## Allotaxonometry

Last updated: 2023/05/22, 06:32:04 CEST
Principles of Complex Systems, Vols. 1, 2, \& 3D CSYS/MATH 300, 303, \& 394, 2022-2023| @pocsvox

## Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont


Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

The PoCSverse Allotaxonometry 1 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## These slides are brought to you by:

The PoCSverse Allotaxonometry 2 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


## These slides are also brought to you by:

## Special Guest Executive Producer



The PoCSverse Allotaxonometry 3 of 125

A plenitude of distances

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

O On Instagram at pratchett_the_cat[

## Outline

The PoCSverse Allotaxonometry 4 of 125

## A plenitude of distances

Rank-turbulence divergence
Probability-turbulence divergence

## Explorations

## Stories

Mechanics of
Fame
Mechanics of Fame
Superspreading
Lexical Ultrafame
Turbulent times
References
A plenitude of
distances
Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories

Superspreading
Lexical Ultrafame
Turbulent times
References

## Goal-Understand this:



The PoCSverse Allotaxonometry 6 of 125

## 



A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

Site (papers, examples, code):
http://compstorylab.org/allotaxonometry/[

## Foundational papers:


"Allotaxonometry and rank-turbulence divergence: A universal instrument for comparing complex systems" $\boxed{ }$
Dodds et al., , 2020. ${ }^{[11]}$
"Probability-turbulence divergence: A

tunable allotaxonometric instrument for comparing heavy-tailed categorical distributions"
Dodds et al.,
, 2020. ${ }^{[13]}$

## Basic science = Describe + Explain:

Dashboards of single scale instruments helps us understand, monitor, and control systems.

The PoCSverse Allotaxonometry 8 of 125
A plenitude of distances

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Basic science = Describe + Explain:

Dashboards of single scale instruments helps us understand, monitor, and control systems.
Archetype: Cockpit dashboard for flying a plane

The PoCSverse Allotaxonometry 8 of 125
A plenitude of distances

Rank-turbulence divergence

Probability-
turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Basic science = Describe + Explain:

Dashboards of single scale instruments helps us understand, monitor, and control systems.
Archetype: Cockpit dashboard for flying a plane
Okay if comprehendible.

Allotaxonometry 8 of 125
A plenitude of distances

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Basic science = Describe + Explain:

8
Dashboards of single scale instruments helps us understand, monitor, and control systems.
Archetype: Cockpit dashboard for flying a plane
Okay if comprehendible.
Complex systems present two problems for dashboards:

1. Scale with internal diversity of components: We need meters for every species, every company, every word.
2. Tracking change: We need to re-arrange meters on the fly.

The PoCSverse Allotaxonometry 8 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times

## Basic science = Describe + Explain:

Dashboards of single scale instruments helps us understand, monitor, and control systems.
Archetype: Cockpit dashboard for flying a plane
Okay if comprehendible.
Complex systems present two problems for dashboards:

1. Scale with internal diversity of components: We need meters for every species, every company, every word.
2. Tracking change: We need to re-arrange meters on the fly.

- Goal-Create comprehendible, dynamically-adjusting, differential dashboards showing two pieces: ${ }^{1}$

1. 'Big picture' map-like overview,
2. A tunable ranking of components.

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## Basic science = Describe + Explain:

Dashboards of single scale instruments helps us understand, monitor, and control systems.
Archetype: Cockpit dashboard for flying a plane
Okay if comprehendible.
Complex systems present two problems for dashboards:

1. Scale with internal diversity of components: We need meters for every species, every company, every word.
2. Tracking change: We need to re-arrange meters on the fly.

- Goal-Create comprehendible, dynamically-adjusting, differential dashboards showing two pieces: ${ }^{1}$

1. 'Big picture' map-like overview,
2. A tunable ranking of components.

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## Baby names, much studied: ${ }^{[26]}$

The PoCSverse Allotaxonometry 9 of 125
A plenitude of

## distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations

## Stories

Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

> How to build a dynamical dashboard that helps sort through a massive number of interconnected time series?
"Is language evolution grinding to a halt? The scaling of lexical turbulence in English fiction suggests it is not" CB
Pechenick, Danforth, Dodds, Alshaabi, Adams, Dewhurst, Reagan, Danforth, Reagan, and Danforth.
Journal of Computational Science, 21, 24-37, 2017. ${ }^{[29]}$


For language, Zipf's law has two scaling regimes:

$$
f \sim\left\{\begin{array}{l}
r^{-\alpha} \text { for } r \ll r_{\mathrm{b}}, \\
r^{-\alpha^{\prime}} \text { for } r \gg r_{\mathrm{b}}
\end{array}\right.
$$

When comparing two texts, define Lexical turbulence as flux of words across a frequency threshold:

$$
\phi \sim\left\{\begin{array}{l}
f_{\mathrm{thr}}^{-\mu} \text { for } f_{\mathrm{thr}} \ll f_{\mathrm{b}}, \\
f_{\mathrm{thr}}^{-\mu^{\prime}} \text { for } f_{\mathrm{thr}} \gg f_{\mathrm{b}},
\end{array}\right.
$$

Estimates: $\mu \simeq 0.77$ and $\mu^{\prime} \simeq 1.10$, and $f_{\mathrm{b}}$ is the scaling break point.

$$
\phi \sim\left\{\begin{array}{l}
r^{\nu}=r^{\alpha \mu^{\prime}} \text { for } r \ll r_{\mathrm{b}}, \\
r^{\nu^{\prime}}=r^{\alpha^{\prime} \mu} \text { for } r \gg r_{\mathrm{b}} .
\end{array}\right.
$$

Estimates: Lower and upper exponents $\nu \simeq 1.23$ and $\nu^{\prime} \simeq 1.47$.

The PoCSverse Allotaxonometry 11 of 125

A plenitude of
distances
Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

A. Rank-turbulence histogram:


Rank-turbulence histogram:


## Exclusive types:

8
We call types that are present in one system only 'exclusive types'.

Probability
turbulence
divergence
Explorations

When warranted, we will use expressions of the form $\Omega^{(1)}$-exclusive and $\Omega^{(2)}$-exclusive to indicate to which system an exclusive type belongs.

## Probability-turbulence histogram:

The PoCSverse Allotaxonometry 16 of 125


So, so many ways to compare probability distributions:


## "Families of Alpha- Beta- and Gamma-

 Divergences: Flexible and Robust Measures of Similarities"[]Cichocki and Amari, Entropy, 12, 1532-1568, 2010. ${ }^{[8]}$ "Comprehensive survey on distance/similarity measures between probability density functions" ${ }^{\text {U }}$ Sung-Hyuk Cha, International Journal of Mathematical Models and Methods in Applied Sciences, 1, 300-307, 2007. ${ }^{[4]}$

- Comparisons are distances, divergences, similarities, inner products, fidelities ...

So, so many ways to compare probability distributions:


## "Families of Alpha- Beta- and Gamma-

 Divergences: Flexible and Robust Measures of Similarities"[]Cichocki and Amari, Entropy, 12, 1532-1568, 2010. ${ }^{[8]}$ "Comprehensive survey on distance/similarity measures between probability density functions" ${ }^{2}$ Sung-Hyuk Cha, International Journal of Mathematical Models and Methods in Applied Sciences, 1, 300-307, 2007. ${ }^{[4]}$
Comparisons are distances, divergences, similarities, inner products, fidelities ... 60ish kinds of comparisons grouped into 10 families

So, so many ways to compare probability distributions:


## "Families of Alpha- Beta- and Gamma-

Divergences: Flexible and Robust
Measures of Similarities"[]
Cichocki and Amari, Entropy, 12, 1532-1568, 2010. ${ }^{[8]}$ "Comprehensive survey on distance/similarity measures between probability density functions" ${ }^{2}$ Sung-Hyuk Cha, International Journal of Mathematical Models and Methods in Applied Sciences, 1, 300-307, 2007. ${ }^{[4]}$

The PoCSverse Allotaxonometry 17 of 125
A plenitude of distāāc̄ēs

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

Comparisons are distances, divergences, similarities, inner products, fidelities ... 60ish kinds of comparisons grouped into 10 families
A worry: Subsampled distributions with very heavy tails

## Quite the festival:

| 1. Euclidean $L_{2}$ | $d_{\perp}=\sqrt{\sum}\left\|P_{1}-Q\right\|^{\prime}$ | (1) |
| :---: | :---: | :---: |
| 2. City block $L_{1}$ | $d_{c a}=\sum_{i=1}^{s}\left\|P_{i}-Q_{i}\right\|$ | (2) |
| 3. Minkowski $L_{p}$ | $d_{\text {m }}-\sqrt{\sum \sum \mid P_{1}-Q_{1} V^{\prime}}$ | (3) |
| 4. Chebyshev $L_{\text {。 }}$ | $d_{\text {des }}=\max _{1}\left\|P_{1}-Q_{1}\right\|$ | (4) |


| Table 2. $L_{1}$ family |  |  |
| :---: | :---: | :---: |
| 5. Swensen | $\sum \mid P^{-Q}$ |  |
|  | $\sum(p+Q)$ | (5) |


| 6. Gower | $\begin{aligned} & \left.d_{s-}=\frac{1}{d} \sum_{n=1}^{\sum} \frac{\|P-Q\|}{R} \right\rvert\, \\ & -\frac{1}{d} \sum_{i=1}\|P-Q\| \end{aligned}$ | (6) (7) |
| :---: | :---: | :---: |
| 7. Soergel | $d_{=}=\frac{\sum_{1}^{J} P_{-}-Q_{1}}{\sum \operatorname{man}\left(P, P_{1}\right)}$ | (8) |
| 8. Kulcrynskid | $d_{\Delta}=\frac{\sum_{\infty}^{\dot{c}} P-Q \mid}{\sum_{i=1}^{i} \min \left(P_{C} Q\right)}$ | (9) |
| 9. Cankerra | $d_{c}-\sum_{i=1} \frac{\|P-Q\|}{P_{1}+Q}$ | (10) |
| 10. Lorentrian | $d_{L}-\sum_{L} \ln \left(1+\mid P_{\sim}-Q_{1}\right)$ | (11) |
| $* L_{1}$ family $\supset$ (Intersectoin (13), Wave HedgesCzckanowski (16), Ruzicka (21), Tanimoto (23), etc). |  |  |


| Table 3. Intersection family |  |
| :---: | :---: |
| 11. Intersection $\quad s_{5}-\sum \min \left(P_{0}, Q\right)$ | (12) |
| $d_{--a-1-s_{u}-\frac{1}{2} \sum_{s=1}^{1}\left\|R_{1}-Q\right\|}$ | (13) |
| $\begin{aligned} & \text { 12. Wave Hedges } d_{m 1}-\sum\left(0-\frac{\min (P, Q)}{\max (P, Q)}\right) \\ &-\sum \frac{\|P, Q,\|}{\max (P, Q)} \\ & \hline \end{aligned}$ | (14) (15) |
|  | (16) |
|  | (17) |


| 14. Motyka | $x_{1}=\frac{\sum_{\min }^{\dot{\min }(P, Q)}}{\sum_{=}^{5}(P+Q)}$ | (18) |
| :---: | :---: | :---: |
|  |  | (19) |
| 15. Kulczynski : | $A_{0}-\frac{1}{d_{s a}}-\frac{\sum_{=1}^{\circ} \min \left(P_{R}, Q\right)}{\sum_{=1}^{n}\left\|P_{i}-Q\right\|}$ | (20) |
| 16. Ružicka | $\therefore=-\frac{\sum_{1}^{j} \min (P, Q)}{\sum_{1}^{j} \max (P, Q)}$ | (21) |
| $\begin{array}{\|c\|} \hline \text { 17. Taniv } \\ \text { moto } \end{array}$ |  | (22) (23) |


| Table 4. Imerer Product family |  |  |
| :---: | :---: | :---: |
| 18. Inver Product | $s_{\nu}=P \bullet Q-\sum^{\prime} P Q_{1}$ | (24) |
| 19. Harmonic mean | $s_{\text {nut }}=2 \sum_{i=1}^{t} \frac{P Q}{P+Q}$ | (25) |
| 20. Cosine | $A=\frac{\sum_{i=1}^{i} P Q}{\sqrt{\sum_{i=1}^{2} P^{2}} \sqrt{\sum_{n=1}^{s} Q^{2}}}$ | (26) |



| 22. Jaccard | $s_{\infty}-\frac{\sum_{i}^{S} P Q}{\sum Q_{i}^{2} P^{2}+\sum_{i=1}^{s} Q^{2}-\sum_{i=1}^{s} P Q}$ | (28) |
| :---: | :---: | :---: |
|  | $d_{\sim}-1-x_{\sim}-\frac{\sum_{1}^{j}\left(P_{i}-Q\right)^{2}}{\sum_{N}^{*} P_{1}^{2}+\sum_{=1}^{j} Q_{1}^{2}-\sum_{\sum}^{*} P Q}$ | (39) |
| 23. Dice | $s_{n=1}-\frac{2 \sum_{n}^{\infty} P Q}{\sum_{n}^{2} P+\sum Q^{2}}$ | (40) |
|  |  | (31) |


| 24. Fidelity |  |  |
| :---: | :---: | :---: |
| 2 W | $s_{n /}-\sum_{i=1} \sqrt{P_{1} M_{R}}$ | (32) |
| 25. Bhattacharyya | $d_{\alpha}=-\ln \sum \sqrt{\text { PQ }}$ | (33) |
| 26. Hellinger | $d_{n}-\sqrt{2 \sum_{2}^{\prime}(\sqrt{P} \cdot-\sqrt{Q})^{2}}$ | (34) |
|  | $-2 \sqrt{1-\sum_{i=1}^{1} \sqrt{P Q}}$ | (35) |

The PoCSverse
Allotaxonometry 18 of 125

## A plenitude of distān̄̄̄ēs

Rank-turbulence divergence

Probability
turbulence
divergence

| Table 19. Vi |  |  |
| :---: | :---: | :---: |
| Vicis-Wave Hedges | $d_{d}-\sum_{i=1}^{d} \frac{\left\|P_{1}-Q_{0}\right\|}{\min \left(P_{n} Q_{i}\right)}$ | (60) |
| Vxis- <br> Symmetric $\chi^{2}$ | $d_{1}=\sum_{i=1}^{\sum} \frac{(P-Q)^{2}}{\min (P, Q)^{2}}$ | (61) |
| Vixis- <br> Symmetric $x^{2}$ | $d_{-\infty}-\sum_{=1}^{i} \frac{\left(P_{P}-Q\right)^{2}}{\min \left(P_{P}, Q\right)}$ | (62) |
| Vxis- <br> Symmetric $\chi^{2}$ | $d-\quad \sum_{i=1}^{d} \frac{\left(P_{i}-Q\right)^{2}}{\max (P, Q)}$ | (63) |
| max <br> Symmetric <br> $x^{2}$ | $\left(\sum_{=1}^{C} \frac{(P-Q)^{2}}{P_{i}}, \sum_{=1} \frac{(P-Q)^{2}}{Q}\right)$ | (64) |


| $\begin{array}{l}\text { minn- } \\ \text { symmetric } \\ \gamma^{2}\end{array}$ | $d_{a}-\min \left(\sum_{i=1} \frac{\left(P_{1}-Q\right)^{2}}{P_{i}} \sum_{i=1}^{\left(P_{P}-Q\right)^{2}}\right.$ |
| :--- | :--- |
| $Q_{1}$ |  |$\quad$ (65)

Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Shannon tried to slow things down in 1956:

The PoCSverse Allotaxonometry 19 of 125
$\square$
"The bandwagon" ${ }^{\text {C }}$
Claude E Shannon, IRE Transactions on Information Theory, 2, $3,1956 .{ }^{[34]}$
"Information theory has ... become something of a scientific bandwagon."

## Shannon tried to slow things down in 1956:

"The bandwagon" $\mathbb{Z}$
Claude E Shannon,
IRE Transactions on Information Theory, 2,
$3,1956 .{ }^{[34]}$
"Information theory has ... become something of a scientific bandwagon."
"While ... information theory is indeed a valuable tool ... [it] is certainly no panacea for the communication engineer or ... for anyone else.

## Shannon tried to slow things down in 1956:

"The bandwagon" $\mathbb{Z}$
Claude E Shannon,
IRE Transactions on Information Theory, 2,
3, 1956. ${ }^{[34]}$
"Information theory has ... become something of a scientific bandwagon."
"While ... information theory is indeed a valuable tool ... [it] is certainly no panacea for the communication engineer or ... for anyone else.
"A few first rate research papers are preferable to a large number that are poorly conceived or half-finished."

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## We want two main things:

1. A measure of difference between systems
2. A way of sorting which types/species/words contribute to that difference

| Table 1. $L_{p}$ Minkowski family |  |  |
| :--- | :--- | :--- |
| 1. Euclidean $L_{2}$ | $d_{E u c}=\sqrt{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{2}}$ | (1) |
| 2. City block $L_{1}$ | $d_{C B}=\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$ | (2) |
| 3. Minkowski $L_{\mathrm{p}}$ | $d_{M k k}=\sqrt[p]{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{p}}$ | (3) |
| 4. Chebyshev $L_{\infty}$ | $d_{C h e b}=\max _{i}\left\|P_{i}-Q_{i}\right\|$ |  |
| Table 2. $L_{1}$ family (4) <br> 5. Sørensen $d_{\text {sor }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$ |  |  |$.$|  |
| :--- |


| 6. Gower | $\begin{aligned} & d_{\text {gow }}=\frac{1}{d} \sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{R_{i}} \\ & =\frac{1}{d} \sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\| \end{aligned}$ | (6) <br> (7) |
| :---: | :---: | :---: |
| 7. Soergel | $d_{\mathrm{sg}}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)}$ | (8) |
| 8. Kulczynski d | $d_{k u}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}$ | (9) |
| 9. Canberra | $d_{C a n}=\sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{P_{i}+Q_{i}}$ | (10) |
| 10. Lorentzian | $d_{\text {Lor }}=\sum_{i=1}^{d} \ln \left(1+\left\|P_{i}-Q_{i}\right\|\right)$ | (11) |

The PoCSverse Allotaxonometry 20 of 125
A plenitude of distān̄̄ēē

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References
$x+\frac{2}{2}$

## We want two main things:

1. A measure of difference between systems
2. A way of sorting which types/species/words contribute to that difference

## For sorting, many comparisons give the same ordering.

| Table 1. $L_{p}$ Minkowski family |  |  |
| :--- | :--- | :--- |
| 1. Euclidean $L_{2}$ | $d_{E u c}=\sqrt{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{2}}$ | (1) |
| 2. City block $L_{1}$ | $d_{C B}=\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$ | (2) |
| 3. Minkowski $L_{\mathrm{p}}$ | $d_{M k k}=\sqrt[p]{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{p}}$ | (3) |
| 4. Chebyshev $L_{\infty}$ | $d_{C h e b}=\max _{i}\left\|P_{i}-Q_{i}\right\|$ |  |
| Table 2. $L_{1}$ family (4) <br> 5. Sørensen $d_{\text {sor }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$ |  |  |$.$|  |
| :--- |


| 6. Gower | $d_{\text {gow }}=\frac{1}{d} \sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{R_{i}}$ | (6) |
| :--- | :--- | :--- |
|  | $=\frac{1}{d} \sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$ | (7) |
| 7. Soergel | $d_{\text {sg }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)}$ | (8) |
| 8. Kulczynski $d$ | $d_{\text {kat }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}$ | (9) |
| 9. Canberra | $d_{\text {Cant }}=\sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{P_{i}+Q_{i}}$ | (10) |
| 10. Lorentzian | $d_{\text {Lor }}=\sum_{i=1}^{d} \ln \left(1+\left\|P_{i}-Q_{i}\right\|\right)$ | (11) |
| * L family $\supset$ <br> Czekanowski (16), Ruzicka (21), Tanimoto (23), etc $\}$. |  |  |

The PoCSverse Allotaxonometry 20 of 125
A plenitude of distān̄̄ēē

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


We want two main things:

1. A measure of difference between systems
2. A way of sorting which types/species/words contribute to that difference

## For sorting, many

 comparisons give the same ordering.A few basic building blocks:
$\left|P_{i}-Q_{i}\right|$ (dominant)
$\max \left(P_{i}, Q_{i}\right)$
$\min \left(P_{i}, Q_{i}\right)$
$P_{i} Q_{i}$
$\left|P_{i}^{1 / 2}-Q_{i}^{1 / 2}\right|$
(Hellinger)

## Table 1. $L_{p}$ Minkowski family

| 1. Euclidean $L_{2}$ | $d_{E u c}=\sqrt{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{2}}$ | (1) |
| :---: | :---: | :---: |
| 2. City block $L_{1}$ | $d_{C B}=\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$ | (2) |
| 3. Minkowski $L_{\mathrm{p}}$ | $d_{M k k}=\sqrt[p]{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{p}}$ | (3) |
| 4. Chebyshev $L_{\infty}$ | $d_{\text {Cheb }}=\max _{i}\left\|P_{i}-Q_{i}\right\|$ | (4) |
| Table 2. $L_{1}$ family |  |  |
| 5. Sørensen | $d_{\text {sor }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$ | (5) |


| 6. Gower | $\begin{aligned} & d_{\text {gow }}=\frac{1}{d} \sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{R_{i}} \\ & =\frac{1}{d} \sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\| \end{aligned}$ | (6) <br> (7) |
| :---: | :---: | :---: |
| 7. Soergel | $d_{s g}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)}$ | (8) |
| 8. Kulczynski $d$ | $d_{k u l}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}$ | (9) |
| 9. Canberra | $d_{C a n}=\sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{P_{i}+Q_{i}}$ | (10) |
| 10. Lorentzian | $d_{L o r}=\sum_{i=1}^{d} \ln \left(1+\left\|P_{i}-Q_{i}\right\|\right)$ | (11) |
| * $L_{1}$ family $\supset\{$ Intersectoin (13), Wave Hedges Czekanowski (16), Ruzicka (21), Tanimoto (23), etc \} |  |  |

The PoCSverse Allotaxonometry 20 of 125

A plenitude of distān̄̄̄ē

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


Table 1. $L_{p}$ Minkowski family

| 1. Euclidean $L_{2}$ | $d_{E u c}=\sqrt{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{2}}$ |
| :--- | :--- |
| 2. City block $L_{1}$ | $d_{C B}=\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$ |
| 3. Minkowski $L_{\mathrm{p}}$ | $d_{M k}=\sqrt[p]{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{p}}$ |
| 4. Chebyshev $L_{\infty}$ | $d_{C h e b}=\max _{i}\left\|P_{i}-Q_{i}\right\|$ |

Table 2. $L_{1}$ family

| 5. Sørensen | $d_{\text {sor }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$ |
| :--- | ---: |


| 6. Gower | $d_{\text {gow }}=\frac{1}{d} \sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{R_{i}}$ |
| :--- | :--- | :--- |
|  | $=\frac{1}{d} \sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$ |
| 7. Soergel | $d_{s g}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)}$ |
| 8. Kulczynski $d$ | $d_{\text {kut }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}$ |
| 9. Canberra | $d_{C a n}=\sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{P_{i}+Q_{i}}$ |
| 10. Lorentzian | $d_{\text {Lor }}=\sum_{i=1}^{d} \ln \left(1+\left\|P_{i}-Q_{i}\right\|\right)$ |

The PoCSverse Allotaxonometry 21 of 125

A plenitude of distān̄̄̄ēs

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

* $L_{1}$ family $\supset\{$ Intersectoin (13), Wave Hedges (15), Czekanowski (16), Ruzicka (21), Tanimoto (23), etc \}.

Table 1. $L_{p}$ Minkowski family

| 1. Euclidean $L_{2}$ | $d_{E u c}=\sqrt{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{2}}$ |
| :--- | :--- |
| 2. City block $L_{1}$ | $d_{C B}=\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$ |
| 3. Minkowski $L_{\mathrm{p}}$ | $d_{M k}=\sqrt[p]{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{p}}$ |
| 4. Chebyshev $L_{\infty}$ | $d_{C h e b}=\max _{i}\left\|P_{i}-Q_{i}\right\|$ |

Table 2. $L_{1}$ family

| 5. Sørensen | $d_{\text {sor }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$ |
| :--- | ---: |


| 6. Gower | $d_{\text {gow }}=\frac{1}{d} \sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{R_{i}}$ |
| :--- | :--- | :--- |
|  | $=\frac{1}{d} \sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$ |
| 7. Soergel | $d_{s g}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)}$ |
| 8. Kulczynski $d$ | $d_{\text {kut }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}$ |
| 9. Canberra | $d_{C a n}=\sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{P_{i}+Q_{i}}$ |
| 10. Lorentzian | $d_{\text {Lor }}=\sum_{i=1}^{d} \ln \left(1+\left\|P_{i}-Q_{i}\right\|\right)$ |

* $L_{1}$ family $\supset\{$ Intersectoin (13), Wave Hedges (15), Czekanowski (16), Ruzicka (21), Tanimoto (23), etc \}.

The PoCSverse Allotaxonometry 21 of 125

A plenitude of dístān̄̄ēs

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

Shannon's Entropy:

$$
H(P)=\left\langle\log _{2} \frac{1}{p_{\tau}}\right\rangle=\sum_{\tau \in R_{1,2 ; \alpha}} p_{\tau} \log _{2} \frac{1}{p_{\tau}}
$$

The PoCSverse Allotaxonometry 22 of 125

A plenitude of
distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

Shannon's Entropy:

$$
\begin{equation*}
H(P)=\left\langle\log _{2} \frac{1}{p_{\tau}}\right\rangle=\sum_{\tau \in R_{1,2 ; \alpha}} p_{\tau} \log _{2} \frac{1}{p_{\tau}} \tag{1}
\end{equation*}
$$

Kullback-Liebler (KL) divergence:

$$
\begin{align*}
& D^{\mathrm{KL}}\left(P_{2} \| P_{1}\right)=\left\langle\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right\rangle_{P_{2}} \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau}\left[\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right] \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau} \log _{2} \frac{p_{1, \tau}}{p_{2, \tau}} . \tag{2}
\end{align*}
$$

The PoCSverse Allotaxonometry 22 of 125
A plenitude of distān̄c̄ēs
Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

Shannon's Entropy:

$$
\begin{equation*}
H(P)=\left\langle\log _{2} \frac{1}{p_{\tau}}\right\rangle=\sum_{\tau \in R_{1,2 ; \alpha}} p_{\tau} \log _{2} \frac{1}{p_{\tau}} \tag{1}
\end{equation*}
$$

Kullback-Liebler (KL) divergence:

$$
\begin{align*}
& D^{\mathrm{KL}}\left(P_{2} \| P_{1}\right)=\left\langle\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right\rangle_{P_{2}} \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau}\left[\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right] \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau} \log _{2} \frac{p_{1, \tau}}{p_{2, \tau}} . \tag{2}
\end{align*}
$$

Problem: If just one component type in system 2 is not present in system 1, KL divergence $=\infty$.

Shannon's Entropy:

$$
\begin{equation*}
H(P)=\left\langle\log _{2} \frac{1}{p_{\tau}}\right\rangle=\sum_{\tau \in R_{1,2 ; \alpha}} p_{\tau} \log _{2} \frac{1}{p_{\tau}} \tag{1}
\end{equation*}
$$

Kullback-Liebler (KL) divergence:

$$
\begin{aligned}
& D^{\mathrm{KL}}\left(P_{2} \| P_{1}\right)=\left\langle\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right\rangle_{P_{2}} \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau}\left[\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right] \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau} \log _{2} \frac{p_{1, \tau}}{p_{2, \tau}}
\end{aligned}
$$

A plenitude of distān̄̄ē

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

Problem: If just one component type in system 2 is not present in system 1, KL divergence $=\infty$.
\& Solution: If we can't compare a spork and a platypus directly, we create a fictional spork-platypus hybrid.

Shannon's Entropy:

$$
\begin{equation*}
H(P)=\left\langle\log _{2} \frac{1}{p_{\tau}}\right\rangle=\sum_{\tau \in R_{1,2 ; \alpha}} p_{\tau} \log _{2} \frac{1}{p_{\tau}} \tag{1}
\end{equation*}
$$

Kullback-Liebler (KL) divergence:

$$
\begin{aligned}
& D^{\mathrm{KL}}\left(P_{2} \| P_{1}\right)=\left\langle\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right\rangle_{P_{2}} \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau}\left[\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right] \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau} \log _{2} \frac{p_{1, \tau}}{p_{2, \tau}}
\end{aligned}
$$

The PoCSverse
Allotaxonometry 22 of 125
A plenitude of distān̄̄ē

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times

Problem: If just one component type in system 2 is not present in system 1, KL divergence $=\infty$.
\& Solution: If we can't compare a spork and a platypus directly, we create a fictional spork-platypus hybrid.
\& New problem: Re-read solution.

Jensen-Shannon divergence (JSD): [21, 15, 28, 4]

$$
\begin{align*}
& D^{\mathrm{SS}}\left(P_{1} \| P_{2}\right) \\
& =\frac{1}{2} D^{\mathrm{KL}}\left(P_{1} \| \frac{1}{2}\left[P_{1}+P_{2}\right]\right)+\frac{1}{2} D^{\mathrm{KL}}\left(P_{2} \| \frac{1}{2}\left[P_{1}+P_{2}\right]\right) \\
& =\frac{1}{2} \sum_{\tau \in R_{1,2 ; \alpha}}\left(p_{1, \tau} \log _{2} \frac{p_{1, \tau}}{\frac{1}{2}\left[p_{1, \tau}+p_{2, \tau}\right]}+p_{2, \tau} \log _{2} \frac{p_{2, \tau}}{\frac{1}{2}\left[p_{1, \tau}+p_{2, \tau}\right]}\right) . \tag{3}
\end{align*}
$$

Involving a third intermediate averaged system means JSD is now finite: $0 \leq D^{\mathrm{S}}\left(P_{1} \| P_{2}\right) \leq 1$.

A plenitude of diss̄ān̄cēs

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

The PoCSverse Allotaxonometry 23 of 125
A plenitude of distān̄̄̄ē

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Involving a third intermediate averaged system means JSD is now finite: $0 \leq D^{\mathrm{S}}\left(P_{1} \| P_{2}\right) \leq 1$.
Generalized entropy divergence: [8]

$$
\begin{align*}
& D_{\alpha}^{\mathrm{AS2}}\left(P_{1} \| P_{2}\right)= \\
& \frac{1}{\alpha(\alpha-1)} \sum_{\tau \in R_{1,2 ; \alpha}}\left[\left(p_{\tau, 1}^{1-\alpha}+p_{\tau, 2}^{1-\alpha}\right)\left(\frac{p_{\tau, 1}+p_{\tau, 2}}{2}\right)^{\alpha}-\left(p_{\tau, 1}+p_{\tau, 2}\right)\right] . \tag{4}
\end{align*}
$$

Produces JSD when $\alpha \rightarrow 0$.


Rank-turbulence histogram:



1. Rank-based.

The PoCSverse Allotaxonometry 27 of 125

A plenitude of distances

Rank-turbulence
divergēnce
Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.

The PoCSverse Allotaxonometry 27 of 125
A plenitude of distances

Rank-turbulence divērgēncē

Probability turbulence divergence

Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.
4. Linearly separable, for interpretability.

The PoCSverse Allotaxonometry 27 of 125

A plenitude of
distances
Rank-turbulence
divergēnce
Probability
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any principled subset may be equally well compared (e.g., hashtags on Twitter, stock prices of a certain sector, etc.).

Rank-turbulence divergēn̄ē

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any principled subset may be equally well compared (e.g., hashtags on Twitter, stock prices of a certain sector, etc.).
6. Turbulence-handling: Suited for systems with rank-ordered component size distribution that are heavy-tailed.

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any principled subset may be equally well compared (e.g., hashtags on Twitter, stock prices of a certain sector, etc.).
6. Turbulence-handling: Suited for systems with rank-ordered component size distribution that are heavy-tailed.
7. Scalable: Allow for sensible comparisons across system sizes.

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any principled subset may be equally well compared (e.g., hashtags on Twitter, stock prices of a certain sector, etc.).
6. Turbulence-handling: Suited for systems with rank-ordered component size distribution that are heavy-tailed.
7. Scalable: Allow for sensible comparisons across system sizes.
8. Tunable.

The PoCSverse Allotaxonometry 27 of 125

A plenitude of distances

Rank-turbulence divergēn̄ē

Probability
turbulence
divergence
Explorations
Stories
Mechanics of

Superspreading
Lexical Ultrafame
Turbulent times
References
$\qquad$

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any principled subset may be equally well compared (e.g., hashtags on Twitter, stock prices of a certain sector, etc.).
6. Turbulence-handling: Suited for systems with rank-ordered component size distribution that are heavy-tailed.
7. Scalable: Allow for sensible comparisons across system sizes.
8. Tunable.
9. Story-finding: Features $1-8$ combine to show which component types are most 'important'

The PoCSverse Allotaxonometry 27 of 125
A plenitude of distances

Rank-turbulence divergēnce

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Some good things about ranks:

The PoCSverse
Allotaxonometry
28 of 125
A plenitude of distances

Rank-turbulence divergēnce

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Some good things about ranks:

## Working with ranks is intuitive

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Some good things about ranks:

## Working with ranks is intuitive <br> Affords some powerful statistics (e.g., Spearman's rank correlation coefficient)

A plenitude of
distances
Rank-turbulence divērgēncē

Probability
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## Some good things about ranks:

Working with ranks is intuitive
Affords some powerful statistics (e.g., Spearman's rank correlation coefficient)
Can be used to generalize beyond systems with probabilities

A plenitude of
distances
Rank-turbulence divergēn̄ē

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times

## Some good things about ranks:

Working with ranks is intuitive
Affords some powerful statistics (e.g., Spearman's rank correlation coefficient)
Can be used to generalize beyond systems with probabilities

A start:

$$
\begin{equation*}
\left|\frac{1}{r_{\tau, 1}}-\frac{1}{r_{\tau, 2}}\right| \tag{5}
\end{equation*}
$$

. Inverse of rank gives an increasing measure of 'importance'
High rank means closer to rank 1
We assign tied ranks for components of equal 'size'

## Some good things about ranks:

Working with ranks is intuitive
Affords some powerful statistics (e.g., Spearman's rank correlation coefficient)
Can be used to generalize beyond systems with probabilities

A start:

$$
\begin{equation*}
\left|\frac{1}{r_{\tau, 1}}-\frac{1}{r_{\tau, 2}}\right| \tag{5}
\end{equation*}
$$

Inverse of rank gives an increasing measure of 'importance'
High rank means closer to rank 1
We assign tied ranks for components of equal 'size'
Issue: Biases toward high rank components

The PoCSverse Allotaxonometry 29 of 125

## We introduce a tuning parameter:

$$
\left|\frac{1}{\left[r, l^{\alpha}\right.}-\frac{1}{\left[r_{r, 2}\right]^{\mid c / a}}\right|^{1 / \alpha} .
$$

A plenitude of

## distances

Rank-turbulence divergēnce è
(6)

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## We introduce a tuning parameter:

$$
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha}
$$

As $\alpha \rightarrow 0$, high ranked components are increasingly dampened


## We introduce a tuning parameter:

$$
\begin{equation*}
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha} . \tag{6}
\end{equation*}
$$

Rank-turbulence divergēnce

Probability-
turbulence
divergence
Explorations
As $\alpha \rightarrow 0$, high ranked components are increasingly dampened
For words in texts, for example, the weight of common words and rare words move increasingly closer together.

## We introduce a tuning parameter:

$$
\begin{equation*}
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha} . \tag{6}
\end{equation*}
$$

Rank-turbulence divergencee

Probability
turbulence
divergence
Explorations
As $\alpha \rightarrow 0$, high ranked components are increasingly dampened
\& For words in texts, for example, the weight of common words and rare words move increasingly closer together.
As $\alpha \rightarrow \infty$, high rank components will dominate.

## We introduce a tuning parameter:

$$
\begin{equation*}
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha} . \tag{6}
\end{equation*}
$$

Rank-turbulence dīvergēn̄ēe

Probability
turbulence
divergence
Explorations
As $\alpha \rightarrow 0$, high ranked components are increasingly dampened
\& For words in texts, for example, the weight of common words and rare words move increasingly closer together.
As $\alpha \rightarrow \infty$, high rank components will dominate.
. For texts, the contributions of rare words will vanish.

R The limit of $\alpha \rightarrow 0$ does not behave well for

$$
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha} .
$$

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

- The limit of $\alpha \rightarrow 0$ does not behave well for

$$
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha} .
$$

The leading order term is:

$$
\begin{equation*}
\left(1-\delta_{r_{\tau, 1} r_{\tau, 2}}\right) \alpha^{1 / \alpha}\left|\ln \frac{r_{\tau, 1}}{r_{\tau, 2}}\right|^{1 / \alpha} \tag{7}
\end{equation*}
$$

which heads toward $\infty$ as $\alpha \rightarrow 0$.
Oops.

- The limit of $\alpha \rightarrow 0$ does not behave well for

$$
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha} .
$$

The PoCSverse
Allotaxonometry 30 of 125
A plenitude of distances

Rank-turbulence dīvergēncee

Probability-
turbulence
divergence
The leading order term is:

$$
\begin{equation*}
\left(1-\delta_{r_{\tau, 1} r_{\tau, 2}}\right) \alpha^{1 / \alpha}\left|\ln \frac{r_{\tau, 1}}{r_{\tau, 2}}\right|^{1 / \alpha}, \tag{7}
\end{equation*}
$$

Mechanics of
Fame
Superspreading
Lexical Ultrafame
which heads toward $\infty$ as $\alpha \rightarrow 0$.
Oops.
But the insides look nutritious:

$$
\left|\ln \frac{r_{\tau, 1}}{r_{\tau, 2}}\right|
$$

is a nicely interpretable log-ratio of ranks.

## Some reworking:

$$
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)}
$$

The PoCSverse Allotaxonometry 31 of 125

A plenitude of distances

Rank-turbulence divergēn̄ē

Probability
(8)
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Some reworking:

$$
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)}
$$

The PoCSverse Allotaxonometry 31 of 125
A plenitude of distances

Rank-turbulence
divergence
(8)

Keeps the core structure.

- divergencee-----

Probability-
turbulence
divergence
Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Some reworking:

$$
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)}
$$

The PoCSverse Allotaxonometry 31 of 125
A plenitude of distances

Keeps the core structure.
Large $\alpha$ limit remains the same.

Rank-turbulence
divergence
(8)

- divergēn̄ēe----

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## Some reworking:

$$
\begin{equation*}
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)} \tag{8}
\end{equation*}
$$

The PoCSverse Allotaxonometry 31 of 125
A plenitude of distances

Rank-turbulence
divergence

Keeps the core structure.
Large $\alpha$ limit remains the same.
$\alpha \rightarrow 0$ limit now returns log-ratio of ranks.

- divergencē-

Probability-
turbulence
divergence
Explorations

## Stories

Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## Some reworking:

$$
\begin{equation*}
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)} \tag{8}
\end{equation*}
$$

## Keeps the core structure.

Large $\alpha$ limit remains the same.
$\alpha \rightarrow 0$ limit now returns log-ratio of ranks.
Next: Sum over $\tau$ to get divergence.

The PoCSverse Allotaxonometry 31 of 125

A plenitude of
distances
Rank-turbulence
divergence
Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## Some reworking:

$$
\begin{equation*}
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)} \tag{8}
\end{equation*}
$$

Reeps the core structure.
Large $\alpha$ limit remains the same.
$\alpha \rightarrow 0$ limit now returns log-ratio of ranks.
Next: Sum over $\tau$ to get divergence.
Still have an option for normalization.

The PoCSverse Allotaxonometry 31 of 125

A plenitude of
distances
Rank-turbulence
divergence
Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## Some reworking:

$$
\begin{equation*}
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)} \tag{8}
\end{equation*}
$$

Keeps the core structure.
R Large $\alpha$ limit remains the same.

- $\alpha \rightarrow 0$ limit now returns log-ratio of ranks.

R Next: Sum over $\tau$ to get divergence.
Still have an option for normalization.

## Rank-turbulence divergence:

$$
\begin{equation*}
D_{\alpha}^{\mathrm{R}}\left(R_{1} \| R_{2}\right)=\frac{1}{\mathcal{N}_{1,2 ; \alpha}} \sum_{\tau \in R_{1,2 ; \alpha}} \delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \tag{9}
\end{equation*}
$$

## Normalization:

Take a data-driven rather than analytic approach to determining $\mathcal{N}_{1,2 ; \alpha}$.

Rank-turbulence divergenc̄e

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Normalization:

Take a data-driven rather than analytic approach to determining $\mathcal{N}_{1,2 ; \alpha}$.
Compute $\mathcal{N}_{1,2 ; \alpha}$ by taking the two systems to be disjoint while maintaining their underlying Zipf distributions.

## Normalization:

Rake a data-driven rather than analytic approach to determining $\mathcal{N}_{1,2 ; \alpha}$.
Compute $\mathcal{N}_{1,2 ; \alpha}$ by taking the two systems to be disjoint while maintaining their underlying Zipf distributions.

Rank-turbulence divergēnce

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times

## Normalization:

Take a data-driven rather than analytic approach to determining $\mathcal{N}_{1,2 ; \alpha}$.

- Compute $\mathcal{N}_{1,2 ; \alpha}$ by taking the two systems to be disjoint while maintaining their underlying Zipf distributions.
Ensures: $0 \leq D_{\alpha}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \leq 1$
Limits of 0 and 1 correspond to the two systems having identical and disjoint Zipf distributions.


## Rank-turbulence divergence:

Summing over all types, dividing by a normalization prefactor $\mathcal{N}_{1,2 ; \alpha}$ we have our prototype:

Probability-
turbulence
divergence
Explorations
Stories

$$
D_{\alpha}^{\mathrm{R}}\left(R_{1} \| R_{2}\right)=\frac{1}{\mathcal{N}_{1,2 ; \alpha}} \frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1,2 ; \alpha}}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|_{\substack{1 /\left(\begin{array}{l}
\text { Qeflyanics of } \\
\text { Fame } \\
\text { Superspreading } \\
\text { Lexical Ultrafame } \\
\text { (10) } \\
\text { Turbulent times } \\
\text { References }
\end{array}\right.}}^{\substack{ \\
\hline}}
$$

## General normalization:

lif the Zipf distributions are disjoint, then in $\Omega^{(1)}$ 's merged ranking, the rank of all $\Omega^{(2)}$ types will be $r=N_{1}+\frac{1}{2} N_{2}$, where $N_{1}$ and $N_{2}$ are the number of distinct types in each system.

## General normalization:

纺 lif the Zipf distributions are disjoint, then in $\Omega^{(1)}$ 's merged ranking, the rank of all $\Omega^{(2)}$ types will be $r=N_{1}+\frac{1}{2} N_{2}$, where $N_{1}$ and $N_{2}$ are the number of distinct types in each system.
Similarly, $\Omega^{(2)}$ 's merged ranking will have all of $\Omega^{(1)}$ 's types in last place with rank $r=N_{2}+\frac{1}{2} N_{1}$.

Rank-turbulence divergēn̄ē

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## General normalization:

. 8 lif the Zipf distributions are disjoint, then in $\Omega^{(1)}$ 's merged ranking, the rank of all $\Omega^{(2)}$ types will be $r=N_{1}+\frac{1}{2} N_{2}$, where $N_{1}$ and $N_{2}$ are the number of distinct types in each system.
Similarly, $\Omega^{(2)}$ 's merged ranking will have all of $\Omega^{(1)}$ 's types in last place with rank $r=N_{2}+\frac{1}{2} N_{1}$.
The normalization is then:

$$
\begin{aligned}
\mathcal{N}_{1,2 ; \alpha} & =\frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1}}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[N_{1}+\frac{1}{2} N_{2}\right]^{\alpha}}\right|^{1 /(\alpha+1)} \quad \begin{array}{l}
\text { Superspreading } \\
\text { Lexical Ultrafame } \\
\text { Turbulent } \\
\text { References }
\end{array} \\
& +\frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1}}\left|\frac{1}{\left[N_{2}+\frac{1}{2} N_{1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)}
\end{aligned}
$$

The PoCSverse Allotaxonometry 35 of 125

A plenitude of distances

Rank-turbulence divergēnce
$D_{0}^{\mathrm{R}}\left(R_{1} \| R_{2}\right)=\sum_{\tau \in R_{1,2 ; \alpha}} \delta D_{0, \tau}^{\mathrm{R}}=\frac{1}{\mathcal{N}_{1,2 ; 0}} \sum_{\tau \in R_{1,2 ; \alpha}}\left|\ln \frac{r_{\tau, 1}}{r_{\tau, 2}}\right|$,
where

$$
\mathcal{N}_{1,2 ; 0}=\sum_{\tau \in R_{1}}\left|\ln \frac{r_{\tau, 1}}{N_{1}+\frac{1}{2} N_{2}}\right|+\sum_{\tau \in R_{2}}\left|\ln \frac{r_{\tau, 2}}{\frac{1}{2} N_{1}+N_{2}}\right| .
$$

(13)

Probability-
turbulence divergence

Explorations

Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times

## Largest rank ratios dominate.

## Limit of $\alpha \rightarrow \infty$ :

$$
\begin{align*}
& D_{\infty}^{\mathrm{R}}\left(R_{1} \| R_{2}\right)=\sum_{\tau \in R_{1,2 ; \alpha}} \delta D_{\infty, \tau}^{\mathrm{R}} \\
& =\frac{1}{\mathcal{N}_{1,2 ; \infty}} \sum_{\tau \in R_{1,2 ; \alpha}}\left(1-\delta_{r_{\tau, 1} r_{\tau, 2}}\right) \max _{\tau}\left\{\frac{1}{r_{\tau, 1}}, \frac{1}{r_{\tau, 2}}\right\} . \tag{14}
\end{align*}
$$

The PoCSverse Allotaxonometry 36 of 125
A plenitude of distances

Rank-turbulence dīvergēncee

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
where

$$
\begin{equation*}
\mathcal{N}_{1,2 ; \infty}=\sum_{\tau \in R_{1}} \frac{1}{r_{\tau, 1}}+\sum_{\tau \in R_{2}} \frac{1}{r_{\tau, 2}} . \tag{15}
\end{equation*}
$$

Highest ranks dominate.


## Probability-turbulence divergence:

$$
D_{\alpha}^{\mathrm{P}}\left(P_{1} \| P_{2}\right)=\frac{1}{\mathcal{N}_{1,2 ; \alpha}^{p}} \frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1,2 ; \alpha}}\left|\left[p_{\tau, 1}\right]^{\alpha}-\left[p_{\tau, 2}\right]^{\alpha}\right|^{1 /(\alpha+1)} .
$$

(16)
\& For the unnormalized version ( $\mathcal{N}_{1,2 ; \alpha}^{P}=1$ ), some troubles return with 0 probabilities and $\alpha \rightarrow 0$.
Weep not: $\mathcal{N}_{1,2 ; \alpha}^{P}$ will save the day.

## Normalization:

With no matching types, the probability of a type present in one system is zero in the other, and the sum can be split between the two systems' types:

$$
\mathcal{N}_{1,2 ; \alpha}^{\mathrm{P}}=\frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1}}\left[p_{\tau, 1}\right]^{\alpha /(\alpha+1)}+\frac{\alpha+1}{\alpha} \sum_{\tau \in R_{2}}\left[p_{\tau, 2}\right]^{\alpha /(\alpha+\text { Sperspreading }}
$$

## Limit of $\alpha=0$ for probability-turbulence divergence

if both $p_{\tau, 1}>0$ and $p_{\tau, 2}>0$ then

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \frac{\alpha+1}{\alpha}\left|\left[p_{\tau, 1}\right]^{\alpha}-\left[p_{\tau, 2}\right]^{\alpha}\right|^{1 /(\alpha+1)}=\left|\ln \frac{p_{\tau, 2}}{p_{\tau, 1}}\right| . \tag{18}
\end{equation*}
$$

But if $p_{\tau, 1}=0$ or $p_{\tau, 2}=0$, limit diverges as $1 / \alpha$.

Probability-turbule divergence-----

## Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Limit of $\alpha=0$ for probability-turbulence divergence

 Normalization:$$
\begin{equation*}
\mathcal{N}_{1,2 ; \alpha}^{\mathrm{P}} \rightarrow \frac{1}{\alpha}\left(N_{1}+N_{2}\right) . \tag{19}
\end{equation*}
$$

Because the normalization also diverges as $1 / \alpha$, the divergence will be zero when there are no exclusive types and non-zero when there are exclusive types.

Rank-turbulence divergence

Probability-turbule divergēnce

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

A plenitude of
Combine these cases into a single expression:

$$
\begin{equation*}
D_{0}^{\mathrm{P}}\left(P_{1} \| P_{2}\right)=\frac{1}{\left(N_{1}+N_{2}\right)} \sum_{\tau \in R_{1,2 ; 0}}\left(\delta_{p_{\tau, 1}, 0}+\delta_{0, p_{\tau, 2}}\right) . \tag{20}
\end{equation*}
$$

The term $\left(\delta_{p_{\tau, 1}, 0}+\delta_{0, p_{\tau, 2}}\right)$ returns 1 if either $p_{\tau, 1}=0$ or $p_{\tau, 2}=0$, and 0 otherwise when both $p_{\tau, 1}>0$ and $p_{\tau, 2}>0$.
Ratio of types that are exclusive to one system relative to the total possible such types,

## distances

Rank-turbulence divergence

Probability-turbule divergēnce

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Type contribution ordering for the limit of $\alpha=0$

\& In terms of contribution to the divergence score, all exclusive types supply a weight of $1 /\left(N_{1}+N_{2}\right)$. We can order them by preserving their ordering as $\alpha \rightarrow 0$, which amounts to ordering by descending probability in the system in which they appear.
And while types that appear in both systems make no contribution to $D_{0}^{\mathrm{P}}\left(P_{1} \| P_{2}\right)$, we can still order them according to the log ratio of their probabilities.
The overall ordering of types by divergence contribution for $\alpha=0$ is then: (1) exclusive types by descending probability and then (2) types appearing in both systems by descending log ratio.

## Limit of $\alpha=\infty$ for probability-turbulence divergence

$D_{\infty}^{\mathrm{P}}\left(P_{1} \| P_{2}\right)=\frac{1}{2} \sum_{\tau \in R_{1,2 ; \infty}}\left(1-\delta_{p_{\tau, 1}, p_{\tau, 2}}\right) \max \left(p_{\tau, 1}, p_{\tau, 2}\right)$
The PoCSverse Allotaxonometry 44 of 125

A plenitude of distances

Rank-turbulence divergence

Probability-turbuler divergēnce

Explorations
where
(21) Superspreading

$$
\begin{equation*}
\mathcal{N}_{1,2 ; \infty}^{\mathrm{p}}=\sum_{\tau \in R_{1,2 ; \infty}}\left(p_{\tau, 1}+p_{\tau, 2}\right)=1+1=2 . \tag{22}
\end{equation*}
$$

Stories
Mechanics of Fame Lexical Ultrafame Turbulent times
References

## Connections for PTD:

$\alpha=0$ : Similarity measure Sørensen-Dice coefficient ${ }^{[10,35,22]}, F_{1}$ score of a test's accuracy ${ }^{[36,33]}$.
$\alpha=1 / 2$ : Hellinger distance ${ }^{[18]}$ and Mautusita distance ${ }^{[23]}$.
\& $\alpha=1$ : Many including all $L^{(p)}$-norm type constructions.
\& $\alpha=\infty$ : Motyka distance ${ }^{[9]}$.






$\Omega_{1}:$ Market caps, 2007-Q4 Instrument: Rank-Turbulence Divergence


Cisco Sysfems in The Cocal Cbla Co

$$
\begin{aligned}
& \text { JPMorgan Chase \& Co } \\
& \text { Amazon.com Inc } \\
& \text { UnitedHealth Group Inc }
\end{aligned}
$$ Altria Group Inc




1,000
Counts per cell
$\Omega_{2}:$ Market caps, 2018-Q4
Microsoft Corp


$$
.01 \times 10^{-3}
$$

Bueing Co
Home Depot Inc
Arngen Inc

alenture ole

Mastercard Ine
Accenture ple
NVIDIA Corp

Netflix Inc
Allergan ple
AbbVie Inc
BroadcomLtd

Centene Corp
Avangrid Inc
Wayfair Inc


10,000 ${ }_{8}^{8}$

10,000
$\frac{0^{2}}{0^{2}} a^{2}$

Charter Commanicati...Inc
HCA Holdings In

$39.8 \%$ total market cap $60.2 \%$ $78.8 \%$ all companies $61.5 \%$
$48.8 \%$ exclusive companies $34.4 \%$

Divergence contribution $\delta D_{1 / 3, \tau}^{\mathrm{R}}$ (\%)

| 0.2 | 0.15 | 0.1 | 0.05 | 0 | 0.05 | 0.1 | 0.15 | 0.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

General Electric Co $2 \rightleftharpoons 78$

- 55 Facebook Inc $\triangleright$

Exxon Mobil Corp $1 \rightleftharpoons 9$
Amazon.com Inc
Visa Inc Class A $\triangleright$
Apple Inc
Microsoft Corp
AbbVie Inc $D$
$\triangleleft$ Genentech Inc $31 \rightleftharpoons 4,187.5$

## AT\&T Inc $4 \rightleftharpoons 19$

Anheuser-Busch InBe.../NV D
$\triangleleft$ Wachovia Corp $33 \rightleftharpoons 4,187.5$
$\triangleleft$ Twenty-First Century Fox $40 \rightleftharpoons 4,187.5$
Berkshire Hathaway ...s B $38 \rightleftharpoons 2,331$
Philip Morris Inter...Inc $>$
$\triangleleft$ Time Warner Inc $47 \rightleftharpoons 4,187.5$
PayPal Holdings Inc®
AIG Inc $17 \rightleftharpoons 159$
$\triangleleft$ Monsanto Co $54=4,187$.
4 Merrill Lynch \& Co 66:4,187.5
$214-24$ Mastercard Inc
Procter \& Gamble Co $5 \rightleftharpoons 15$
4 Schering-Plough Corp $74 \rightleftharpoons 4,187.5$
$\triangle$ Alcon Inc $76 \rightleftharpoons 4,187.5$
Charter Communicati...Inc $\triangleright$
Altria Group Inc $12 \rightleftharpoons 52$
$\triangleleft$ EMC Corp $83 \rightleftharpoons 4,187.5$
$\triangleleft$ Anheuser-Busch Inc. $87 \rightleftharpoons 4,187.5$
Tesla Inc॰
Salesforce.com Inc
$\measuredangle$ DowDuPont Inc $91 \rightleftharpoons 4,187.5$ 4 Barrick Gold Corp. $95 \rightleftharpoons 4,187.5$

Kraft Heinz Co>
HP Inc $26 \rightleftharpoons 162$
4 Lehman Brothers Holding $103 \rightleftharpoons 4,187.5$
JPMorgan Chase \& Co
$\checkmark$ Yahoo! Inc $109 \rightleftharpoons 4,187.5$


FIG. 8. Rank-turbulence divergence allotaxonograph [34] of word rank distributions in the incel vs random comment corpora. The rank-rank histogram on the left shows the density of words by their rank in the incel comments corpus against their rank in the random comments corpus. Words at the top of the diamond are higher frequency, or lower rank. For example, the word "the" appears at the highest observed frequency, and thus has the lowest rank, 1. This word has the lowest rank in both corpora, so its coordinates lie along the center vertical line in the plot. Words such as "women" diverge from the center line because their rank in the incel corpus is higher than in the random corpus. The top 40 words with greatest divergence contribution are shown on the right. In this comparison, nearly all of the top 40 words are more common in the incel corpus, so they point to the right. The word that has the most notable change in rank from the random to incel corpus is "women", the object of hatred

## Effect of subsampling:



The PoCSverse Allotaxonometry 54 of 125

A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

$$
\Omega_{1} \text { : Pride and Prejudice, first half }
$$

Instrument: Probability-Turbulence Divergend Instrument: Probability-Turbulence Divergeng


| 0 | $1 / 4$ | $1 / 2$ | $3 / 4$ | 1 | $3 / 2$ | 2 | 3 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$D_{3 / 4}^{p}\left(\Omega_{1} \mid \Omega_{2}\right)=0.721$
$\propto \sum_{\pi}\left|p_{T, 2}^{3 / 4}-p_{T, 2}^{3 / 4}\right|^{4 / 7}$
$\Omega_{2}:$ Pride and Prejudice, second half



Divergence contribution $\delta D_{3 / 4, \tau}^{\mathrm{P}}\left(\times 10^{-3} \%\right)$
$\qquad$
$30=31$ Miss Bingley
she had $9 \rightleftharpoons 29$
had been $6 \rightleftharpoons 16$
I was $36.5=334$
2 in the Sir William
to be $1 \rightleftharpoons 3$
Miss Lucas
her uncle $201 \rightleftharpoons 20,087$
of Lady $\triangleright$
Lady Catherine
7 it is
uncle and $176 \rightleftharpoons 2,981$
a very
Collins was
of the
$\triangleleft$ and Gardiner $317 \rightleftharpoons 44,665.5$
glad to young ladies
at Pemberley $201 \rightleftharpoons 2.981 .5$
and aunt $201=2,981.5$
every thing the room

to Brighton $430 \rightleftharpoons 44,665.5$
It was $32.5 \rightleftharpoons 93$

- $381=105$ young man
30.. -0 and the
to all $201 \rightleftharpoons 1,444$
sort of
$082=87$ does not
$50.0 \%-50.0 \%$
$\Omega_{1}$ : Pride and Prejudice, first half Instrument: Probability-Turbulence Divergenge $\alpha=0$

$\Omega_{2}:$ Pride and Prejudice, second half
 ${ }_{1}$ Qx $_{x}$ much I

10,000
100,000
Counts per cell

$\boldsymbol{v}^{\text {e }}$

$50.0 \%$ total counts $50.0 \%$
$58.3 \%$ all 2 -grams $58.4 \%$
$71.3 \%$ exclusive 2 -grams $71.4 \%$

Divergence contribution $\delta D_{0, \tau}^{\mathrm{P}}\left(\times 10^{-3} \%\right)$ $\begin{array}{lllllllll}2 & 1.5 & 1 & 0.5 & 0 & 0.5 & 1 & 1.5\end{array}$

## of Ladyp

4 and Gardiner $317 \rightleftharpoons 44.665 .5$
4every thing $381 \rightleftharpoons 44,665.5$

## $44.652=448$ the Parsonage $>$

$\triangleleft$ to Brighton $430 \rightleftharpoons 44,665.5$ a ball $>$
$44.852=494.5$ met with『
$14.652=194.5$ to danceb said Darcyb
< much I $576=44.665 .5$
4 letter from $576 \rightleftharpoons 14,665.5$
$47.052=0.35$ leave toD
$11.652-635$ I see $>$
the ball $D$
$\triangleleft$ the housekeeper $664 \rightleftharpoons 44,665.5$

- again to $664 \rightleftharpoons 44,665.5$
$44.652=750.5$ his father $D$

4. 652 . 750.5 Charlotte Lucas $\triangleright$
$\triangleleft$ ought not $771 \rightleftharpoons 44,665.5$ $\triangleleft$ you did $771 \rightleftharpoons 44,665.5$ 4 from it $771 \rightleftharpoons 44,665.5$
his two D 14. 552 - 890.5 the dance $\triangleright$ $4.7 .652=896.5$ and soond
$44.652=896.5$ she continued $\triangleright$
$14.652=896.5$ speaking to D $44.552=896.5$ by Darcy
of men $>$
4 was certain $915 \rightleftharpoons 44.665 .5$
4it possible $915 \rightleftharpoons 44,665.5$
4 his brother $915 \rightleftharpoons 44,665.5$
$\checkmark$ that such $915 \rightleftharpoons 44,665.5$
4., $652=1.108 .5$ to play $>$
$44,652=1,108.5$ half so>
$44,652=1.108 .0$ is quiteb
$44,652=1,108.5$ my feelings $\triangleright$
$44,652=1,108.5$ am convinced $D$
$44,652=1,108.5$ a friend $\triangleright$
5. $652=1.108 .5$ of dancing $\triangleright$
4.4.052=1. 008.5 my fairD
$\Omega_{1}$ : Pride and Prejudice, first half
Instrument: Probability-Turbulence Divergenge

Divergence contribution $\delta D_{\infty, \tau}^{\mathrm{P}}(\%)$

| 0.2 | 0.1 | 0 | 0.1 | 0.2 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 |

to be 1 the $=2$ in the I am
of her $4=6$
had been $6 \rightleftharpoons 16$
of his $7 \rightleftharpoons 7$

## I have

she had $9=29$
it was $10 \rightleftharpoons 20$ and the
to her $11 \rightleftharpoons 10$
that he $12 \rightleftharpoons 11$
could not $13 \rightleftharpoons 12$
she was $14 \rightleftharpoons 14$
have been $15.5 \rightleftharpoons 35.5$
for the
11 he had
such a $17.5 \rightleftharpoons 24.5$
7 it is
on the
he was $21.5 \rightleftharpoons 29$
did not
that she $23 \rightleftharpoons 24$
$52.5=22$ do not
was not 24.5
with the Lady Catherine
all the $26=53.5$
in a $27=27$ of a Miss Bingley

## she could $28 \rightleftharpoons 32$

that 1
in her 30.5 .75
in her I do
by the $32.5 \rightleftharpoons 42$
$47.0 \%-53.0 \%$


Divergence contribution $\delta D_{3 / 4, \tau}^{\mathrm{P}}\left(\times 10^{-4} \%\right)$
$\qquad$

Instrument: Probability-Turbulence Divergenge


$$
\begin{aligned}
& D_{3 / 4}^{\mathrm{p}}\left(\Omega_{1} \mid \Omega_{2}\right)=0.716 \\
& \propto \sum_{\tau}\left|p_{\tau, 2}^{3 / 4}-p_{\tau, 2}^{3 / 4}\right|^{4 / 7}
\end{aligned}
$$

$\Omega_{2}:$ Twitter on 2020/05/30

the protest
cops are
8 black lives
8 vs black
all cops
AN ALECTED
George Floyd $10^{-2}$
Crew Dragon
Black members
NHE PDOTEST
potestors rake
$20+5 E T Y$
$\square_{10}^{1}$
1,000
10,000
100,000
$1,000,000$
10,000,000
Counts per cell

George Floyd $>$
the coronavirus $10 \rightleftharpoons 806$

```
                                    the police
                                    in Minneapolis
                                    black people
```

tested positive $26 \rightleftharpoons 6,425.5$
positive for $31 \rightleftharpoons 6,125$.
the virus $28 \rightleftharpoons 1,404$
for coronavirus $45 \rightleftharpoons 13,978.5$
of coronavirus $50 \rightleftharpoons 14,998.5$
Tom Hanks $62 \rightleftharpoons 192$

$\Omega_{1}:$ Twitter on 2020/03/12 Instrument: Probability-Turbulence Divergenge

himy fo commit WHO. let the




$\Omega_{2}:$ Twitter on $2020 / 05 / 30$
you want to
the White House
needs to be
If you are
the death of
front of the
to the ground
the same reason
them to stop
stand in ...ity
She says she


Divergence contribution $\delta D_{\infty, \tau}^{\mathrm{P}}(\%)$
$\begin{array}{lllllll}0.03 & 0.02 & 0.01 & 0 & 0.01 & 0.02 & 0.0\end{array}$
tested positive for $1 \rightleftharpoons 4,975$.
of George Floyd
the White House
in front of
one of the $2 \rightleftharpoons 4$
has tested positive $3 \rightleftharpoons 11,879$
positive for coronavirus $4 \rightleftharpoons 14,798$
the spread of $5 \rightleftharpoons 7,264.5$
going to be $6 \rightleftharpoons 33$

## out of the <br> 095:- black lives matter

 community in Minneapolis>is going to $7 \rightleftharpoons 108$
to do with
part of the
World Health Organization you want to
1 to the ground
for the coronavirus $9 \rightleftharpoons 78,795$ for George Floyd $\triangleright$
positive for the $10 \rightleftharpoons 53,912$

$$
\text { due to the } 11 \rightleftharpoons 603
$$

has announced that $12=22.783 .5$

## needs to be

Support from the
be able to $13 \rightleftharpoons 45$
the rest of $14 \rightleftharpoons 143.5$
in the world $15=30$
This is the
because of coronavirus $16 \approx 277.424 .5$ because of the $17 \rightleftharpoons 631.5$
4 that dogs cannot $18 \rightleftharpoons 43,073,107$
the United States $19=22$
$\triangleleft$ announced that dogs $20 \rightleftharpoons 43,073,107$ Health Organization has $21 \rightleftharpoons 172,568$
the corona virus $22 \rightleftharpoons 1,421$
4 dogs cannot contract $23 \rightleftharpoons 43,073,107$ 4 Organization has an...ced $24, \stackrel{43,073,107}{ }$ white vs black $D$
$50.4 \%-49.6 \%$
$\Omega_{1}$ : Barro Colorado Island, 1985 Census Instrument: Probability-Turbulence Divergenge


$$
\begin{array}{c|cccccc}
0 & 1 / 4 & 1 / 2 & 3 / 4 & 1 & 3 / 2 & 2 \\
D_{1 / 3}^{p}\left(\Omega_{1} \mid\right. & \left.\Omega_{2}\right)= & \sum & \delta D_{1 / 3, \tau}^{p}
\end{array}
$$ Pombalia prinifolia

$$
=4 \sum_{\tau}\left|p_{r, 2}^{1 / 3}-p_{r, 2}^{1 / 3}\right|^{3 / 4}
$$

Psychotria/hor...lis Tachigalipanamensi Poulsemia armata


Guatteria kucens
Piper cordulatum
Bactris major
Trophis/caucara Conostegia cin. mea Piper cabagranum Bactri coloning Piper culebranum
Aegiphila panamensis
Piper playablancanum Bactrls barronis
$10^{-1}$
 -Piper paulowni/.wiun Chamaedorea ve...ote

Piper albopunc... from


## $\Omega_{2}:$ Barro Colorado Island, 2015 Census



Divergence contribution $\delta D_{1 / 3, \tau}^{\mathrm{P}}(\%)$

| 2 | 1.5 | 1 | 0.5 | 0 | 0.5 | 1 | 1.5 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Piper cordulatum $9 \rightleftharpoons 138$
Psychotria horizontalis $8 \rightleftharpoons 23$
Poulsenia armata $14 \rightleftharpoons 53$

## Calophyllum longifolium <br> Inga acuminata <br> Palicourea guianensis

Bactris barronis $137=269$
$\triangle$ Bactris coloradonis $185 \rightleftharpoons 308$
Eugenia galalonensis
Trema integerrima $\triangleright$
Xylopia macrantha
Cecropia insignis
$\triangleleft$ Trema unidentified $209 \rightleftharpoons 308$
Inga thibaudiana
Chamguava schippii
Piper playablancanum $140 \rightleftharpoons 236$
$\checkmark$ Inga unidentified $215 \rightleftharpoons 308$
Cecropia obtusifolia
Protium stevensonii

## Guarea bullata $34 \approx 70$

Cupania seemannii
Piper culebranum $123 \rightleftharpoons 21$.
Virola sebifera $22 \approx 40$
Cespedesia spathulata
Piper cabagranum 98 $\rightleftharpoons 170$
Erythrina costaricensis $103 \rightleftharpoons 178$
Hasseltia floribunda $37 \rightleftharpoons 77$
Xylosma oligandra $97 \rightleftharpoons 165$
4 Geonoma interrupta $228 \rightleftharpoons 308$
$\triangleleft$ Koanophyllon wetmorei $231 \rightleftharpoons 308$
Conostegia cinnamomea $85 \rightleftharpoons 135$

## Bactris coloniata $116 \rightleftharpoons 188$

Solanum asperumb
Psychotria graciliflora
Anaxagorea panamensis
4 Psychotria tenuifolia 241:308
Garcinia recondita
Psychotria limonensis
Aegiphila panamensis $143 \rightleftharpoons 215$

## Pourouma bicolor

## Flipbooks for RTD：

Twitter：<br>instrument－flipbook－1－rank－div．pdf瞄厂<br>instrument－flipbook－2－probability－div．pdf睍 $๔$<br>instrument－flipbook－3－gen－entropy－div．pdf瞋匹

## ，Market caps：

instrument－flipbook－4－marketcaps－6years－rank－div．pdf䁅涵
B Baby names：
instrument－flipbook－5－babynames－girls－50years－rank－div．pdf instrument－flipbook－6－babynames－boys－50years－rank－div．pdf贁

R Google books：
instrument－flipbook－7－google－books－onegrams－rank－div．pdf賏匹 instrument－flipbook－8－google－books－bigrams－rank－div．pdf instrument－flipbook－9－google－books－trigrams－rank－div．pdf睍沉

## Flipbooks for PTD：

8 Jane Austen：
Pride and Prejudice，1－grams 䀦厂
Pride and Prejudice，2－grams㲘 $\sqrt{6}$
Pride and Prejudice，3－grams 㲘
© Social media：
Twitter，1－grams 睍医
Twitter，2－grams 㲘匹

\＆Ecology：
Barro Colorado Island 䁌

## Code: <br> https://gitlab.com/compstorylab/allotaxonometer

Explorations

## Claims, exaggerations, reminders:

Needed for comparing large-scale complex systems: Comprehendible, dynamically-adjusting, differential dashboards

The PoCSverse Allotaxonometry 65 of 125

A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

$\Omega_{2}$ : Baby girl names in 2018
$\Omega_{1}$ : Baby girl names in 1968
Instrument: Rank-Turbulence Divergence


## Claims, exaggerations, reminders:

Needed for comparing large-scale complex systems:
Comprehendible, dynamically-adjusting, differential dashboards

Many measures seem poorly motivated and largely unexamined (e.g., JSD)

The PoCSverse Allotaxonometry 65 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


## Claims, exaggerations, reminders:

Needed for comparing large-scale complex systems:
Comprehendible, dynamically-adjusting, differential dashboards

Many measures seem poorly motivated and largely unexamined (e.g., JSD)
Of value: Combining big-picture maps with ranked lists

The PoCSverse Allotaxonometry 65 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


## Claims, exaggerations, reminders:

Needed for comparing large-scale complex systems:
Comprehendible, dynamically-adjusting, differential dashboards

Many measures seem poorly motivated and largely unexamined (e.g., JSD)
Of value: Combining big-picture maps with ranked lists
B
Maybe one day: Online tunable version of rank-turbulence divergence (plus many other instruments)

The PoCSverse
Allotaxonometry 65 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References



The PoCSverse Allotaxonometry 66 of 125

A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


The everywhereness of algorithms and stories:
> "On the Origin of Stories: Evolution, Cognition, and Fiction" a
> by Brian Boyd (2010). ${ }^{[3]}$

The PoCSverse Allotaxonometry 67 of 125

A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References
"The Written World: How Literature Shaped Civilization" ā
by Martin Puchner (2017). ${ }^{[31]}$

Algorithms, recipes, stories, ...

|  | "The Code Economy: A Forty-Thousand Year History" by Philip E Auerswald (2017). |
| :---: | :---: |
|  | "Algorithms to Live By" ač by Christian and Ḡ̈iffiths (2016). |
|  | "Once Upon an Algorithm" a c by Martin Erwig (2017). ${ }^{[16]}$ |

Also: Numerical Recipes in $\mathrm{C}^{[30]}$ and How to Bake $\pi^{[5]}$

Allotaxonometry 68 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## The famous are storytellers-Japan:

PANTHE © N

METHODS
API
ABOUT

If you use the Pantheon dataset, please cite: Yu, A. Z., et al. (2016). Pantheon 1.0, a manually verified dataset of globally famous biographies. Scientific Data 2:150075. doi: 10.1038/sdata.2015.75


## For people born 1950-

A 1-1450

| Politician | Religious Figure | Writer |  |
| :---: | :---: | :---: | :---: |
|  |  | 7\% | 4\% |
|  |  | Companon | $\square_{\text {Pama }}$ |
| 51\% | 19\% |  |  |


D 1950-2000


## Super Survival of the Stories:



Study of Agta, Filipino hunter-gatherers.
Storytelling valued well above all other skills including hunting.

The Desirability of Storytellers [ $C$, The Atlantic, Ed Yong, 2017-12-05.

Rank-turbulence divergence

Probability
turbulence

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

Stories encode prosocial norms such as cooperation.

## Super Survival of the Stories:



Study of Agta, Filipino hunter-gatherers.
Storytelling valued well above all other skills including hunting.

The Desirability of
Storytellers [ $C$, The Atlantic, Ed Yong, 2017-12-05.

Mechanics of

Stories encode prosocial norms such as cooperation.
Like the best stories, the best storytellers reproduce more successfully.

## The most famous painting in the world:

The PoCSverse Allotaxonometry 72 of 125

A plenitude of distances

Rank-turbulence divergence


Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fäme

Superspreading
Lexical Ultrafame
Turbulent times
References

## The dismal predictive powers of editors The pocsease

 Allotaxonometry 73 of 125A plenitude of distances

Rank-turbulence divergence


Probability
turbulence
divergence
Explorations

## Stories

Mechanics of Fäme

Superspreading
Lexical Ultrafame
Turbulent times
References

Twelve ...


## The completely unpredicted fall of Eastern Europe:

The PoCSverse Allotaxonometry 74 of 125

A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations
Stories
Mechanics of Fäme

Superspreading
Lexical Ultrafame
Turbulent times

References

Timur Kuran: ${ }^{[20]}$ "Now Out of Never: The Element of Surprise in the East European Revolution of 1989"

## We understand bushfire stories:



The PoCSverse Allotaxonometry 75 of 125

A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame

1. Sparks start fires.

## We understand bushfire stories:



A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame

1. Sparks start fires.
2. System properties control a fire's spread.

## We understand bushfire stories:

The PoCSverse Allotaxonometry 75 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame

1. Sparks start fires.
2. System properties control a fire's spread.
3. But for three reasons, we make two mistakes about Social Fires ...

## We understand bushfire stories:

The PoCSverse Allotaxonometry 75 of 125

A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations
Stories
Mechanics of Fäme

Superspreading
Lexical Ultrafame
3. But for three reasons, we make two mistakes about Social Fires ...

## Reason 1-We are Homo Narrativus.

Allotaxonometry
Allotaxonometry 76 of 125


A plenitude of
distances
Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fäme

Superspreading
Lexical Ultrafame
Turbulent times
References

ALL SPORTS COMMENTARY

## Reason 2-"We are all individuals."

## Archival footage:

 understand distributed, networked minds.The PoCSverse Allotaxonometry

## Reason 3-We are spectacular imitators.

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

BBC/David Attenborough.

## Mistake 1:

## Success is due to intrinsic properties

The PoCSverse Allotaxonometry 79 of 125
A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations
Stories
Mechanics of Fäme

Superspreading
Lexical Ultrafame
Turbulent times
References

See "Becoming Mona Lisa" by David Sassoon ["

## Mistake 1:

## Success is due to intrinsic properties

Probability turbulence divergence

Explorations

## Mistake 1:

## Success is due to intrinsic properties

The PoCSverse Allotaxonometry 79 of 125
A plenitude of distances

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fäme

Superspreading
Lexical Ultrafame
Turbulent times
References
Stolen in 1913, recovered in 1915.

## Mistake 1:

## Success is due to intrinsic properties



A plenitude of

## distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References
Hidden during WWII.

See "Becoming Mona Lisa" by David Sassoon ["

## Mistake 1:

## Success is due to intrinsic properties

The PoCSverse Allotaxonometry 79 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fäme

Superspreading
Lexical Ultrafame
Turbulent times
References

See "Becoming Mona Lisa" by David Sassoon ["


## flae mise omwilims

48 songs 30k participants

Exp. 2-strong social

"An experimental study of inequality and unpredictability in an artificial cultural market" $\overline{\text { Co }}$

## Salganik, Dodds, and Watts, Science, 311, 854-856, 2006.

The PoCSverse Allotaxonometry 80 of 125

A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations

## Stories

Mechanics of Fäme

Superspreading
Lexical Ultrafame
Turbulent times
References

## Resolving the paradox:

The PoCSverse Allotaxonometry 81 of 125
A plenitude of distances
 Rank: $\boldsymbol{m}_{\text {indep }}$

Increased social awareness leads to Stronger inequality + Less predictability.

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations

## Stories

Mechanics of Fäme

Superspreading
Lexical Ultrafame
Turbulent times
References

## Payola/Deceptive advertising hurts us all:

The PoCSverse Allotaxonometry 82 of 125
A plenitude of distances


Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fäme

Superspreading
Lexical Ultrafame
Turbulent times
References

## "Mistake" 2:

The PoCSverse Allotaxonometry
Seeing success is 'due to social' and wanting to say 'all your interactions are belong to us'

## "This is truly the last time, believe me"

## The Washington jost

natiran - Muspan


14 years of Mark Zuckerberg saying sorry, not sorry
Do you trust Mark Zovkerterg?

From the mament the Facebook founder entersad the publice ege in 2003 for creating a Harvard student hot-oc-not rating site, he's heen apologizing. So we collected this abbrevinted histroy of his public men calpas
reads the a recort on repeat. Zuckerberg, who made 'mave fast and brak things" his slogan, says socry far being naive, and then promises solutions such ns privacy "controls, "transparency" and better policy "enforcement" And then he promises it again the next time. You can track his nimisin winter and pranisesintiat in the timeline below.
All the while, Facebook's aceess to our personal data increases and little changes about the way Zackerberg handles it. So as Zuckerberg peppares to pologixe far the first time in front of Congress, the question that lingers is What will be different this time?

Robert Godwin Sr.
"Our hearts go out to the family and friends of Robert Godwin Sr, and we have a lot of work - and we will keep doing all wecan to prevent tragedies like this from happening.,


While revealing a ninestep plan to stop nations from using Facebook to interfere in one another's elections, noting that the ambunt of "probiematic content" found so far is "relatively mall."
"I care deeply about the democratic process and protecting its integrity. ... It is a new challenge for internet communities to deal with

December 2007
to sharing wath advertisers what they were doing in outside websites and apps.
"We simply dida had job with this release and lapologize for il. ... People need to be able to explicilly choose what they share."
$\qquad$

- Over the past couple of days, we received a lot of questions and comments. ... Based on this feedback, we have decided to return to our previous terms of use while we resolve the issues. "
" We wont prevent all mistakes or abuse, but we currenlly make too many errors enforcing our policies and preventing misuse of our tools. This will be a serious year of selfimprovement and l'm looking forward to learning from working to fix our issues together: "

"We havea responcibility to proted you
data, and if we can't then we don't deserve to serve you. ... We will learn from this experience to secure our platform fiuther and make our community safer for everyone going forward. "
"I'm the first to admit that weve made hunch of mistakes. ... Facebook has always been committed to being transparent about the information you have stored with us - and we have led the internet in building tools to give people the ability to see and control what they share.


Jter an academic paper exposed that Fscebook condutted peychological tests on nearly 700,000 users without their hnowledgo.

## It was my mistake, and IIm sorry. <br> There's

 more we can do here to limit the information developers can access and put more safeguards in place to prevent abuse."
## Related stories

Facthock Mout uness may hare hud pullicen dea semped


Whut t wo pail sor Fowtook - instad d cheting a say on wis tor free?
About His story

 Drow/ap.

## More stories

The Facebook ads Russians showed to different groups

The PoCSverse Allotaxonometry 84 of 125

A plenitude of distances

Rank-turbulence divergence

Probability turbulence
divergence
Explorations

## Stories

Mechanics of Fame

## Superspreading

Lexical Ultrafame
Turbulent times

## References

## WaPo article

## The hypodermic model of influence:



A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## The two step model of influence: ${ }^{[19]}$

Allotaxonometry 86 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## The network model of influence:

Allotaxonometry 87 of 125


A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations

## Stories

Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## The network model of influence:



## How superspreading works:

Many interconnected, average, trusting people must benefit from both receiving and sharing a message far from its source.

"Influentials, Networks, and Public Opinion Förmation"
Watts and Dodds,
J. Consum. Res., 34, 441-458, 2007.

The PoCSverse Allotaxonometry 88 of 125
A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations
Stories
Mechanics of

Superspreading
Lexical Ultrafame
Turbulent times

## Etymological clarity:

Fate-from the Latin fatus: meaning "spoken".
The PoCSverse Allotaxonometry

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Etymological clarity:

8ate-from the Latin fatus: meaning "spoken".
. Fate is talk that has been done. "It is written", fore-tell, pre-dict.

The PoCSverse Allotaxonometry 89 of 125
A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Etymological clarity:

8 Fate-from the Latin fatus: meaning "spoken".
. Fate is talk that has been done. "It is written", fore-tell, pre-dict. "There is no such thing as fate, only the story of fate." $\overline{\text { B }}$

The PoCSverse Allotaxonometry 89 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Etymological clarity:

\& Fate-from the Latin fatus: meaning "spoken".


Fate is talk that has been done. "It is written", fore-tell, pre-dict. "There is no such thing as fate, only the story of fate." "̄
Destiny is probablistic.

The PoCSverse Allotaxonometry 89 of 125
A plenitude of
distances
Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## Etymological clarity:

\& Fate-from the Latin fatus: meaning "spoken".
. Fate is talk that has been done. "It is written", fore-tell, pre-dict.
\& "There is no such thing as fate, only the story of fate." "E
Destiny is probablistic.
\&ame-from the Latin fäma: meaning "to talk."

The PoCSverse Allotaxonometry 89 of 125
A plenitude of distances

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Etymological clarity:

\& Fate-from the Latin fatus: meaning "spoken".


Fate is talk that has been done. "It is written", fore-tell, pre-dict.
8 "There is no such thing as fate, only the story of fate." $\overline{3}$
Destiny is probablistic.
\& 8 . Fame-from the Latin fäma: meaning "to talk."
Fame is inherently the social discussion about the thing, not the thing itself.

The PoCSverse Allotaxonometry 89 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times

## Etymological clarity:

\& Fate-from the Latin fatus: meaning "spoken".
Fate is talk that has been done. "It is written", fore-tell, pre-dict.
8 "There is no such thing as fate, only the story of fate." "E
Destiny is probablistic.
Fame-from the Latin fäma: meaning "to talk."
Fame is inherently the social discussion about the thing, not the thing itself.
\& Renownct: Repeatedly named, talked about. Old French renon, from re- + non ("name").

## Etymological clarity:

\& Fate-from the Latin fatus: meaning "spoken".
Fate is talk that has been done. "It is written", fore-tell, pre-dict.
8 "There is no such thing as fate, only the story of fate." "E
Destiny is probablistic.
Fame-from the Latin fäma: meaning "to talk."
Fame is inherently the social discussion about the thing, not the thing itself.
\& Renownct: Repeatedly named, talked about. Old French renon, from re- + non ("name").
\& Réclame[J. "Clamo"-Proto-Indo-European: "to shout" (again).

## Etymological clarity:

\& 8 Fate-from the Latin fatus: meaning "spoken".
. Fate is talk that has been done. "It is written", fore-tell, pre-dict.
8 "There is no such thing as fate, only the story of fate." $\overline{3}$
Destiny is probablistic.
Fame-from the Latin fäma: meaning "to talk."
Fame is inherently the social discussion about the thing, not the thing itself.
\& Renownct: Repeatedly named, talked about. Old French renon, from re- + non ("name").
\& Réclame[J. "Clamo"-Proto-Indo-European: "to shout" (again). Connected to "lowing".

The PoCSverse

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Oscar Wilde, The Picture of Dorian Gray: Raw Fame



The PoCSverse Allotaxonometry 90 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Oscar Wilde, The Picture of Dorian Gray: Raw Fame



## "There is only one thing in the world

The PoCSverse Allotaxonometry 90 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Oscar Wilde, The Picture of Dorian Gray: Raw Fame



## "There is only one thing in the world

## worse than being talked about,

The PoCSverse Allotaxonometry 90 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Oscar Wilde, The Picture of Dorian Gray: Raw Fame



The PoCSverse Allotaxonometry 90 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## Oscar Wilde, The Picture of Dorian Gray: Raw Fame



The PoCSverse Allotaxonometry 90 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References
not being talked about."

The PoCSverse Allotaxonometry 91 of 125

A plenitude of distances


Rank-turbulence divergence

Probability turbulence divergence

Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References
"Fame and Ultrafame: Measuring and comparing daily levels of 'being talked about' for United States' presidents, their rivals, God, countries, and K-pop"
Dodds et al., Available online at https://arxiv.org/abs/1910.00149, 2019. ${ }^{[12]}$
"Computational timeline reconstruction of the stories surrounding Trump: Story turbulence, narrative control, and colliective chronopathy" Dodds et al., , 2020. ${ }^{[14]}$

The PoCSverse Allotaxonometry 92 of 125

A plenitude of distances

Rank-turbulence divergence

Probabilityturbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References
\& POTUSometer with the Smorgasdashbord: http://compstorylab.org/potusometer/[]
Stories surrounding Trump: http://compstorylab.org/trumpstoryturbulence/匹


The PoCSverse Allotaxonometry 93 of 125

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


Ultrafame:
The PoCSverse
Allotaxonometry 94 of 125
Nobody expects the Spanish Inquisition K-pop:
A plenitude of distances


Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References

## Vox (2019-04-17):

BTS, the band that changed K-pop, explained $\sqrt{ }$


## Telegnomics

Distant reading by smashing texts into storyons:
The PoCSverse
Allotaxonometry 95 of 125
A plenitude of distances

Rank-turbulence divergence
cd ~/work/stories/2019-10story-turbulence-trump/
261G
more updateall.sh
file names:
compute_rank_turbulence_divergence_sweep_the_leg
Zip files:
zless 2018-01-06/1grams/en_*.tar.tsv
zless 2021-01-05/1grams/en_*.tar.tsv
zless 2021-01-06/1grams/en_*.tar.tsv
zless 2021-01-07/1grams/en_*.tar.tsv

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References



2011 Whitehouse Correspondents' Dinner [^

$$
r=1
$$

~ The Realm of Lexical Ultrafame ~


Ultrafame - Percentage of days per year ranked above 'god'

|  | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 'barack' | 1.8\% | 0.3\% | 0.0\% | \| $0.0 \%$ | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | \| $0.0 \%$ |
| 'obama' | 54.4\% | 6.9\% | 0.5\% | \| $0.5 \%$ | \| $2.2 \%$ | 0.3\% | 0.0\% | 0.3\% | 2.2\% | \| $2.2 \%$ | 0.5\% | 0.0\% | 0.3\% | \| $0.0 \%$ |
| '@barackobama'\| | 0.0\% | 0.0\% | 0.0\% | \| $0.0 \%$ | \| $0.5 \%$ | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 10.0\% |
| 'john' | \| $3.5 \%$ | $0.6 \%$ | 0.0\% | \| $0.0 \%$ | 0.0\% | \| 0.0\% | 0.0\% | \| 0.0\% | 0.0\% | 0.3\% | 0.8\% | 0.3\% | 0.5\% | \| $0.0 \%$ |
| 'mccain' | 39.5\% | 0.0\% | 0.0\% | \| $0.0 \%$ | 0.0\% | 0.0\% | 10.0\% | \| 0.0\% | 0.0\% | 0.3\% | 1.1\% | 0.0\% | 0.0\% | \| 0.0\% |
| '@senjohnmccain'\| | 0.0\% | 0.0\% | \| 0.0\% | \| 0.0\% | 0.0\% | \| $0.0 \%$ | 10.0\% | 10.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | \| 0.0\% |
| 'mitt' | 0.0\% | 0.0\% | 0.0\% | \| $0.0 \%$ | 0.8\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 10.0\% |
| 'romney'\| | 0.0\% | 0.0\% | 0.0\% | \| $0.0 \%$ | 1.6\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.3\% | \| 0.0\% |
| '@mittromney' | 0.0\% | 0.0\% | 0.0\% | \| $0.0 \%$ | 0.0\% | 0.0\% | 0.0\% | 10.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | \| 0.0\% |
| 'hillary' | 0.0\% | 0.0\% | 0.0\% | 10.0\% | 0.0\% | \| $0.0 \%$ | 0.0\% | 10.0\% | $\square 10.4 \%$ | 0.0\% | 0.0\% | 0.0\% | 10.0\% | \|0.0\% |
| 'clinton' | 0.0\% | 0.0\% | 0.0\% | \| $0.0 \%$ | 0.0\% | 0.0\% | 0.0\% | 10.0\% | \\| $7.7 \%$ | 0.0\% | 0.0\% | 0.0\% | 10.0\% | 10.0\% |
| '@hillaryclinton'\| | 0.0\% | 0.0\% | \| $0.0 \%$ | \| $0.0 \%$ | 0.0\% | 0.0\% | 0.0\% | 10.0\% | \| $1.1 \%$ | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| 'donald' | 0.0\% | 0.0\% | 0.0\% | \| $0.0 \%$ | 0.0\% | 0.0\% | 0.0\% | \| $0.0 \%$ | 2.7\% | 0.5\% | 0.0\% | 0.0\% | 1.6\% | 0.6\% |
| 'trump'\| | 0.0\% | 0.0\% | 0.0\% | \| $0.0 \%$ | 0.0\% | 0.0\% | 0.0\% | \| $0.5 \%$ | 47.8\% | 98.6\% | 93.7\% | 92. $3 \%$ | 100.0\% | 10.2\% |
| '@realdonaldtrump'\| | 0.0\% | 0.0\% | 0.0\% | 10.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 2.7\% | 26.8\% | 41.4\% | 62.7\% | 90. $2 \%$ | 2.2\% |
| 'joe' | 3.5\% | 2.0\% | 0.0\% | 10.0\% | 0.0\% | 10.0\% | 10.0\% | 10.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | \\|8.2\% | \| $0.6 \%$ |
| 'biden' | 1.8\% | 0.0\% | 0.0\% | 10.0\% | \|0.3\% | 10.0\% | 10.0\% | 10.0\% | 0.0\% | 0.0\% | 0.0\% | 10.0\% | 23.8\% | \\|6.1\% |
| '@joebiden' | 0.0\% | 0.0\% | \| 0.0\% | \| $0.0 \%$ | 0.0\% | 10.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | \| $4.1 \%$ | 0.3\% |
| '@bts_twt' | 0.0\% | \|0.0\% | 10.0\% | \|0.0\% | 0.0\% | \| 0.0\% | \|0.0\% | \| $0.5 \%$ | \\|8.5\% | $50.7 \%$ | 100.0\% | 100.0\% | 98.9\% | 93.1\% |


| 2008 | 2012 | 2016 | 2020 |
| :---: | :---: | :---: | :---: |
| 'barack' 128 | \|11 | \|11 | \|13 |
| 'obama' 1000 | 132 | 135 | [71 |
| '@barackobama' ${ }^{\text {a }} 9$ | \\| 24 | \|10 | \\| 17 |
| 'john' 307 | [66 | 7 72 | ¢65 |
| 'mccain' 757 | 1 | 2 | 3 |
| '@senjohnmccain'\|0 | 0 | 1 | 0 |
| 'mitt' ${ }^{3}$ | 550 | 2 | 2 |
| 'romney' ${ }^{2}$ | 120 | 3 | 3 |
| ‘@mittromney' ${ }^{\text {a }}$ | \|14 | 1 | 1 |
| 'hillary' ${ }^{20}$ | ${ }^{1}$ | 357 | [30 |
| 'clinton' ${ }^{\text {a }}$ 2 | $\mid 8$ | 326 | \\| 23 |
| '@hillaryclinton' ${ }^{\text {a }}$ | 10 | 130 | \\|19 |
| 'donald' ${ }^{\text {/ }}$ | ${ }^{5}$ | 178 | ${ }_{135}$ |
| 'trump' ${ }^{4}$ | $\mid 3$ | 656 | 1001 |
| '@realdonaldtrump'\|0 | $\mid 4$ | 219 | 656 |
| 'joe' 128 | [39 | [32 | 287 |
| 'biden' 67 | $\mid 4$ | $\mid 5$ | 504 |
| ‘@joebiden'\|0 | 1 | 1 | 212 |
| '@bts_twt' ${ }^{\text {a }}$ | 10 | 166 | 1037 |
| 'god' 400 | 484 | 362 | 380 |

Relative median rates of 'being talked about' per year:

| 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 'barack' [150 | \\|38 | \|17 | \|9 | \|10 | $\mid 7$ | 18 | \|11 | \| 14 | \| 15 | \|14 | \| 14 | \|19 | $\mid 3$ |
| 'obama' 897 | 379 | [152 | $\square 87$ | $[97$ | [79 | [91 | [103 | 156 | -60 | $\bigcirc 129$ | [106 | [104 | \|17 |
| '@barackobama' 10 | 8 | \|11 | \|10 | \|17 | \|15 | \|16 | \|13 | \|13 | ${ }^{17}$ | ${ }^{17}$ | \|13 | \\|24 | $\mid 5$ |
| 'john' 40. | $27^{7}$ | 188 | $\square 126$ | [17 | [104 | $[113$ | $[121$ | [118 | [129 | $\square 128$ | [14 | [108 | [82 |
| 'mecain' 579 | 11 | 4 | 2 | ${ }^{2}$ | $\mid 2$ | $\mid 1$ | $\mid 1$ | $\mid 3$ | \|15 | $\mid 7$ | $\mid 5$ | $\mid 3$ | $\mid 2$ |
| '@senjohnmccain'\|0 | 2 | 1 | 10 | 10 | 1 | $\mid 1$ | $\mid 1$ | $\mid 1$ | 9 | 12 | 10 | 10 | 10 |
| 'mitt' ${ }^{5}$ | 8 | 5 | 6 | \\|25 | ${ }^{6}$ | $\mid 5$ | $\mid 4$ | \|4 | ${ }^{2}$ | $\mid 2$ | $\mid 3$ | $\mid 3$ | $\mid 2$ |
| 'romney' ${ }^{\text {3 }}$ | 1 | 1 | 4 | \\| 42 | $\mid 2$ | 1 | $\mid 1$ | \|4 | 1 | $\mid 1$ | 3 | $\mid 4$ | $\mid 1$ |
| '@mittromney' ${ }^{\text {o }}$ | 10 | 10 | 10 | $\mid 5$ | 10 | 10 | 10 | $\mid 1$ | 10 | 10 | $\mid 1$ | 1 | 10 |
| 'hillary' ${ }^{\text {28 }}$ | 10 | 5 | 3 | $\mid 3$ | $\mid 4$ | 6 | \\|30 | 169 | [72 | [61 | [43 | \\|33 | ${ }^{6}$ |
| 'clinton' ${ }^{62}$ | \|25 | \|16 | \|10 | ${ }^{18}$ | ${ }^{6}$ | 8 | \\| 27 | [140 | [65 | $\square 62$ | \\| 45 | \\| 32 | \|8 |
| '@hillaryclinton' ${ }^{\text {o }}$ | 0 | 10 | 10 | 10 | 10 | 1 | \|11 | [71 | ${ }^{12}$ | \|19 | \| 21 | \\|23 | $\mid 3$ |
| 'donald' ${ }^{\text {a }}$ 11 | \|17 | \|11 | \|11 | \|8 | ${ }^{6}$ | 7 | 【44 | $\square 66$ | [145 | [14 | [104 | $\square 43$ | \\|43 |
| 'trump' ${ }^{\text {/ }}$ | \|20 | \|10 | \|7 | \| 4 | \| 3 | 3 | [77 | 583 | 1000 | 865 | 808 | 1134 | 229 |
| '@realdonaldtrump' ${ }^{\text {a }}$ | 10 | 0 | 1 | 2 | $\mid 3$ | 2 | \32 | 219 | 468 | 555 | 652 | 888 | 1 |
| 'joe' ${ }^{157}$ | 187 | $\square 138$ | [87 | [66 | [58 | $\square 44$ | 『46 | [50 | \\| 48 | \\|44 | $\square 78$ | 197 | [117 |
| 'biden' ${ }^{\text {d }} 7$ | $\mid 7$ | 3 | $\mid 1$ | 2 | $\mid 2$ | $\mid 2$ | $\mid 3$ | 15 | $\mid 3$ | $\mid 4$ | [52 | 284 | 221 |
| ‘@jocbiden' ${ }^{\text {a }}$ | 10 | 10 | 10 | 10 | 10 | 10 | 10 | $\mid 1$ | 1 | $\mid 2$ | \|18 | $\square 162$ | \\|28 |
| '@bts_twt' ${ }^{\text {a }}$ | 10 | 10 | 10 | 10 | ${ }^{5}$ | \36 | [123 | 242 | 595 | 2487 | 1802 | 1440 | 1437 |
| 'god' 666 | 851 | 687 | 694 | 791 | 719 | 607 | 616 | 601 | 590 | 612 | 611 | 612 | 510 |

## Ratiometrics:

## Barack Obama





## Donald Trump




"Ratioing the President: An exploration of public engagement with Obama and Trump on Twitter," Minot et al., 2020 [24]

## Ratiometrics:

The PoCSverse Allotaxonometry 102 of 125
A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


## Emotional turbulence:

The PoCSverse Allotaxonometry 103 of 125

A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
 Lexical Ultrafame

## Emotional turbulence:




The PoCSverse Allotaxonometry 104 of 125

A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

http://hedonometer.org/®
$\Omega_{1}$ : Twitter on 2016/11/09
Instrument: Rank Divergence

$$
D_{1 / 3}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right)=\sum_{\tau} \delta D_{1 / 3, \tau}^{\mathrm{R}}
$$

$$
=4 \sum_{\tau}\left|\frac{1}{r_{T, 1}^{1 / 3}}-\frac{1}{r_{T, 2}^{1 / 3}}\right|^{3 / 4}
$$

Divergence contribution $\delta D_{1 / 3, \tau}^{\mathrm{R}}\left(\times 10^{-4} \%\right)$
$\Omega_{2}:$ Twitter on $2017 / 08 / 13$
Lines of constant $\delta D_{1 / 3, \tau}^{\mathrm{R}}$

| 8 | 6 | 4 | 2 | 0 | 2 | 4 | 6 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## trump $12 \rightarrow 9$ de

election $81 \rightarrow 2,999$
hillary $73 \rightarrow 2,108$
donald $57 \rightarrow 788$
voted $77 \rightarrow 1,466$

## nazis <br> charlottesville

larsson
president

## zara

clinton $129 \rightarrow 2,583$
america
obama $84-657$
obama $84 \rightarrow 657$
won $90 \rightarrow 695$
bts
lady
elected $206 \rightarrow 4,185$
the $2 \rightarrow 3$
2
supremacists
heyer
august cvjetanovic
harambe
condemn
you $6 \rightarrow 10$

$$
\text { bernie } 338 \rightarrow 5,202
$$

$$
\begin{array}{r}
\text { Derne } s 38 \rightarrow 0,615 \\
\text { michelle } 292 \rightarrow 3,615
\end{array}
$$ firststarmagicallstar $D$

simpsons $473 \rightarrow 11,620$ asensio antifa
jabberduck $1,293 \rightarrow 1,354,086$ opport $867 \rightarrow 87,163$ voters $398 \rightarrow 6,265$ wins $202 \rightarrow 1,424$
country $94 \rightarrow 373$
$50.41 \%-49.59 \%$

## Allotaxonometry- <br> the comparison of complex systems: http://compstorylab.org/allotaxonometry/[



| Week | 2016 | 2017 | 2018 | 2019 | 2020 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. $01 / 01-01 / 07$ | Hillary 3.7 | hacking 28.6 | Baunóa 2.2 | shutdown 0.0 | Irail 9.6 |
| 2. 01/08-01/14 | Cruz 1.0 | Mergal 5.0 | Mueller 0.0 | shutdown 0.0 | Soleiniani 5.9 |
| 3. 01/15-01/21 | Cruz 10.7 | inauguration 0.6 | DAGA 6.7 | Pelouil 6.8 | Parnas 0.0 |
| 4. 01/22-01/28 | Cruiz 10.6 | inauguration 3.1 | Mueller 0.0 | Pelofi 2.6 | Ukraīe 5.5 |
| 5. 01/29-02/04 | Cruz 11.2 | bani 2.1 | Mueller 0.0 | border 0.0 | impeachment 0.0 |
| 6. $02 / 05-02 / 11$ | Crui 5.1 | Bamion 0.0 | memip 2.3 | Whitaker 0.0 | Vindujan 2.5 |
| 7. $02 / 12-02 / 18$ | Cruzu 6.9 | Flymn 0.0 | Mueller 0.0 | emergency 0.0 | Bart 2.2 |
| 8. $02 / 19-02 / 25$ | Ruble 3.8 | Swoden 4.9 | Parkland 0.3 | Jussie 0.0 | Bloomberg 6.3 |
| 9. $02 / 26-03 / 04$ | Rubio 9.2 | Russinh 6.4 | Mueller 0.0 | Cohey 3.7 | coronavirus 0.0 |
| 10. 03/05-03/11 | Crue 1.0 | Russian 4.8 | Mueller 0.0 | Nadleer 13.7 | coronavirus 0.0 |
| 11. 03/12-03/18 | Cruaz 5.7 | $\operatorname{tax} \mid 1.8$ | Mueller 2.2 | emergeincy 1.6 | coronavirus 0.0 |
| 12. 03/19-03/25 | Arizona 16.8 | Nunes 0.0 | Muelier 2.2 | Barr 0.0 | coronavirus 0.0 |
| 13. 03/26-04/01 | womien 8.3 | Russia 9.9 | Stormy 0.0 | Schiff 5.2 | coronavirus 0.5 |
| 14. 04/02-04/08 | Crue 1.5 | Russfa 2.8 | Mueller 0.0 | returus 0.0 | coronavirus 0.0 |
| 15. 04/09-04/15 | Crua 1.7 | Syria 0.4 | Mueller 2.0 | Bary 2.4 | coronavirus 0.0 |
| 16. 04/16-04/22 | Crui 10.5 | Russia 0.5 | Mueller 0.1 | Barr 0.1 | coronavirus 0.0 |
| 17. 04/23-04/29 | Cruż 3.0 | days 0.1 | Kanye 8.0 | Biden 6.0 | coronavirus 0.0 |
| 18. 04/30-05/06 | Indiatis 11.5 | Trumpeare 0.0 | Mueller 0.0 | Barr 0.0 | coronavirus 0.0 |
| 19. $05 / 07-05 / 13$ | Ryai 2.5 | Comèy 2.8 | Irail 6.6 | Barr 0.0 | coronavirus 0.0 |
| 20. 05/14-05/20 | Bernie 25.3 | Comey 1.0 | ZTE 4.5 | Bart 0.0 | coronavirus 0.0 |
| 21. 05/21-05/27 | Clintor 9.5 | budget 0.0 | Kotea 18.2 | Barr 0.0 | pandemic 0.0 |
| 22. 05/28-06/03 | Hillury 11.9 | Katliy 4.4 | Roseaijne 4.0 | USS 3.0 | Minueapolis 32.1 |
| 23. 06/04-06/10 | Clintan 11.1 | Comey 0.8 | pardon 0.0 | Mexico 27.6 | police 4.2 |
| 24. 06/11-06/17 | Orlabiol 12.4 | Mueller 0.0 | Kinil 4.1 | foreign 2.0 | Tula 4.5 |
| 25. 06/18-06/24 | Hillary 23.9 | Trumpcare 0.0 | children 1.0 | Irap 12.9 | Tulsa 2.1 |
| 26. 06/25-07/01 | Clinton 13.0 | Russin 5.8 | Justicer 8.3 | Moon 29.9 | bounties 0.0 |
| 27. 07/02-07/08 | Crooked 80.6 | CNN 0.7 | toddlers 0.0 | parade 0.0 | Rushmiore 2.3 |
| 28. 07/09-07/15 | Crooked 71.5 | Russian 1.2 | NATO 13.0 | Epstein 0.0 | coronavirus 0.0 |
| 29. 07/16-07/22 | Pence 2.9 | Mueller 0.0 | Helsinki 3.1 | racist 0.8 | coronavirus 0.0 |
| 30. 07/23-07/29 | DNC 6.1 | Scouts 0.0 | Cohen 0.0 | Baltinume 13.6 | Portland 11.8 |
| 31. $07 / 30-08 / 05$ | Khan 6.5 | Mueller 0.0 | LeBron 0.7 | Baltinimore 9,4 | pandemic 0.0 |
| 32. 08/06-08/12 | Crooked 55.2 | Koreas 5.8 | Omarosa 0.4 | Pasala 7.6 | USPS 0.0 |
| 33. 08/13-08/19 | Manafort 0.0 | Charlottesville 1.5 | Omarosa 9.5 | Greenland 6.9 | USPS 0.0 |
| 34. $08 / 20-08 / 26$ | Clinton 7.6 | Charlottesville 3.8 | Cohegn 2.7 | Greenlind 8.0 | Biden 6.6 |
| 35. $08 / 27-09 / 02$ | Crooked 57.4 | Harvey 0.0 | Ohir 14.0 | Dorian 12.2 | Kenosha 9.5 |
| 36. 09/03-199/09 | Bondi 0.0 | DACA 2.4 | Kavandigh 2.1 | Dorinim 12.6 | Atlantic 4.8 |
| 37. 09/10-09/16 | deplorable 0.0 | ESPN 2.7 | Puerto 7.5 | flavored 0.0 | Woodward 2.6 |
| 38. 09/17-09/23 | Clintonn 6.5 | Kinu 4.9 | Kavanuigh 1.7 | Ukraine 4.5 | coronavirus 0.0 |
| 39. 09/24-09/30 | debate 4.9 | Puerto 4.7 | Kavanmigh 9.5 | Ukraibe 6.8 | ballots 0.7 |
| 40. 10/01-10/07 | Pence 4.9 | Puerfo 2.1 | Kavanāugh 6.8 | Ukraine 5.1 | Covid 0.0 |
| 41. $10 / 08-10 / 14$ | sextal 0.3 | Puerto 1.8 | Kavanaligh 4.3 | Kurds 8.2 |  |
| 42. 10/15-10/21 | rigged 10.1 | Puerto 0.2 | Saudi 5.3 | Kurds 3.7 |  |
| 43. 10/22-10/28 | star 0.0 | Mueller 0.0 | caravan 0.0 | impeachment 0.0 |  |
| 44. 10/29-11/04 | FBE5.9 | Mueller 0.0 | caravan 0.0 | impeachment 0.0 |  |
| 45. 11/05-11/11 | Clinton 0.9 | Gillesple 12.0 | Whitaker 6.2 | Ukralie 6.2 |  |
| 46. 11/12-11/18 | Bannop 0.0 | sexubl 1.7 | caravan 0.0 | Ukraibe 3.2 |  |
| 47. 11/19-11/25 | Hamplor 12.4 | LaVar 21.3 | Saudi 1.6 | Ukraine 3.5 |  |
| 48. $11 / 26-12 / 02$ | recomit 0.0 | Moore 0.0 | Mascow 0.1 | impeachinent 3.1 |  |
| 49. 12/03-12/09 | Taiwain 7.8 | Mueller 0.0 | Cohein 2.1 | tmpeachment 0.0 |  |
| 50. 12/10-12/16 | Russia 2.9 | Mueller 0.0 | Cohen 69 | impeachment 0.0 |  |
| 51. 12/17-12/23 | inauguration 11.8 | Mueller 0.0 | wall 9.8 | impeachment 1.4 |  |
| 52. $12 / 24-12 / 31$ | inauguration 3.2 | Mueller 0.0 | wall 20.4 | impeachiment 7.6 |  |

http://compstorylab.org/trumpstoryturbulence/

| Week | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. $01 / 01-01 / 07$ | Hillary 34.7 | hacking 28.6 | Bannon 2.2 | shutdown 0.0 | Iran 9.6 | Georgia 14.7 |
| 2. $01 / 08-01 / 14$ | Cruz 1.0 | Meryl 5.0 | Mueller 0.0 | shutdown 0.0 | Soleimani 5.9 | Capitol 0.1 |
| 3. $01 / 15-01 / 21$ | Cruz 10.7 | inauguration 0.6 | DACA 6.7 | Pelosi 6.8 | Parnas 0.0 | Capitol 0.0 |
| 4. $01 / 22-01 / 28$ | Cruz 10.6 | inauguration 3.1 | Mueller 0.0 | Pelosi 2.6 | Ukraine 5.5 | insurrection 0.0 |
| 5. $01 / 29-02 / 04$ | Cruz 11.2 | ban 2.1 | Mueller 0.0 | border 0.0 | impeachment 0.0 | Greene 0.0 |
| 6. 02/05-02/11 | Cruz 5.1 | Bannon 0.0 | memo 2.3 | Whitaker 0.0 | Vindman 2.5 | insurrection 0.0 |
| 7. 02/12-02/18 | Cruz 6.9 | Flynn 0.0 | Mueller 0.0 | emergency 0.0 | Barr 2.2 | Capitol 0.0 |
| 8. $02 / 19-02 / 25$ | Rubio 3.8 | Sweden 4.9 | Parkland 0.3 | Jussie 0.0 | Bloomberg 6.3 | Capitol 0.0 |
| 9. $02 / 26-03 / 04$ | Rubio 9.2 | Russia 6.4 | Mueller 0.0 | Cohen 3.7 | coronavirus 0.0 | Capitol 0.0 |
| 10. $03 / 05-03 / 11$ | Cruz 1.0 | Russian 4.8 | Mueller 0.0 | Nadler 13.7 | coronavirus 0.0 | insurrection 0.0 |
| 11. $03 / 12-03 / 18$ | Cruz 5.7 | $\operatorname{tax} 1.8$ | Mueller 2.2 | emergency 1.6 | coronavirus 0.0 | Biden 0.0 |
| 12. $03 / 19-03 / 25$ | Arizona 16.8 | Nunes 0.0 | Mueller 2.2 | Barr 0.0 | coronavirus 0.0 | Biden 0.0 |
| 13. $03 / 26-04 / 01$ | women 8.3 | Russia 9.9 | Stormy 0.0 | Schifl 5.2 | coronavirus 0.5 | Capitol 0.0 |
| 14. $04 / 02-04 / 08$ | Cruz 1.5 | Russia 2.8 | Mueller 0.0 | returns 0.0 | coronavirus 0.0 | Matt 0.0 |
| 15. $04 / 09-04 / 15$ | Cruz 1.7 | Syria 0.4 | Mueller 2.0 | Barr 2.4 | coronavirus 0.0 | Capitol 0.0 |
| 16. $04 / 16-04 / 22$ | Cruz 10.5 | Russia 0.5 | Mueller 0.1 | Barr 0.1 | coronavirus 0.0 | Capitol 0.0 |
| 17. $04 / 23-04 / 29$ | Cruz 3.0 | days 0.1 | Kanye 8.0 | Biden 6.0 | coronavirus 0.0 | audit 0.0 |
| 18. $04 / 30-05 / 06$ | Indiana 11.5 | Trumpcare 0.0 | Mueller 0.0 | Barr 0.0 | coronavirus 0.0 | Cheney 0.0 |
| 19. $05 / 07-05 / 13$ | Ryan 2.5 | Comey 2.8 | Iran 6.6 | Barr 0.0 | coronavirus 0.0 | Cheney 0.0 |
| 20. $05 / 14-05 / 20$ | Bernie 25.3 | Comey 1.0 | ZTE 4.5 | Barr 0.0 | coronavirus 0.0 | Cheney 0.0 |
| 21. $05 / 21-05 / 27$ | Clinton 9.5 | budget 0.0 | Korea 18.2 | Barr 0.0 | pandemic 0.0 | Weisselberg 0.0 |
| 22. $05 / 28-06 / 03$ | Hillary 11.9 | Kathy 4.4 | Roseañe 4.0 | USS 3.0 | Minneapolis 32.1 | reinstated 0.0 |
| 23. $06 / 04-06 / 10$ | Clinton 11.1 | Comey 0.8 | pardon 0.0 | Mexico 27.6 | police 4.2 | McGahn 0.0 |
| 24. $06 / 11-06 / 17$ | Orlando 12.4 | Mueller 0.0 | Kimil 4.1 | foreign 2.0 | Tulsa 4.5 | DOJ 0.0 |
| 25. $06 / 18-06 / 24$ | Hillary 23.9 | Trumpcare 0.0 | children 1.0 | Iran 12.9 | Tulsa 2.1 | Capitol 0.0 |
| 26. $06 / 25-07 / 01$ | Clinton 13.0 | Russia 5.8 | Justice 8.3 | Moon 29.9 | bounties 0.0 | Organization 0.0 |
| 27. $07 / 02-07 / 08$ | Crooked 80.6 | CNN 0.7 | toddlers 0.0 | parade 0.0 | Rushmore 2.3 | Weisselberg 0.0 |
| 28. $07 / 09-07 / 15$ | Crooked 71.5 | Russian 1.2 | NATO 13.0 | Epstein 0.0 | coronavirus 0.0 | CPAC 0.0 |
| 29. $07 / 16-07 / 22$ | Pence 2.9 | Mueller 0.0 | Helsinki 3.1 | racist 0.8 | coronavirus 0.0 | vaccinated 0.0 |
| 30. $07 / 23-07 / 29$ | DNC 6.1 | Scouts 0.0 | Cohen 0.0 | Baltimore 13.6 | Portland 11.8 | Jan 0.0 |
| 31. $07 / 30-08 / 05$ | Khan 6.5 | Mueller 0.0 | LeBron 0.7 | Baltimore 9.4 | pandemic 0.0 | Capitol 0.0 |
| 32. 08/06-08/12 | Crooked 55.2 | Korea 5.8 | Omarosa 0.4 | Paso 7.6 | USPS 0.0 | Rosen 0.0 |
| 33. $08 / 13-08 / 19$ | Manafort 0.0 | Charlottesville 1.5 | Omarosa 9.5 | Greenland 6.9 | USPS 0.0 | Taliban 0.0 |
| 34. $08 / 20-08 / 26$ | Clinton 7.6 | Charlottesville 3.8 | Cohen 2.7 | Greenland 8.0 | Biden 6.6 | Taliban 0.0 |
| 35. 08/27-09/02 | Crooked 57.4 | Harvey 0.0 | Ohr 14.0 | Dorian 12.2 | Kenosha 9.5 | Taliban 0.0 |
| 36. 09/03-09/09 | Bondi 0.0 | DACA 2.4 | Kavanaugh 2.1 | Dorian 12.6 | Atlantic 4.8 | Afghanistan 0.0 |
| 37. $09 / 10-09 / 16$ | deplorable 0.0 | ESPN 2.7 | Puerto 7.5 | flavored 0.0 | Woodward 2.6 | Milley 0.0 |
| 38. 09/17-09/23 | Clinton 6.5 | Kim 4.9 | Kavanaugh 1.7 | Ukraine 4.5 | coronavirus 0.0 | Eastman 0.0 |
| 39. 09/24-09/30 | debate 4.9 | Puerto 4.7 | Kavanaugh 9.5 | Ukraine 6.8 | ballots 0.7 | audit 0.0 |
| 40. 10/01-10/07 | Pence 4.9 | Puerto 2.1 | Kavanaugh 6.8 | Ukraine 5.1 | Covid 1.4 | Bannon 0.0 |
| 41. $10 / 08-10 / 14$ | sexual 0.3 | Puerto 1.8 | Kavanaugh 4.3 | Kurds 8.2 | COVID 1.4 | Jan 0.0 |
| 42. $10 / 15-10 / 21$ | rigged 10.1 | Puerto 0.2 | Saudi 5.3 | Kurds 3.7 | Biden 8.2 | Powell 0.0 |
| 43. $10 / 22-10 / 28$ | star 0.0 | Mueller 0.0 | caravan 0.0 | impeachment 0.0 | Biden 9.2 | Jan 0.0 |
| 44. $10 / 29-11 / 04$ | FBI 5.9 | Mueller 0.0 | caravan 0.0 | impeachment 0.0 | Biden 10.0 | Youngkin 0.0 |
| 45. $11 / 05-11 / 11$ | Clinton 0.9 | Gillespie 12.0 | Whitaker 6.2 | Ukraine 6.2 | votes 3.4 | infrastructure 0.0 |
| 46. $11 / 12-11 / 18$ | Bannon 0.0 | sexual 1.7 | caravan 0.0 | Ukraine 5.2 | Dominion 23.2 | Christie 0.0 |
| 47. $11 / 19-11 / 25$ | Hamilton 12.4 | LaVar 21.3 | Saudi 1.6 | Ukraine 3.5 | Sidney 0.1 | Rittenhouse 0.0 |
| 48. $11 / 26-12 / 02$ | recount 0.0 | Moore 0.0 | Moscow 0.1 | impeachment 3.1 | votes 24.1 | Waukesha 0.0 |
| 49. 12/03-12/09 | Taiwan 7.8 | Mueller 0.0 | Cohen 2.1 | impeachment 0.0 | Georgia 20.2 | Meadows 0.0 |
| 50. $12 / 10-12 / 16$ | Russia 2.9 | Mueller 0.0 | Cohen 6.9 | impeachment 0.0 | vaccine 11.1 | Meadows 0.0 |
| 51. 12/17-12/23 | nauguration 11.8 | 8 Mueller 0.0 | wall 9.8 | impeachment 1.4 | vaccine 15.4 | Manchin 0.0 |
| 52. $12 / 24-12 / 31$ | inauguration 3.2 | Mueller 0.0 | wall 20.4 | impeachment 7.6 | Election 60.2 | Brandon 0.0 |

## The PoCSverse <br> Allotaxonometry

 107 of 125
## A plenitude of

 distancesRank-turbulence divergence

Probabilityturbulence divergence

## Explorations

## Stories

## Mechanics of Fame

Superspreading
Lexical Ultrafame

## Turbulent times

References


Week

1. $01 / 01-01 / 07$
2. $01 / 08-01 / 14$
3. $01 / 15-01 / 21$
4. $01 / 22-01 / 28$
5. $01 / 29-02 / 04$ 6. $02 / 05-02 / 11$
6. $02 / 12-02 / 18$
7. $02 / 19-02 / 25$
8. $02 / 26-03 / 04$
9. 03/05-03/11
10. $03 / 12-03 / 18$
11. $03 / 19-03 / 25$
12. $03 / 26-04 / 01$
13. 04/02-04/08
14. 04/09-04/15
15. $04 / 16-04 / 22$
16. $04 / 23-04 / 29$
17. 04/30-05/06
18. 05/07-05/13
19. 05/14-05/20
20. $05 / 21-05 / 27$
21. $05 / 28-06 / 03$
22. $06 / 04-06 / 10$
23. 06/11-06/17
24. 06/18-06/24
25. 06/25-07/01
26. 07/02-07/08
27. 07/09-07/15
28. 07/16-07/22
29. $07 / 23-07 / 29$
30. $07 / 30-08 / 05$
31. $08 / 06-08 / 12$
32. $08 / 13-08 / 19$
33. $08 / 20-08 / 26$
34. 08/27-09/02
35. 09/03-09/09
36. 09/10-09/16
37. 09/17-09/23 39. 09/24-09/30 40. 10/01-10/07 41. $10 / 08-10 / 14$ 42. $10 / 15-10 / 21$ 43. $10 / 22-10 / 28$ 44. $10 / 29-11 / 04$ 45. 11/05-11/11 46. $11 / 12-11 / 18$ 47. $11 / 19-11 / 25$ 48. 11/26-12/02 49. 12/03-12/09 50. $12 / 10-12 / 16$ 51. $12 / 17-12 / 23$

| 2016 | 2017 | 2018 |
| :---: | :---: | :---: |
| Hillary Clinton 32.7 | plant in 85.1 | Steve Bannon 5.7 |
| Trump rally 0.0 | Meryl Streep 6.6 | shithole countries 0.0 |
| Ted Cruz 26.0 | Trump's inauguration 0.0 the government 1.4 |  |

the government 0.0 the border 1.0 Cohen to 0.0
the government 0.0
Ralph Northam 26.0 El Paso 4.7 $\begin{array}{ccc}\text { Megyn Kelly } 4.9 & \text { executive order } 0.0 & \text { the FBI } 5.6 \\ \text { Ted Cruz } 19.7 & \text { travel ban } 1.6 & \text { the FBI } 9.4\end{array}$ New Hampshire 19.5 Ted Cr Ted Cruz 30.1 Trump administration 0.0 Trump is 0.1
Lyin' Ted 66.2 Trump is 0.0 Ted Cruz 3.9
New York 19.3
Ted Cruz 28.1
Trump rally 0.0
Ted Cruz 5.5
Paul Ryan 2.0
Hillary Clinton 26.5
Hillary Clinton 24.8
Trump University 3.4
Hillary Clinton 18.6
Trump is 0.0
Hillary Clinton 20.6
Hillary Clinton 20.5

Michael Flynn $0.0 \quad$ school shooting 3.1 Ted Cruz 2.4 travel ban $0.0 \quad$ Stormy Daniels 0.0

Jussie Smergency 0.0
Michael Cohen 5.0
Tim Apple 0.0
New Zealand 17.9 health care 0.0 Cambridge Analytica 0.0 Mueller report 0.0
Freedom Caucus 20.8 Stormy Daniels 0.0 Mueller report 0.0 in Syria $0.2 \quad$ Michael Cohen 0.0 turnout for 0.0 Michael Cohen 2.4 tax plan $0.0 \quad$ the Korean 0.0 health care $0.0 \quad$ Stormy Daniels 0.0 James Comey 6.7 Saudi Arabia 12.5 Saudi Arabia 8.2 Kathy Griffin 5.7 James Comey 0.2 obstruction of 12.6 Karen Handel 16.6
Fake News 37.6

Susan Rice 0.3 National Guard 0.0 tax returns 0.0 Trump Jr 0.0 Supreme Court 7.9 Jeffrey Epstein 0.0
the Iran 9.0

$$
\text { are animals } 0.0
$$

$$
\text { the FBI } 23.3
$$

Samantha Bee 4.4 Justin Trudeau 8.5 their parents 0.0
their parents 3.4 Supreme Court 3.7 tax returns 0.0 Mueller report 0.0 Mueller report 0.0 Mueller report 0.0 tax returns 0.0 Lindsey Graham 0.0 Nancy Pelosi 12.5 John McCain 0.0 with Mexico 39.2 the FBI 8.5 need soap 0.0 Jean Carroll 0.0 Supreme Court 7.9 Jeffrey Epstein 0.0 in Helsinki 1.7
Walk of 0.0 enemy of 22.2 Space Force 11.1 a racist 0.0 Elijah Cummings 27.2 El Paso 11.1 El Paso 7.7 Mike Pence 6.8 Crooked Hillary 79.6 Khizr Khan 0.0
Hillary Clinton 10.5 Boy Scoutse 0.0 Scouts 0.0 North Korea 5.7 impeachment trial 0.0 impeachment trial 0.0 impeachment trial 0.0 impeachment trial 0.0 Alexander Vindman 0.0 Roger Stone 4.0 Bernie Sanders 13.6 the coronavirus 0.0 the coronavirus 0.0

$$
\text { treated worse } 0.0
$$

tested positive 0.0
the pandemic 0.0
a mask 6.3 photo op 0.0 Left Democrats 75.1
in Tulsa 7.4
in Tulsa 2.2
American soldiers 0.0 T Mount Rushmore 3.9 Roger Stone 0.0 in Portland 0.0 in Portland 8.9 the election 3.4 Social Security 0.0 the USPS 0.0 Joe Biden 5.9 Joe Biden 2.7 Joe Biden 3.4 Joe Biden 13.3 a foreign $6.4 \quad$ Supreme Court 7.3 in Detroit 0.0 tax returns 0.0 Trump Jr 0.0 Hillary Clinton 7.5 Mike Pence 8.9 sexual assault 0.0 Hillary Clinton 19.9 Hillary Clinton 11.7 Hillary Clinton 6.5 Trump wins 0.0
Steve Bannon 0.0 Mike Pence 24.3 popular vote 17.4 Air Force 18.2 of State 7.6
Electoral Colleqe 5. 8
$\begin{array}{ll}\text { Joe Arpaio } 3.5 & \text { Michael Cohen } 4.3\end{array}$ Michael Cohen 4.3
John McCain 0.2 to end $0.0 \quad$ Brett Kavanaugh 7.6 white supremacist 0.0 Puerto Rico 8.4 Blasey Ford 0.0 North Korea 12.8 Blasey Ford 0.0 a foreign 6.4

Trump campaign 0.0 white supremacists 0.0 security clearance 0.0 New Hampshire 26.5 Hillary Clinton 19.1 Joe Arpaio 3.5 Michael Cohen 4.3 Prime Minister 28.7 Crooked Hillary 61.8 Hurricane Harvey 0.1 John McCain 0.2 Hurricane Dorian 9.6 the Taliban 3.0 Dan Bishop 37.7 Puerto Rico 5.2 Brett Kavanaugh 15.7mpeachment inquiry 0.0 Supreme Court 5.7 Puerto Rico 2.6 Supreme Court 6.9 Adam Schiff $13.3 \quad$ Walter Reed 5.7 Puerto Rico 2.2 Kanye West 0.0 the Kurds 11.3 Biden is 26.5 families of 0.0 Saudi Arabia 6.6 the Kurds 3.8 Myeshia Johnson 0.0 the bombs 0.0 World Series 0.0 Twitter employee 0.0 birthright citizenship 0.0 the impeachment 0.0 mental health $0.0 \quad \mathrm{Jim}$ Acosta $0.0 \quad$ pro quo 8.1 ban on 0.0 president who 0.0 impeachment inquiry 0.0 Roy Moore 0.0 Saudi Arabia 2.5 quid pro 1.3
Native American 0.1 Trump Tower 2.5 Hong Kong 0.0 Roy Moore 3.5 campaign finance 0.0 to impeach 7.7 of sexual $0.0 \quad$ Michael Cohen $7.8 \quad$ articles of 0.0 the wall 13.7 Joe Biden 12.1 Joe Biden 10.1 Joe Biden 12.6 the election 2.2 the election 7.5 the election 6.7 voter fraud 32.2 in Georgia 12.9 the election 9.0
diers 0.0 Trump Organization 0.0

## 2021

in Georgia 20.2 the Capitol 0.0 voted for 0.0 Lara Trump 0.0 the border 0.0 Matt Gaetz 0.0 Matt Gaetz 0.0 Matt Gaetz 0.0 Maxine Waters 0.0 Liz Cheney 0.0 Liz Cheney 0.0 Liz Cheney 0.0 Kevin McCarthy 0.0 the January 0.0 Memorial Day 0.0 Jean Carroll 0.0 Trump DOJ 0.0 the Capitol 0.0 Ashli Babbitt 0.0 the Capitol 0.0 Tom Barrack 0.0 the Capitol 0.0 the Capitol 0.0 overturn the 0.0 the Taliban 0.0 the Taliban 0.0 the Taliban 0.0 Robert E 0.0 the Taliban 0.0 to overturn 0.0 debt ceiling 0.0 the debt 0.0 the January 0.0 the January 0.0 Alec Baldwin 0.0 in Virginia 0.0

## infrastructure bill 0.0

 Chris Christie 0.0 Kyle Rittenhouse 0.0 Donald Trump 0.0 Donald Trump 0.0 Mark Meadows 0.0The PoCSverse
Allotaxonometry 108 of 125

## A plenitude of

 distancesRank-turbulence divergence

## Probabilityturbulence divergence

## Explorations

## Stories

## Mechanics of Fame

Superspreading
Lexical Ultrafame

## Turbulent times

## References




The PoCSverse
Allotaxonometry 109 of 125
A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

A. Chronopathic equivalency heat map for $\delta$-days-ago surrounding Trump
B. Number-of-days-ago chronopathically equivalent to 14-days-ago in April, 2020

D. Number-of-days-ago chronopathically equivalent to 182-days-ago in August, 2020



ALL SPORTS COMMENTARY
xkcd.com/904/®


8
Research: The taxonomy of human stories.
\& To be built:
Storyscopes-improvable, online, interactive instruments.

The PoCSverse Allotaxonometry 111 of 125
A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


## *ding!*

The PoCSverse Allotaxonometry 112 of 125

A plenitude of distances

Rank-turbulence divergence


Probability
turbulence
divergence
Explorations

## Stories

Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References
$\checkmark$ On Instagram at pratchett the cat[


## References I

[1] P. E. Auerswald.
The Code Economy: A Forty-Thousand Year History.
Oxford University Press, 2017.
[2] P. Bak, K. Christensen, L. Danon, and T. Scanlon.
Unified scaling law for earthquakes. Phys. Rev. Lett., 88:178501, 2002. pdf[3
[3] B. Boyd.
On the Origin of Stories: Evolution, Cognition, and Fiction.
Belknap Press, 2010.

The PoCSverse Allotaxonometry 113 of 125
A plenitude of distances

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of

Superspreading
Lexical Ultrafame

## References II

[4] S.-H. Cha.
Comprehensive survey on distance/similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Sciences, 1:300-307, 2007. pdfe
[5] E. Cheng. How to bake pi: An edible exploration of the mathematics of mathematics.

Basic Books, 2015.

[6] K. Christensen, L. Danon, T. Scanlon, and P. Bak. Unified scaling law for earthquakes. Proc. Natl. Acad. Sci., 99:2509-2513, 2002. pdfC

The PoCSverse Allotaxonometry 114 of 125
A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


## References III

[7] B. Christian and T. Griffiths.
Algorithms to Live By. Macmillan, 2016.
[8] A. Cichocki and S.-i. Amari.
Families of Alpha- Beta- and Gammadivergences: Flexible and robust measures of similarities.
Entropy, 12:1532-1568, 2010. pdf©
[9] M.-M. Deza and E. Deza.
Dictionary of Distances.
Elsevier, 2006.
[10] L. R. Dice.
Measures of the amount of ecologic association between species.
Ecology, 26:297-302, 1945.

The PoCSverse Allotaxonometry 115 of 125
A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References


## References IV

[11] P. S. Dodds, J. R. Minot, M. V. Arnold, T. Alshaabi, J. L. Adams, D. R. Dewhurst, T. J. Gray, M. R. Frank, A. J. Reagan, and C. M. Danforth. Allotaxonometry and rank-turbulence divergence: A universal instrument for comparing complex systems, 2020.
Available online at https://arxiv.org/abs/2002.09770. pdffe
[12] P. S. Dodds, J. R. Minot, M. V. Arnold, T. Alshaabi, J. L. Adams, D. R. Dewhurst, A. J. Reagan, and C. M. Danforth.
Fame and Ultrafame: Measuring and comparing daily levels of 'being talked about' for United States' presidents, their rivals, God, countries, and K-pop, 2019.

The PoCSverse Allotaxonometry 116 of 125
A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References

## References V

> Available online at https://arxiv.org/abs/1910.00149. pdfC‘

[13] P. S. Dodds, J. R. Minot, M. V. Arnold, T. Alshaabi, J. L. Adams, D. R. Dewhurst, A. J. Reagan, and C. M. Danforth.
Probability-turbulence divergence: A tunable allotaxonometric instrument for comparing heavy-tailed categorical distributions, 2020.
Available online at https://arxiv.org/abs/2008.13078. pdfC
[14] P. S. Dodds, J. R. Minot, M. V. Arnold, T. Alshaabi, J. L. Adams, A. J. Reagan, and C. M. Danforth. Computational timeline reconstruction of the stories surrounding Trump: Story turbulence, narrative control, and collective chronopathy, 2020.

## References VI

https://arxiv.org/abs/2008.07301. pdf[©
[15] D. M. Endres and J. E. Schindelin.
A new metric for probability distributions.
IEEE Transactions on Information theory, 2003.
pdfe
[16] M. Erwig.
Once Upon an Algorithm.
MIT Press, 2017.
[17] J. Gottschall.
The Storytelling Animal: How Stories Make Us Human.
Mariner Books, 2013.

The PoCSverse Allotaxonometry 118 of 125

A plenitude of distances

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References


## References VII

[18] E. Hellinger.
Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen.
Journal für die reine und angewandte Mathematik (Crelles Journal), 1909(136):210-271, 1909. pdf[
[19] E. Katz and P. F. Lazarsfeld. Personal Influence.
The Free Press, New York, 1955.
[20] T. Kuran.
Now out of never: The element of surprise in the east european revolution of 1989.
World Politics, 44:7-48, 1991. pdf[

The PoCSverse Allotaxonometry 119 of 125
A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations
Stories
Mechanics of

## References VIII

[21] J. Lin.
Divergence measures based on the Shannon entropy.
IEEE Transactions on Information theory,
37(1):145-151, 1991. pdf[「
[22] J. Looman and J. B. Campbell.
Adaptation of Sørensen's k (1948) for estimating unit affinities in prairie vegetation.
Ecology, 41(3):409-416, 1960. pdf[
[23] K. Matusita et al.
Decision rules, based on the distance, for problems of fit, two samples, and estimation.
The Annals of Mathematical Statistics, 26(4):631-640, 1955. pdf[^

The PoCSverse
Allotaxonometry 120 of 125
A plenitude of

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


## References IX

[24] J. R. Minot, M. V. Arnold, T. Alshaabi, C. M.
Danforth, and P. S. Dodds.
Ratioing the President: An exploration of public engagement with Obama and Trump on Twitter, 2020.

Available online at
https://arxiv.org/abs/2006.03526. pdf[天
[25] R. Munroe.
Thing Explainer: Complicated Stuff in Simple Words.
Houghton Mifflin Harcourt, 2015.
[26] R. Munroe.
How To: Absurd Scientific Advice for Common
Real-World Problems.
Penguin, 2019.

The PoCSverse Allotaxonometry 121 of 125
A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


## References $X$

[27] M. I. Norton and D. Ariely.
Building a better America-One wealth quintile at a time.
Perspectives on Psychological Science, 6:9-12, 2011. pdf[
[28] F. Osterreicher and I. Vajda.
A new class of metric divergences on probability spaces and its applicability in statistics.
Annals of the Institute of Statistical Mathematics, 55(3):639-653, 2003.
[29] E. A. Pechenick, C. M. Danforth, and P. S. Dodds. Is language evolution grinding to a halt? The scaling of lexical turbulence in English fiction suggests it is not.
Journal of Computational Science, 21:24-37, 2017. pdfe

The PoCSverse Allotaxonometry 122 of 125
A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
Turbulent times
References


## References XI

[30] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Numerical Recipes in C.
Cambridge University Press, second edition, 1992.
[31] M. Puchner.
The Written World: How Literature Shaped
Civilization.
Random, 2017.
The PoCSverse
Allotaxonometry 123 of 125
A plenitude of

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of
Fame
Superspreading
Lexical Ultrafame
[32] M. J. Salganik, P. S. Dodds, and D. J. Watts.
An experimental study of inequality and unpredictability in an artificial cultural market. Science, 311:854-856, 2006. pdf■
[33] Y. Sasaki.
The truth of the $f$-measure, 2007.

Turbulent times
References


## References XII

[34] C. E. Shannon.
The bandwagon.
IRE Transactions on Information Theory, 2(1):3,
1956. pdfC
[35] T. Sorensen.
A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons.
Videnski Selskab Biologiske Skrifter, 5:1-34, 1948.
[36] C. J. Van Rijsbergen.
Information retrieval.
Butterworth-Heinemann, 2nd edition, 1979.

The PoCSverse
Allotaxonometry 124 of 125
A plenitude of

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


## References XIII

[37] D. J. Watts and P. S. Dodds. Influentials, networks, and public opinion formation.
Journal of Consumer Research, 34:441-458, 2007. pdf[
[38] J. R. Williams, J. P. Bagrow, C. M. Danforth, and P. S. Dodds.

Text mixing shapes the anatomy of rank-frequency distributions.
Physical Review E, 91:052811, 2015. pdf[^
[39] G. K. Zipf.
Human Behaviour and the Principle of
Least-Effort.
Addison-Wesley, Cambridge, MA, 1949.

The PoCSverse Allotaxonometry 125 of 125
A plenitude of
distances
Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
Stories
Mechanics of Fame

Superspreading
Lexical Ultrafame
Turbulent times
References


