fit is $h_{\text {ave }}=\alpha r+\beta$ for the most common 5000 words in each corpora, determining α and β via orrginary least squares, and order languages by
the median of their average word happiness scores (descending). We note that stemming of the median of their average word h
words may affect these estimates.

Language: Corpus		p-value	${ }^{p_{s}}$	p-value		
Portuguese: Twitter	+0.990	2.55×10^{-14}	+0.095	1.28×10^{-15}	1.19×10^{-8}	1.29
Spanish: Twitter	+0.097	8.45×10^{-15}	+0.104	5.92×10^{-17}	1.47×10^{-5}	1.26
English: Music Lyrics	+0.129	4.87×10^{-20}	+0.134	1.63×10^{-21}	2.76×10^{-5}	1.33
English: Twitter	+0.007	6.26×10^{-1}	+0.012	4.11×10^{-1}	1.47×10^{-6}	1.35
English: New York Times	+0.050	4.56×10^{-4}	+0.044	${ }^{1.91 \times 10^{-3}}$	9.34×10^{-6}	1.32
Arabic: Movie and TV subitites	+0.101	7.13×10^{-24}	+0.101	3.41×10^{-24}	9.41×10^{-6}	1.01
English: Google Books	+0.180	1.68×10^{-37}	+0.176	4.96×10^{-36}	3.36×10^{-5}	1.27
Spanish: Google Books	+0.066	${ }^{1.23 \times 10^{-7}}$	+0.062	${ }^{6.53 \times 10^{-7}}$	9.17×10^{-6}	1.26
Indonesian: Movie subtitles	+0.026	3.43×10^{-2}	+0.027	2.81×10^{-2}	2.87×10^{-6}	1.12
Russian: Movie and TV subtitles	+0.083	7.60×10^{-11}	+0.075	3.28×10^{-9}	1.06×10^{-5}	0.89
French: Twitter	+0.072	4.77×10^{-9}	+0.076	8.94×10^{-10}	1.07×10^{-5}	1.05
Indonesian: Twitter	+0.072	1.17×10^{-9}	+0.072	1.73×10^{-9}	8.16×10^{-6}	1.12
French: Google Books	+0.090	1.02×10^{-12}	+0.085	1.67×10^{-11}	1.25×10^{-5}	1.02
Russian: Twitter	+0.055	6.83×10^{-6}	+0.053	1.67×10^{-5}	7.39×10^{-6}	0.91
Spanish: Google Web Crawl	+0.119	4.45×10^{-24}	+0.106	2.60×10^{-19}	1.45×10^{-5}	1.23
Portuguese: Google Web Crawl	+0.093	4.06×10^{-15}	+0.083	2.91×10^{-12}	1.07×10^{-5}	1.26
German: Twitter	+0.051	${ }^{4.45 \times 10^{-5}}$	+0.050	5.15×10^{-5}	7.39×10^{-6}	1.15
French: Google Web Crawl	+0.104	${ }^{2.12 \times 10^{-18}}$	${ }^{+0.088}$	${ }^{9} 9.64 \times 10^{-14}$	${ }^{1.27 \times 10^{-5}}$	1.01
Korean: Movie subbities	+0.171	1.39×10^{-36} 6.06×10^{-35}	${ }^{+0.185}$	8.85×10^{-43} 496×10^{-37}	${ }_{\substack{2 \\ 2.58 \times 10^{-5} \\ 217 \times 10^{-5}}}$	0.88
German: Google Books	+0.157	${ }^{6} .006 \times 10^{-35}$	+0.162	${ }^{4.96 \times 10^{-37}}$	${ }^{2.17 \times 10^{-5}}$	${ }^{1.03}$
Korean: Twitter German: Google Web Crawl	+0.056	${ }^{4.07 \times 10^{-6}}$	+0.062 +0.085	${ }^{4.25 \times 10^{-7}}$	${ }^{6.98 \times 10^{-6}}$	${ }^{0.93}$
German: Google Web Crawl Chinese: coogle Books	+ +0.099	${ }^{2.05 \times 10^{-16}}$	+ +0.089	${ }_{\text {cole }}^{\substack{1.8 \times 10^{-12} \\ 3.81 \times 10^{-22}}}$	1.20×10^{-6} 8.70×10^{-6}	1.07 1.16
Russian: Google Books	+0.187	5.15×10^{-48}	+0.177	2.24×10^{-43}	2.88×10^{-5}	0.81

Pearson correlation coefficients and p-values, Spearman correlation coefficients and
p-values, and linear fit coefficients for standard deviaition of word happiness h std as a function of word usage frequency rank r. We consider the fit is $h_{\text {std }}=\alpha r+\beta$ for the most common 5000 words in each corpora, determining α and β via orainary least squares, and

[4] P. S. Dodds, E. M. Clark, S. Desu, M. R. Frank, A. J. Reagan, J. R. Williams, L. Mitchell, K. D. Harris, I. M. Kloumann, J. P. Bagrow, K. Megerdoomian, M. T. McMahon, B. F. Tivnan, and C. M. Danforth. Reply to garcia et al.: Common mistakes in measuring frequency dependent word characteristics.
Proc. Natl. Acad. Sci., 2015.
Available online at http://www.pnas.org/content/ early/2015/05/20/1505647112. pdf〒
[5] P. S. Dodds and C. M. Danforth. Measuring the happiness of large-scale written expression: songs, blogs, and presidents.
Journal of Happiness Studies, 2009.
doi:10.1007/s10902-009-9150-9. pdf[З

References IV

[6] P. S. Dodds, K. D. Harris, I. M. Kloumann, C. A. Bliss, and C. M. Danforth.
Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter
PLoS ONE, 6:e26752, 2011. pdf[天
[7] D. Garcia, A. Garas, and F. Schweitzer
Language-dependent relationship between word happiness and frequency.
Proc. Natl. Acad. Sci., 2015.
doi: 10.1073/pnas.1502909112. pdf■
[8] I. M. Kloumann, C. M. Danforth, K. D. Harris, C. A Bliss, and P. S. Dodds.
Positivity of the English language.
PLoS ONE, 7:e29484, 2012. pdf[ऽ

References V
[9] I. M. Kloumann, C. M. Danforth, K. D. Harris, C. A. Bliss, and P. S. Dodds
Positivity of the English language
PLoS ONE, 7:e29484, 2012. pdf[
[10] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K Gray, The Google Books Team, J. P. Pickett,
D. Hoiberg, D. Clancy, P. Norvig, J. Orwant,
S. Pinker, M. A. Nowak, and E. A. Lieberman.

Quantitative analysis of culture using millions of digitized books.
Science Magazine, 331:176-182, 2011. pdf■
[11] J. W. Pennebaker, R. J. Booth, and M. E. Francis Linguistic Inquiry and Word Count: LIWC 2007. at http://bit.ly/S1Dk2L, accessed May 15, 2014. 2007.

References VI

pollyanna
Principle
glish is happ
[12] E. Sandhaus
The New York Times Annotated Corpus.
Linguistic Data Consortium, Philadelphia, 2008
Available online at:
https://doi.org/10.35111/77ba-9x74.
$\underset{\text { Pocs }}{\text { @pocsvox }}$
Pollyanna

