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Site (papers, examples, code):
http://compstorylab.org/allotaxonometry/

Foundational papers:
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A. Rank-turbulence histogram: B. Identical systems:

C. Randomized systems:

D. Disjoint systems:

FIG. 1. A. An example allotaxonomic ‘rank-rank histogram’ comparing word usage ranks on two days of
Twitter, 2016/11/09 and 2017/08/13. These dates are the day after the 2016 US presidential election and the day after
the Charlottesville Unite the Right rally. Words are extracted first as 1-grams from tweets identified as English [39] and then
filtered to match simple latin characters (see Sec. VA). We orient all histograms so that the comparison is left-right removing a
potential misperception of causality. In general, we compare ranked lists of types for two systems Ω1 and Ω2 by first generating
a merged list of types covering both systems. We then bin logarithmic rank-rank pairs (log

10
rτ,1, log10 rτ,2) across all types

and uniformly in logarithmic space. For bin counts, we use the perceptually uniform colormap magma [40], and place a scale in
the bottom left corner. We automatically label words at the fringes of the histogram. Bins on either side of the central vertical
line represent words that are used more often on the corresponding date. For example, ‘Charlottesville’ was ranked 67,220 on
2016/11/09 and 113 on 2017/08/13, while ‘Nazis’ moved from r=9,149 to 129. Words are given alternating shades of gray
for improved readability. The discrete, separated lines of boxes nearest to each bottom axis comprise words that appear on
Twitter on only that side’s date: ‘exclusive types’. Moving up the histogram, the two distinct lines above the ‘exclusive-type
lines’ correspond to words that appear once and twice in the other system. The three horizontal bars in the lower right show
system balances. The top bar indicates the balance of total counts of words for each day: 59.9% versus 40.1%. The middle bar
shows the percentage of the lexicon for the two days combined that appear on each day: 63.2% versus 61.6%. And the bottom
bar shows the percentage of words on each day that are exclusive: 60.8% and 59.8%. B–D. The three rank-rank histograms on
the right show the special, benchmark cases of: B. A Zipf ranking for compared with itself (vertical line; Ω1); C. A ranked list
versus a random shuffling of component types (Ω1); and D. Two Zipf rankings for systems with no shared component types: a
‘vee’ structure (we used Ω1 and Ω2, modifying words to prevent matches). For the cells in the main histograms in this paper,
we use cell side lengths of 1/15 of an order of magnitude; we use 1/5 for plots B–D.

“Allotaxonometry and rank-turbulence
divergence: A universal instrument for
comparing complex systems”
Dodds et al.,
, 2020. [11]
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FIG. 1. Allotaxonograph comparing 2-gram usage in the first and second half of Jane Austen’s Pride and
Prejudice using probability-turbulence divergence with α=3/4, DP

3/4. Histogram on the left: We bin all non-zero
probability pairs (log

10
pτ,1, log10 pτ,2) in logarithmic space. Colors indicate counts of 2-grams per cell, and we highlight example

2-grams along the edges of the histogram. For pairs where one of the probabilities is zero, we add a separate rectangular panel
along the bottom of each axis (lighter gray and lighter blue). Contour lines indicate where probability-turbulence divergence
is constant (the jump to the zero probability region necessitates a break in smoothness). Based on the histogram, we choose
α=3/4 to engineer an approximate fit to the histogram’s periphery. The gray scale for 2-grams is indexed by their percentage
contribution to probability-turbulence divergence, δDP

3/4,τ , showing a mixture of rare and common 2-grams. Ranked list on

the right: We order the most salient 2-grams according to their overall contribution δDP

3/4,τ which we mark by bar length.
We show the rank pair for each 2-gram in light gray opposite each 2-gram. Corresponding Flipbook: Flipbooks S1, S2, and
S3 in the paper’s Online Appendices (compstorylab.org/allotaxonometry/), show how the instrument changes for the same
comparison with α being tuned from 0 to ∞ for 1-, 2-, and 3-grams. See Ref. [1] for a general introduction and motivation for
allotaxonometry and allotaxonographs in the context of rank-turbulence divergence.

The choices of α for the three Twitter examples and the
one from Barro Colorado Island further showcase how
good fits may be achieved by a range of values of α. There
is no universal α characterizing turbulence between Zipf
distributions.

The examples for 2-grams and 3-grams can also be seen
as demonstrations of possible comparisons of features of
complex networks and systems (e.g, 2-grams in text as
directed edges).

As for rank-turbulence divergence [1] but with some
key modifications, our allotaxonographs for probability-
turbulence divergence pair two complimentary visualiza-
tions: A map-like histogram and a ranked list.

In isolation, both the histogram and the ranked list

have important but limited descriptive power. The his-
togram helps us see how well our choice of α performs,
information that is entirely lost by the ranking process.
And the ranked list would be difficult to intuit from the
histogram alone.

Many aspects of our allotaxonographs are configurable.
On Gitlab, we provide our universal code for gener-
ating allotaxonographs for rank-turbulence divergence,
probability-turbulence divergence, and other probability
divergences (see Sec. VB).

In the paper’s Online Appendices (compstory-
lab.org/allotaxonometry/), we complement all of our
allotaxonographs with PDF flipbooks which move sys-
tematically through a range of α values.

“Probability-turbulence divergence: A
tunable allotaxonometric instrument for
comparing heavy-tailed categorical
distributions”
Dodds et al.,
, 2020. [13]

http://compstorylab.org/allotaxonometry/
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020g.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020g.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020g.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020g.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020g.pdf
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Basic science = Describe + Explain:
 Dashboards of single scale instruments helps us

understand, monitor, and control systems.

 Archetype: Cockpit dashboard for flying a plane
 Okay if comprehendible.
 Complex systems present two problems for

dashboards:
1. Scale with internal diversity of components: We

need meters for every species, every company,
every word.

2. Tracking change: We need to re-arrange meters
on the fly.

 Goal—Create comprehendible,
dynamically-adjusting, differential dashboards
showing two pieces:1
1. ‘Big picture’ map-like overview,
2. A tunable ranking of components.

1See the lexicocalorimeter

http://panometer.org/instruments/lexicocalorimeter/
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Baby names, much studied: [26]

How to build a dynamical dashboard that helps sort
through a massive number of interconnected time
series?
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a  b s  t r  a  c t

Of basic interest  is the quantification  of the long  term growth  of  a  language’s  lexicon as it  develops to

more  completely  cover  both a  culture’s communication  requirements  and  knowledge  space. Here,  we

explore  the usage dynamics of  words in the English language as  reflected  by  the Google Books  2012

English  Fiction corpus.  We critique an earlier  method that  found decreasing  birth and increasing  death

rates of  words over  the second  half  of the  20th Century, showing  death rates to be  strongly affected  by

the  imposed  time  cutoff  of the  arbitrary present and not  increasing  dramatically. We provide  a  robust,

principled  approach  to examining  lexical  evolution by tracking the volume of  word flux across various

relative  frequency thresholds. We  show  that  while the overall  statistical  structure of the English  language

remains stable over  time in  terms  of  its  raw Zipf  distribution,  we  find evidence of an enduring  ‘lexical

turbulence’:  The flux of words  across frequency  thresholds  from decade  to  decade  scales superlinearly

with word  rank  and exhibits a  scaling  break  we  connect to  that of Zipf’s law.  To better  understand  the

changing  lexicon,  we examine the contributions to the Jensen-Shannon  divergence  of  individual  words

crossing frequency thresholds. We  also  find indications that scholarly  works  about  fiction  are  strongly

represented  in  the  2012 English  Fiction corpus, and suggest  that  a  future revision  of the corpus  should

attempt to separate critical  works  from  fiction  itself.

© 2017 Elsevier B.V. All  rights  reserved.

1.  Introduction

In studying any entity  or  system, a fundamental scientific  goal

is  the satisfactory characterization of temporal dynamics, whether

empirically observed, simulated, or theoretically predicted. For lan-

guage, there  are many kinds and scales of  temporal  dynamics to

consider  such as the introduction and usage  decline of  specific

words [1], the evolution of  accents, the long  term development of

individual  languages [2],  and  the changes in the overall ecology  of

human languages which has  now moved well into  an  era of  die  off

[3].

Here,  we  are concerned  with  the  dynamics of the English lan-

guage’s  lexicon. Primarily, we  want  to  know how the usage of words

has changed  in time,  and how this  is reflected in  the  English lex-

icon’s evolution. This focus leads  us  to  several core  questions:  (1)

What are the  rates at  which words are born  and at  which they

∗ Corresponding author.

E-mail addresses: eitan.pechenick@gmail.com (E.A. Pechenick),

chris.danforth@uvm.edu (C.M. Danforth), peter.dodds@uvm.edu (P.S.  Dodds).

die? (2)  How do we  reasonably identify  word  births  and deaths

in the first  place? (3)  As the English lexicon has expanded,  how

have overall statistical patterns such as  Zipf’s law [4] changed,  if

at all?  We  are especially interested with  revisiting work on word

“birth” and “death” rates as performed in  [1].  As we  will show,  the

methods employed  in [1]  suffer  from  boundary effects, and  we pro-

pose and  investigate an  alternative  approach insensitive to time

range choice. We  also investigate lexical changes at a  range of  usage

frequency levels.

We  will perform our analyses using  the Google  Books  corpus

[5,6] whose incredible volume generated from an  extensive cover-

age of all  written works would seemingly make it  an ideal candidate

for linguistic research. However,  there are two major  caveats that

limit its potency  and we  will lay  them out  before proceeding.

In previous research [7], we broadly explored the characteris-

tics and dynamics of  the  unfiltered  English and  English Fiction data

sets from  both the  2009  and 2012 versions  of  the Google Books

corpus. We showed that the  2009 and 2012 unfiltered English data

sets and, surprisingly, the  2009 English Fiction  data  set, all become

increasingly influenced by scientific texts throughout the 1900s,

with medical research  language being especially  prevalent. We

http://dx.doi.org/10.1016/j.jocs.2017.04.020

1877-7503/© 2017  Elsevier B.V. All rights  reserved.

“Is language evolution grinding to a halt? The
scaling of lexical turbulence in English fiction
suggests it is not”
Pechenick, Danforth, Dodds, Alshaabi, Adams,
Dewhurst, Reagan, Danforth, Reagan, and
Danforth.
Journal of Computational Science, 21, 24–37,
2017. [29]

0 1 2 3 4 5 6
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

log
10

Rank r

lo
g
1
0

R
el

a
ti

v
e

fr
eq

u
en

cy
f

 A 

f ∼ r−1 .14

f ∼ r−1 .95

1820 1850 1900 1950 2000
−8

−7

−6

−5

−4

−3

−2

−1

0

Top 1-gram (comma)

Top 10 1-grams

Top 100 1-grams

Top 1000 1-grams

Top 10,000 1-grams

Top 100,000 1-grams

Year (mid-decade)

lo
g
1
0

R
el

a
ti

v
e

fr
eq

u
en

cy
cu

to
ff  B 

https://pdodds.w3.uvm.edu//research/papers/others/everything/pechenick2017a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/pechenick2017a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/pechenick2017a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/pechenick2017a.pdf


The PoCSverse
Allotaxonometry
11 of 125

A plenitude of
distances

Rank-turbulence
divergence

Probability-
turbulence
divergence

Explorations

Stories

Mechanics of
Fame

Superspreading

Lexical Ultrafame

Turbulent times

References

For language, Zipf’s law has two scaling
regimes: [38] 𝑓 ∼ { 𝑟−𝛼 for 𝑟 ≪ 𝑟b,𝑟−𝛼′ for 𝑟 ≫ 𝑟b,
When comparing two texts, define Lexical
turbulence as flux of words across a frequency
threshold: 𝜙 ∼ { 𝑓−𝜇

thr for 𝑓thr ≪ 𝑓b,𝑓−𝜇′
thr for 𝑓thr ≫ 𝑓b,

Estimates: 𝜇 ≃ 0.77 and 𝜇′ ≃ 1.10, and 𝑓b is the scaling
break point. 𝜙 ∼ { 𝑟𝜈 = 𝑟𝛼𝜇′ for 𝑟 ≪ 𝑟b,𝑟𝜈′ = 𝑟𝛼′𝜇 for 𝑟 ≫ 𝑟b.
Estimates: Lower and upper exponents 𝜈 ≃ 1.23 and𝜈′ ≃ 1.47.
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A. Rank-turbulence histogram:
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Exclusive types:
 We call types that are present in one system only

‘exclusive types’.
 When warranted, we will use expressions of the

form Ω(1)-exclusive and Ω(2)-exclusive to indicate
to which system an exclusive type belongs.
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Probability-turbulence histogram:
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So, so many ways to compare probability distributions:
Entropy 2010, 12 1542

Table 1. Asymmetric Alpha-divergences and associated convex Csiszár-Morimoto

functions [30].

Divergence D
(α)
A

(P||Q) =

∫

qf (α)

(

p

q

)

dµ(x) Csiszár function f (α)(u), u = p/q
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pdf can be considered as a vector, i.e., a point in the Euclidean 
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geometrical distances can be applied to compare two pdf’s. 
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the same as computing the Bayes (or minimum 
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probabilistic approach is based on the fact that a histogram of 

a measurement provides the basis for an empirical estimate of 

the pdf.  

The rest of the paper is organized as follows. In section 2, 

various distance/similarity measures are enumerated according 

to their syntactic similarities. In order to provide a better 

perspective on distance/similarity measures, section 3 presents 
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Table 1. Asymmetric Alpha-divergences and associated convex Csiszár-Morimoto

functions [30].
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naturally imply the level independency.  

There are two approaches in pdf distance/similarity 

measures: vector and probabilistic. Since each level is 

assumed to be independent from other levels, a histogram or 

pdf can be considered as a vector, i.e., a point in the Euclidean 

space or a Cartesian coordinate system. Hence, numerous 

geometrical distances can be applied to compare two pdf’s. 

There is much literature regarding discrete versions of various 
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Computing the distance between two pdf’s can be regarded as 

the same as computing the Bayes (or minimum 

misclassification) probability [1]. This is equivalent to 

measuring the overlap between two pdfs as the distance. The 

probabilistic approach is based on the fact that a histogram of 

a measurement provides the basis for an empirical estimate of 
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The rest of the paper is organized as follows. In section 2, 

various distance/similarity measures are enumerated according 

to their syntactic similarities. In order to provide a better 

perspective on distance/similarity measures, section 3 presents 
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Table 1. Asymmetric Alpha-divergences and associated convex Csiszár-Morimoto

functions [30].
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paper have the shuffling invariant property [6] and thus 

naturally imply the level independency.  

There are two approaches in pdf distance/similarity 

measures: vector and probabilistic. Since each level is 

assumed to be independent from other levels, a histogram or 

pdf can be considered as a vector, i.e., a point in the Euclidean 

space or a Cartesian coordinate system. Hence, numerous 

geometrical distances can be applied to compare two pdf’s. 

There is much literature regarding discrete versions of various 

divergences in probability and information theory fields [7,8]. 

Computing the distance between two pdf’s can be regarded as 

the same as computing the Bayes (or minimum 

misclassification) probability [1]. This is equivalent to 

measuring the overlap between two pdfs as the distance. The 

probabilistic approach is based on the fact that a histogram of 

a measurement provides the basis for an empirical estimate of 

the pdf.  

The rest of the paper is organized as follows. In section 2, 

various distance/similarity measures are enumerated according 

to their syntactic similarities. In order to provide a better 

perspective on distance/similarity measures, section 3 presents 

the hierarchical cluster tree using the correlations between 

different measures. Finally, section 4 concludes this work.  
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A couple of thousand years ago, Euclid stated that the 

shortest distance between two points is a line and thus the eqn 

(1) is predominantly known as Euclidean distance. It was 

often called Pythagorean metric since it is derived from the 

Pythagorean Theorem. In the late 19th century, Hermann 

Minkowski considered the city block distance [9]. Other 

names for the eqn (2) include rectilinear distance, taxicab 

norm, and Manhattan distance. Hermann also generalized the 

formulae (1) and (2) to the eqn (3) which is coined after 

Minkowski. When p goes to infinite, the eqn (4) can be 

derived and it is called the chessboard distance in 2D, the 

minimax approximation, or the Chebyshev distance named 

after Pafnuty Lvovich Chebyshev [10]. 

 

Table 2. L1 family 

5. Sørensen 

∑

∑

=

=

+

−
=

d

i

ii

d

i

ii

sor

QP

QP

d

1

1

)(

||  
(5) 

∑
=

−
=

d

i i

ii
gow

R

QP

d
d

1

||1  
(6) 

6. Gower 

∑
=

−=
d

i

ii QP
d 1

||
1  

(7) 

7. Soergel 

∑

∑

=

=

−
=

d

i

ii

d

i

ii

sg

QP

QP

d

1

1

),max(

||  
(8) 

8. Kulczynski d 

∑

∑

=

=

−
=

d

i

ii

d

i

ii

kul

QP

QP

d

1

1

),min(

||  
(9) 

9. Canberra ∑
= +

−
=

d

i ii

ii
Can

QP

QP
d

1

||  
(10) 

10. Lorentzian ∑
=

−+=
d

i

iiLor QPd
1

|)|1ln(  (11) 

* L1 family ⊃ {Intersectoin (13), Wave Hedges (15), 

Czekanowski (16), Ruzicka (21), Tanimoto (23), etc}. 

 

Several distance measures listed in Table 2 facilitate the L1, 

more precisely the absolute difference. The eqn (5), which is 

widely used in ecology [11], is known as Sørensen distance 

[12] or Bray-Curtis [2,4,13]. When it is used for comparing 

two pdfs, it is nothing but the L1 divided by 2. Gower distance 

[14] in the eqn (6) scales the vector space into the normalized 

space and then uses the L1. Since the pdf is already normalized 

space, Gower distance is the L1 divided by d. Other L1 family 

distances that are non-proportional to the L1 include Soergel 

and Kulczynski distances given in the eqns (8) [4] and (9) [2] 

respectively. At first glance, Canberra metric given in the eqn 

(10) [2,15] resembles Sørensen but normalizes the absolute 

difference of the individual level. It is known to be very 

sensitive to small changes near zero [15]. The eqn (11) [2], 

attributed to Lorentzian, also contains the absolute difference 

and the natural logarithm is applied. 1 is added to guarantee 

the non-negativity property and to eschew the log of zero. 
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 We want two main
things:
1. A measure of

difference between
systems

2. A way of sorting which
types/species/words
contribute to that
difference

 For sorting, many
comparisons give the
same ordering.

 A few basic building
blocks:
 |𝑃𝑖 − 𝑄𝑖| (dominant)
 max(𝑃𝑖, 𝑄𝑖)
 min(𝑃𝑖, 𝑄𝑖)
 𝑃𝑖𝑄𝑖
 |𝑃 1/2𝑖 − 𝑄1/2𝑖 |
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 Shannon’s Entropy:𝐻(𝑃) = ⟨log2 1𝑝𝜏 ⟩ = ∑𝜏∈𝑅1,2;𝛼 𝑝𝜏 log2 1𝑝𝜏 (1)

 Kullback-Liebler (KL) divergence:𝐷KL (𝑃2 ∣∣ 𝑃1) = ⟨log2 1𝑝2,𝜏 − log2 1𝑝1,𝜏 ⟩𝑃2= ∑𝜏∈𝑅1,2;𝛼 𝑝2,𝜏 [log2 1𝑝2,𝜏 − log2 1𝑝1,𝜏 ]= ∑𝜏∈𝑅1,2;𝛼 𝑝2,𝜏 log2 𝑝1,𝜏𝑝2,𝜏 . (2)

 Problem: If just one component type in system 2 is not
present in system 1, KL divergence = ∞.

 Solution: If we can’t compare a spork and a platypus
directly, we create a fictional spork-platypus hybrid.

 New problem: Re-read solution.



The PoCSverse
Allotaxonometry
22 of 125

A plenitude of
distances

Rank-turbulence
divergence

Probability-
turbulence
divergence

Explorations

Stories

Mechanics of
Fame

Superspreading

Lexical Ultrafame

Turbulent times

References

 Shannon’s Entropy:𝐻(𝑃) = ⟨log2 1𝑝𝜏 ⟩ = ∑𝜏∈𝑅1,2;𝛼 𝑝𝜏 log2 1𝑝𝜏 (1)

 Kullback-Liebler (KL) divergence:𝐷KL (𝑃2 ∣∣ 𝑃1) = ⟨log2 1𝑝2,𝜏 − log2 1𝑝1,𝜏 ⟩𝑃2= ∑𝜏∈𝑅1,2;𝛼 𝑝2,𝜏 [log2 1𝑝2,𝜏 − log2 1𝑝1,𝜏 ]= ∑𝜏∈𝑅1,2;𝛼 𝑝2,𝜏 log2 𝑝1,𝜏𝑝2,𝜏 . (2)

 Problem: If just one component type in system 2 is not
present in system 1, KL divergence = ∞.

 Solution: If we can’t compare a spork and a platypus
directly, we create a fictional spork-platypus hybrid.

 New problem: Re-read solution.



The PoCSverse
Allotaxonometry
22 of 125

A plenitude of
distances

Rank-turbulence
divergence

Probability-
turbulence
divergence

Explorations

Stories

Mechanics of
Fame

Superspreading

Lexical Ultrafame

Turbulent times

References

 Shannon’s Entropy:𝐻(𝑃) = ⟨log2 1𝑝𝜏 ⟩ = ∑𝜏∈𝑅1,2;𝛼 𝑝𝜏 log2 1𝑝𝜏 (1)

 Kullback-Liebler (KL) divergence:𝐷KL (𝑃2 ∣∣ 𝑃1) = ⟨log2 1𝑝2,𝜏 − log2 1𝑝1,𝜏 ⟩𝑃2= ∑𝜏∈𝑅1,2;𝛼 𝑝2,𝜏 [log2 1𝑝2,𝜏 − log2 1𝑝1,𝜏 ]= ∑𝜏∈𝑅1,2;𝛼 𝑝2,𝜏 log2 𝑝1,𝜏𝑝2,𝜏 . (2)

 Problem: If just one component type in system 2 is not
present in system 1, KL divergence = ∞.

 Solution: If we can’t compare a spork and a platypus
directly, we create a fictional spork-platypus hybrid.

 New problem: Re-read solution.



The PoCSverse
Allotaxonometry
22 of 125

A plenitude of
distances

Rank-turbulence
divergence

Probability-
turbulence
divergence

Explorations

Stories

Mechanics of
Fame

Superspreading

Lexical Ultrafame

Turbulent times

References

 Shannon’s Entropy:𝐻(𝑃) = ⟨log2 1𝑝𝜏 ⟩ = ∑𝜏∈𝑅1,2;𝛼 𝑝𝜏 log2 1𝑝𝜏 (1)

 Kullback-Liebler (KL) divergence:𝐷KL (𝑃2 ∣∣ 𝑃1) = ⟨log2 1𝑝2,𝜏 − log2 1𝑝1,𝜏 ⟩𝑃2= ∑𝜏∈𝑅1,2;𝛼 𝑝2,𝜏 [log2 1𝑝2,𝜏 − log2 1𝑝1,𝜏 ]= ∑𝜏∈𝑅1,2;𝛼 𝑝2,𝜏 log2 𝑝1,𝜏𝑝2,𝜏 . (2)

 Problem: If just one component type in system 2 is not
present in system 1, KL divergence = ∞.

 Solution: If we can’t compare a spork and a platypus
directly, we create a fictional spork-platypus hybrid.

 New problem: Re-read solution.



The PoCSverse
Allotaxonometry
22 of 125

A plenitude of
distances

Rank-turbulence
divergence

Probability-
turbulence
divergence

Explorations

Stories

Mechanics of
Fame

Superspreading

Lexical Ultrafame

Turbulent times

References

 Shannon’s Entropy:𝐻(𝑃) = ⟨log2 1𝑝𝜏 ⟩ = ∑𝜏∈𝑅1,2;𝛼 𝑝𝜏 log2 1𝑝𝜏 (1)

 Kullback-Liebler (KL) divergence:𝐷KL (𝑃2 ∣∣ 𝑃1) = ⟨log2 1𝑝2,𝜏 − log2 1𝑝1,𝜏 ⟩𝑃2= ∑𝜏∈𝑅1,2;𝛼 𝑝2,𝜏 [log2 1𝑝2,𝜏 − log2 1𝑝1,𝜏 ]= ∑𝜏∈𝑅1,2;𝛼 𝑝2,𝜏 log2 𝑝1,𝜏𝑝2,𝜏 . (2)

 Problem: If just one component type in system 2 is not
present in system 1, KL divergence = ∞.

 Solution: If we can’t compare a spork and a platypus
directly, we create a fictional spork-platypus hybrid.

 New problem: Re-read solution.



The PoCSverse
Allotaxonometry
23 of 125

A plenitude of
distances

Rank-turbulence
divergence

Probability-
turbulence
divergence

Explorations

Stories

Mechanics of
Fame

Superspreading

Lexical Ultrafame

Turbulent times

References

 Jensen-Shannon divergence (JSD): [21, 15, 28, 4]𝐷JS (𝑃1 ∣∣ 𝑃2)= 12 𝐷KL (𝑃1 ∣∣ 12 [𝑃1 + 𝑃2]) + 12 𝐷KL (𝑃2 ∣∣ 12 [𝑃1 + 𝑃2])= 12 ∑𝜏∈𝑅1,2;𝛼 (𝑝1,𝜏 log2 𝑝1,𝜏12 [𝑝1,𝜏 + 𝑝2,𝜏] + 𝑝2,𝜏 log2 𝑝2,𝜏12 [𝑝1,𝜏 + 𝑝2,𝜏] ) .
(3)

 Involving a third intermediate averaged system means JSD is now
finite: 0 ≤ 𝐷JS (𝑃1 ∣∣ 𝑃2) ≤ 1.

 Generalized entropy divergence: [8]𝐷AS2𝛼 (𝑃1 ∣∣ 𝑃2) =1𝛼(𝛼 − 1) ∑𝜏∈𝑅1,2;𝛼 [(𝑝1−𝛼𝜏,1 + 𝑝1−𝛼𝜏,2 ) ( 𝑝𝜏,1 + 𝑝𝜏,22 )𝛼 − (𝑝𝜏,1 + 𝑝𝜏,2)] .
(4)

Produces JSD when 𝛼 → 0.
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Desirable rank-turbulence divergence features:
1. Rank-based.

2. Symmetric.
3. Semi-positive: 𝐷R𝛼(Ω1 ∣∣ Ω2) ≥ 0.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any

principled subset may be equally well compared
(e.g., hashtags on Twitter, stock prices of a certain
sector, etc.).

6. Turbulence-handling: Suited for systems with
rank-ordered component size distribution that are
heavy-tailed.

7. Scalable: Allow for sensible comparisons across
system sizes.

8. Tunable.
9. Story-finding: Features 1–8 combine to show

which component types are most ‘important’
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2. Symmetric.
3. Semi-positive: 𝐷R𝛼(Ω1 ∣∣ Ω2) ≥ 0.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any

principled subset may be equally well compared
(e.g., hashtags on Twitter, stock prices of a certain
sector, etc.).
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Some good things about ranks:

 Working with ranks is intuitive
 Affords some powerful statistics (e.g., Spearman’s

rank correlation coefficient)
 Can be used to generalize beyond systems with

probabilities

A start: ∣ 1𝑟𝜏,1 − 1𝑟𝜏,2 ∣ . (5)

 Inverse of rank gives an increasing measure of
‘importance’

 High rank means closer to rank 1
 We assign tied ranks for components of equal ‘size’

 Issue: Biases toward high rank components
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We introduce a tuning parameter:∣ 1[𝑟𝜏,1]𝛼 − 1[𝑟𝜏,2]𝛼 ∣1/𝛼 . (6)

 As 𝛼 → 0, high ranked components are
increasingly dampened

 For words in texts, for example, the weight of
common words and rare words move increasingly
closer together.

 As 𝛼 → ∞, high rank components will dominate.
 For texts, the contributions of rare words will

vanish.
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Trouble:
 The limit of 𝛼 → 0 does not behave well for

∣ 1[𝑟𝜏,1]𝛼 − 1[𝑟𝜏,2]𝛼 ∣1/𝛼 .
 The leading order term is:(1 − 𝛿𝑟𝜏,1𝑟𝜏,2) 𝛼1/𝛼 ∣ln𝑟𝜏,1𝑟𝜏,2 ∣1/𝛼 , (7)

which heads toward ∞ as 𝛼 → 0.

 Oops.
 But the insides look nutritious:∣ln𝑟𝜏,1𝑟𝜏,2 ∣

is a nicely interpretable log-ratio of ranks.
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Some reworking:

𝛿𝐷R𝛼,𝜏(𝑅1 ∣∣ 𝑅2) ∝ 𝛼 + 1𝛼 ∣ 1[𝑟𝜏,1]𝛼 − 1[𝑟𝜏,2]𝛼 ∣1/(𝛼+1) .
(8)

 Keeps the core structure.
 Large 𝛼 limit remains the same.
 𝛼 → 0 limit now returns log-ratio of ranks.
 Next: Sum over 𝜏 to get divergence.
 Still have an option for normalization.

Rank-turbulence divergence:𝐷R𝛼(𝑅1 ∣∣ 𝑅2) = 1𝒩1,2;𝛼 ∑𝜏∈𝑅1,2;𝛼 𝛿𝐷R𝛼,𝜏(𝑅1 ∣∣ 𝑅2) (9)
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Normalization:
 Take a data-driven rather than analytic approach

to determining 𝒩1,2;𝛼.

 Compute 𝒩1,2;𝛼 by taking the two systems to be
disjoint while maintaining their underlying Zipf
distributions.

 Ensures: 0 ≤ 𝐷R𝛼(𝑅1 ‖ 𝑅2) ≤ 1
 Limits of 0 and 1 correspond to the two systems

having identical and disjoint Zipf distributions.
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Rank-turbulence divergence:
Summing over all types, dividing by a normalization
prefactor 𝒩1,2;𝛼 we have our prototype:

𝐷R𝛼(𝑅1 ∣∣ 𝑅2) = 1𝒩1,2;𝛼 𝛼 + 1𝛼 ∑𝜏∈𝑅1,2;𝛼 ∣ 1[𝑟𝜏,1]𝛼 − 1[𝑟𝜏,2]𝛼 ∣1/(𝛼+1) .
(10)
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General normalization:
 Iif the Zipf distributions are disjoint, then in Ω(1)’s

merged ranking, the rank of all Ω(2) types will be𝑟 = 𝑁1 + 12𝑁2, where 𝑁1 and 𝑁2 are the number
of distinct types in each system.

 Similarly, Ω(2)’s merged ranking will have all ofΩ(1)’s types in last place with rank 𝑟 = 𝑁2 + 12𝑁1.
 The normalization is then:

𝒩1,2;𝛼 = 𝛼 + 1𝛼 ∑𝜏∈𝑅1 ∣ 1[𝑟𝜏,1]𝛼 − 1[𝑁1 + 12𝑁2]𝛼 ∣1/(𝛼+1)
+ 𝛼 + 1𝛼 ∑𝜏∈𝑅1 ∣ 1[𝑁2 + 12𝑁1]𝛼 − 1[𝑟𝜏,2]𝛼 ∣1/(𝛼+1) .

(11)
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Limit of 𝛼 → 0:
𝐷R0(𝑅1 ‖ 𝑅2) = ∑𝜏∈𝑅1,2;𝛼 𝛿𝐷R0,𝜏 = 1𝒩1,2;0 ∑𝜏∈𝑅1,2;𝛼 ∣ln𝑟𝜏,1𝑟𝜏,2 ∣ ,

(12)
where𝒩1,2;0 = ∑𝜏∈𝑅1 ∣ln 𝑟𝜏,1𝑁1 + 12𝑁2 ∣ + ∑𝜏∈𝑅2 ∣ln 𝑟𝜏,212𝑁1 + 𝑁2 ∣ .

(13)

 Largest rank ratios dominate.
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Limit of 𝛼 → ∞:𝐷R∞(𝑅1 ‖ 𝑅2) = ∑𝜏∈𝑅1,2;𝛼 𝛿𝐷R∞,𝜏= 1𝒩1,2;∞ ∑𝜏∈𝑅1,2;𝛼 (1 − 𝛿𝑟𝜏,1𝑟𝜏,2)max𝜏 { 1𝑟𝜏,1 , 1𝑟𝜏,2 } .
(14)

where 𝒩1,2;∞ = ∑𝜏∈𝑅1
1𝑟𝜏,1 + ∑𝜏∈𝑅2

1𝑟𝜏,2 . (15)

 Highest ranks dominate.
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Probability-turbulence divergence:

𝐷P𝛼(𝑃1 ∣∣ 𝑃2) = 1𝒩P1,2;𝛼 𝛼 + 1𝛼 ∑𝜏∈𝑅1,2;𝛼 ∣ [ 𝑝𝜏,1]𝛼−[ 𝑝𝜏,2]𝛼 ∣1/(𝛼+1) .
(16)

 For the unnormalized version (𝒩P1,2;𝛼=1), some
troubles return with 0 probabilities and 𝛼 → 0.

 Weep not: 𝒩P1,2;𝛼 will save the day.
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Normalization:
With no matching types, the probability of a type
present in one system is zero in the other, and the
sum can be split between the two systems’ types:𝒩P1,2;𝛼 = 𝛼 + 1𝛼 ∑𝜏∈𝑅1 [ 𝑝𝜏,1]𝛼/(𝛼+1) + 𝛼 + 1𝛼 ∑𝜏∈𝑅2 [ 𝑝𝜏,2]𝛼/(𝛼+1)

(17)
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Limit of 𝛼=0 for probability-turbulence divergence
 if both 𝑝𝜏,1 > 0 and 𝑝𝜏,2 > 0 then

lim𝛼→0 𝛼 + 1𝛼 ∣ [ 𝑝𝜏,1]𝛼 −[ 𝑝𝜏,2]𝛼 ∣1/(𝛼+1)= ∣ln𝑝𝜏,2𝑝𝜏,1 ∣ .
(18)

 But if 𝑝𝜏,1 = 0 or 𝑝𝜏,2 = 0, limit diverges as 1/𝛼.



The PoCSverse
Allotaxonometry
41 of 125

A plenitude of
distances

Rank-turbulence
divergence

Probability-turbulence
divergence

Explorations

Stories

Mechanics of
Fame

Superspreading

Lexical Ultrafame

Turbulent times

References

Limit of 𝛼=0 for probability-turbulence divergence
 Normalization:𝒩P1,2;𝛼 → 1𝛼 (𝑁1 + 𝑁2) . (19)

 Because the normalization also diverges as 1/𝛼,
the divergence will be zero when there are no
exclusive types and non-zero when there are
exclusive types.
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Combine these cases into a single expression:𝐷P0(𝑃1 ‖ 𝑃2) = 1(𝑁1 + 𝑁2) ∑𝜏∈𝑅1,2;0 (𝛿𝑝𝜏,1,0 + 𝛿0,𝑝𝜏,2) .
(20)

 The term (𝛿𝑝𝜏,1,0 + 𝛿0,𝑝𝜏,2) returns 1 if either𝑝𝜏,1 = 0 or 𝑝𝜏,2 = 0, and 0 otherwise when both𝑝𝜏,1 > 0 and 𝑝𝜏,2 > 0.
 Ratio of types that are exclusive to one system

relative to the total possible such types,
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Type contribution ordering for the limit of 𝛼=0
 In terms of contribution to the divergence score,

all exclusive types supply a weight of 1/(𝑁1 + 𝑁2).
We can order them by preserving their ordering as𝛼 → 0, which amounts to ordering by descending
probability in the system in which they appear.

 And while types that appear in both systems make
no contribution to 𝐷P0(𝑃1 ‖ 𝑃2), we can still order
them according to the log ratio of their
probabilities.

 The overall ordering of types by divergence
contribution for 𝛼=0 is then: (1) exclusive types by
descending probability and then (2) types
appearing in both systems by descending log ratio.
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Limit of 𝛼=∞ for probability-turbulence
divergence𝐷P∞(𝑃1 ‖ 𝑃2) = 12 ∑𝜏∈𝑅1,2;∞ (1 − 𝛿𝑝𝜏,1,𝑝𝜏,2)max (𝑝𝜏,1, 𝑝𝜏,2)

(21)
where𝒩P1,2;∞ = ∑𝜏∈𝑅1,2;∞ ( 𝑝𝜏,1 + 𝑝𝜏,2 )= 1 + 1 = 2. (22)
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Connections for PTD:
 𝛼 = 0: Similarity measure Sørensen-Dice

coefficient [10, 35, 22], 𝐹1 score of a test’s
accuracy [36, 33].

 𝛼 = 1/2: Hellinger distance [18] and Mautusita
distance [23].

 𝛼 = 1: Many including all 𝐿(𝑝)-norm type
constructions.

 𝛼 = ∞: Motyka distance [9].
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FIG. 8. Rank-turbulence divergence allotaxonograph [34] of word rank distributions in the incel vs
random comment corpora. The rank-rank histogram on the left shows the density of words by their rank in the

incel comments corpus against their rank in the random comments corpus. Words at the top of the diamond are

higher frequency, or lower rank. For example, the word “the” appears at the highest observed frequency, and thus

has the lowest rank, 1. This word has the lowest rank in both corpora, so its coordinates lie along the center vertical

line in the plot. Words such as “women” diverge from the center line because their rank in the incel corpus is higher

than in the random corpus. The top 40 words with greatest divergence contribution are shown on the right. In this

comparison, nearly all of the top 40 words are more common in the incel corpus, so they point to the right. The

word that has the most notable change in rank from the random to incel corpus is “women”, the object of hatred

and desire for the incel community. The following words reference various categories of men: “incels”, “chad”, and
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Flipbooks for RTD:

 Twitter:
instrument-flipbook-1-rank-div.pdf
instrument-flipbook-2-probability-div.pdf
instrument-flipbook-3-gen-entropy-div.pdf

 Market caps:
instrument-flipbook-4-marketcaps-6years-rank-div.pdf

 Baby names:
instrument-flipbook-5-babynames-girls-50years-rank-div.pdf
instrument-flipbook-6-babynames-boys-50years-rank-div.pdf

 Google books:
instrument-flipbook-7-google-books-onegrams-rank-div.pdf
instrument-flipbook-8-google-books-bigrams-rank-div.pdf
instrument-flipbook-9-google-books-trigrams-rank-div.pdf

https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-2016-11-09-2017-08-13-all-rank-div_combined_noname.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-2016-11-09-2017-08-13-all-prob-div_combined_noname.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-2016-11-09-2017-08-13-storywrangler-all-entropy-alpha-div_combined_noname.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-siblis_flipbook001_marketcaps001_combined.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-babynames-1-50-decade-combined.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-babynames-2-50-decade-combined.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-google-books-fiction-1948-1987-onegrams-rank-div-lcs-combined_noname.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-google-books-fiction-1948-1987-bigrams-rank-div-lcs-combined_noname.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-google-books-fiction-1948-1987-trigrams-rank-div-lcs-combined_noname.pdf


Flipbooks for PTD:

 Jane Austen:
Pride and Prejudice, 1-grams
Pride and Prejudice, 2-grams
Pride and Prejudice, 3-grams

 Social media:
Twitter, 1-grams
Twitter, 2-grams
Twitter, 3-grams

 Ecology:
Barro Colorado Island

https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-1-probability-divergence-pride-and-prejudice-1-grams.pdf
https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-2-probability-divergence-pride-and-prejudice-2-grams.pdf
https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-3-probability-divergence-pride-and-prejudice-3-grams.pdf
https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-4-probability-divergence-twitter-1-grams.pdf
https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-5-probability-divergence-twitter-2-grams.pdf
https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-6-probability-divergence-twitter-3-grams.pdf
https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-7-probability-turbulence-divergence-barro-colorado-island.pdf
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Code:
https://gitlab.com/compstorylab/allotaxonometer

https://gitlab.com/compstorylab/allotaxonometer
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Claims, exaggerations, reminders:
 Needed for comparing large-scale complex

systems:
Comprehendible, dynamically-adjusting,
differential dashboards

 Many measures seem poorly motivated and
largely unexamined (e.g., JSD)

 Of value: Combining big-picture maps with ranked
lists

 Maybe one day: Online tunable version of
rank-turbulence divergence (plus many other
instruments)

5 0 5
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The everywhereness of algorithms and stories:

“On the Origin of Stories: Evolution,
Cognition, and Fiction”
by Brian Boyd (2010). [3]

“The Storytelling Animal: How Stories Make
Us Human”
by Jonathan Gottschall (2013). [17]

“The Written World: How Literature Shaped
Civilization”
by Martin Puchner (2017). [31]

http://www.amazon.com/dp/0674033574/
http://www.amazon.com/dp/0674033574/
http://www.amazon.com/dp/0674033574/
http://www.amazon.com/dp/0547391404/
http://www.amazon.com/dp/0547391404/
http://www.amazon.com/dp/0547391404/
http://www.amazon.com/dp/B06VXP1SYW/
http://www.amazon.com/dp/B06VXP1SYW/
http://www.amazon.com/dp/B06VXP1SYW/
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Algorithms, recipes, stories, …

“The Code Economy: A Forty-Thousand Year
History”
by Philip E Auerswald (2017). [1]

“Algorithms to Live By”
by Christian and Griffiths (2016). [7]

“Once Upon an Algorithm”
by Martin Erwig (2017). [16]

Also: Numerical Recipes in C [30] and How to Bake 𝜋 [5]

http://www.amazon.com/dp/0190226765/
http://www.amazon.com/dp/0190226765/
http://www.amazon.com/dp/0190226765/
http://www.amazon.com/dp/1250118360/
http://www.amazon.com/dp/1250118360/
http://www.amazon.com/dp/0262036630/
http://www.amazon.com/dp/0262036630/


The famous are storytellers—Japan:

For people born 1950–

http://pantheon.media.mit.edu/treemap/country_exports/JP/all/1900/2010/H15/pantheon

http://pantheon.media.mit.edu/treemap/country_exports/JP/all/1900/2010/H15/pantheon


https://www.media.mit.edu/projects/pantheon-new/overview/

https://www.media.mit.edu/projects/pantheon-new/overview/
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Super Survival of the Stories:

The Desirability
of
Storytellers,
The Atlantic,
Ed Yong,
2017-12-05.

 Study of Agta, Filipino hunter-gatherers.
 Storytelling valued well above all other skills

including hunting.
 Stories encode prosocial norms such as

cooperation.

 Like the best stories, the best storytellers
reproduce more successfully.

https://www.theatlantic.com/science/archive/2017/12/the-origins-of-storytelling/547502/
https://www.theatlantic.com/science/archive/2017/12/the-origins-of-storytelling/547502/
https://www.theatlantic.com/science/archive/2017/12/the-origins-of-storytelling/547502/
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Super Survival of the Stories:

The Desirability
of
Storytellers,
The Atlantic,
Ed Yong,
2017-12-05.

 Study of Agta, Filipino hunter-gatherers.
 Storytelling valued well above all other skills

including hunting.
 Stories encode prosocial norms such as

cooperation.
 Like the best stories, the best storytellers

reproduce more successfully.

https://www.theatlantic.com/science/archive/2017/12/the-origins-of-storytelling/547502/
https://www.theatlantic.com/science/archive/2017/12/the-origins-of-storytelling/547502/
https://www.theatlantic.com/science/archive/2017/12/the-origins-of-storytelling/547502/
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The most famous painting in the world:
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The dismal predictive powers of editors …...

Twelve …
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The completely unpredicted fall
of Eastern Europe:

Timur Kuran: [20] “Now Out of Never: The Element of
Surprise in the East European Revolution of 1989”
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We understand bushfire stories:

1. Sparks start fires.

2. System properties control a fire’s spread.

3. But for three reasons, we make two mistakes
about Social Fires ...
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We understand bushfire stories:

1. Sparks start fires.
2. System properties control a fire’s spread.

3. But for three reasons, we make two mistakes
about Social Fires ...
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We understand bushfire stories:

1. Sparks start fires.
2. System properties control a fire’s spread.

3. But for three reasons, we make two mistakes
about Social Fires ...
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Reason 1—We are Homo Narrativus.

http://xkcd.com/904/

http://xkcd.com/904/
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Reason 2—“We are all individuals.”

Archival footage:

 Individual narratives are not enough to
understand distributed, networked minds.

https://www.youtube.com/watch?v=LQqq3e03EBQ
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Reason 3—We are spectacular imitators.

BBC/David Attenborough.
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Mistake 1:
Success is due to intrinsic properties

See “Becoming Mona Lisa” by David Sassoon

http://www.amazon.com/Becoming-Mona-Lisa-Donald-Sassoon/dp/0156027119
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Mistake 1:
Success is due to intrinsic properties

it’s just so disappointingly small

See “Becoming Mona Lisa” by David Sassoon

http://www.amazon.com/Becoming-Mona-Lisa-Donald-Sassoon/dp/0156027119
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Mistake 1:
Success is due to intrinsic properties

Stolen in 1913, recovered in 1915.

See “Becoming Mona Lisa” by David Sassoon

http://www.amazon.com/Becoming-Mona-Lisa-Donald-Sassoon/dp/0156027119
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Mistake 1:
Success is due to intrinsic properties

Hidden during WWII.

See “Becoming Mona Lisa” by David Sassoon

http://www.amazon.com/Becoming-Mona-Lisa-Donald-Sassoon/dp/0156027119
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Mistake 1:
Success is due to intrinsic properties

Repeatedly vandalised and attacked.

See “Becoming Mona Lisa” by David Sassoon

https://en.wikipedia.org/wiki/Vandalism_of_art#Mona_Lisa
http://www.amazon.com/Becoming-Mona-Lisa-Donald-Sassoon/dp/0156027119
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48 songs
30k participants

Exp 1— weak social Exp. 2—strong social

Experimental Study of Inequality and
Unpredictability in an Artificial
Cultural Market
Matthew J. Salganik,1,2* Peter Sheridan Dodds,2* Duncan J. Watts1,2,3*

Hit songs, books, and movies are many times more successful than average, suggesting that
‘‘the best’’ alternatives are qualitatively different from ‘‘the rest’’; yet experts routinely fail to
predict which products will succeed. We investigated this paradox experimentally, by creating
an artificial ‘‘music market’’ in which 14,341 participants downloaded previously unknown songs
either with or without knowledge of previous participants’ choices. Increasing the strength of
social influence increased both inequality and unpredictability of success. Success was also only
partly determined by quality: The best songs rarely did poorly, and the worst rarely did well, but
any other result was possible.

H
ow can success in cultural markets be

at once strikingly distinct from aver-

age performance (1–4), and yet so

hard to anticipate for profit-motivated experts

armed with extensive market research (4–8)?

One explanation (9) for the observed inequality

of outcomes is that the mapping from Bquality[

to success is convex (i.e., differences in quality

correspond to larger differences in success),

leading to what has been called the Bsuperstar[

effect (9), or Bwinner-take-all[ markets (10).

Because models of this type, however, assume

that the mapping from quality to success is

deterministic and that quality is known, they

cannot account for the observed unpredict-

ability of outcomes. An alternate explanation

that accounts for both inequality and unpre-

dictability asserts that individuals do not

make decisions independently, but rather are

influenced by the behavior of others (11, 12).

Stochastic models of collective decisions that

incorporate social influence can exhibit ex-

treme variation both within and across realiza-

tions (4, 13, 14), even for objects of identical

quality (3, 15). Unfortunately, empirical tests of

these predictions require comparisons between

multiple realizations of a stochastic process,

whereas in reality, only one such Bhistory[ is

ever observed.

We adopted an experimental approach to the

study of social influence in cultural markets. We

created an artificial Bmusic market[ (16) com-

prising 14,341 participants, recruited mostly

from a teen-interest World Wide Web site

(17), who were shown a list of previously

unknown songs from unknown bands (18).

In real time, arriving participants were ran-

domly assigned to one of two experimental

conditions—independent and social influence—

distinguished only by the availability of in-

formation on the previous choices of others. In

the independent condition, participants made

decisions about which songs to listen to, given

only the names of the bands and their songs.

While listening to a song, they were asked to

assign a rating from one star (BI hate it[) to five

stars (BI love it[), after which they were given

the opportunity (but not required) to download

the song. In the social influence condition,

participants could also see how many times

each song had been downloaded by previous

participants. Thus, in addition to their own

musical preferences, participants in the social

influence condition received a relatively weak

signal regarding the preferences of others,

which they were free to use or ignore. Fur-

thermore, participants in the social influence

condition were randomly assigned to one of

eight Bworlds,[ each of which evolved inde-

pendently of the others. Songs in each world

accumulated downloads only from participants

in that world, and subsequent participants could

only see their own world_s download counts.

Our experimental design has three advan-

tages over both theoretical models and observa-

tional studies. (i) The popularity of a song in the

independent condition (measured by market

share or market rank) provides a natural measure

of the song_s quality, capturing both its innate

characteristics and the existing preferences of

the participant population. (ii) By comparing

outcomes in the independent and social influ-

ence conditions, we can directly observe the

effects of social influence both at the individual

and collective level. (iii) We can explicitly

create multiple, parallel histories, each of

which can evolve independently. By studying a

range of possible outcomes rather than just one,

we can measure inherent unpredictability: the

extent to which two worlds with identical songs,

identical initial conditions, and indistinguishable

populations generate different outcomes. In the

presence of inherent unpredictability, no mea-

sure of quality can precisely predict success in

any particular realization of the process.

We report the results of two experiments in

which we study the outcomes for 48 songs by

different bands (18). In both experiments, all

songs started with zero downloads (i.e., all ini-

tial conditions were identical), but the presen-

tation of the songs differed. In the social

influence condition in experiment 1, the songs,

along with the number of previous downloads,

were presented to the participants arranged in a

16 � 3 rectangular grid, where the positions of

the songs were randomly assigned for each

participant (i.e., songs were not ordered by

download counts). Participants in the indepen-

dent condition had the same presentation of

songs, but without any information about

previous downloads. In experiment 2, partic-

ipants in the social influence condition were

shown the songs, with download counts, pre-

sented in one column in descending order of

current popularity. Songs in the independent

condition were also presented with the single

column format, but without download counts

and in an order that was randomly assigned for

each participant. Thus, in each experiment, we

can observe the effect of social influence on

each song_s success, and by comparing results

across the two experiments, we can measure the

effect of increasing the Bstrength[ of the rel-

evant information signal.

1Department of Sociology, 413 Fayerweather Hall, Colum-
bia University, New York, NY, 10027, USA. 2Institute for
Social and Economic Research and Policy, Columbia
University, 420 West 118th Street, 8th Floor, New York,
NY, 10027, USA. 3Santa Fe Institute, 1399 Hyde Park
Road, Santa Fe, NM, 87501, USA.

*To whom correspondence should be addressed. E-mail:
mjs2105@columbia.edu (M.J.S.); pd315@columbia.edu
(P.S.D.); djw24@columbia.edu (D.J.W.)

Fig. 1. Inequality of success for social
influence (dark bars) and independent
(light bars) worlds for (A) experiment 1
and (B) experiment 2. The success of a
song is defined by m

i
, its market share

of downloads (mi 0 di=
PS

k01

dk , where d
i

is song i’s download count and S is the
number of songs). Success inequality
is defined by the Gini coefficient

G 0
PS

i01

PS

j01

kmi j mj k=2S
PS

k01

mk , which

represents the average difference in
market share for two songs normalized
to fall between 0 (complete equality)

and 1 (maximum inequality). Differences between independent and social influence conditions are
significant (P G 0.01) (18).

REPORTS

10 FEBRUARY 2006 VOL 311 SCIENCE www.sciencemag.org854

“An experimental study of inequality and
unpredictability in an artificial cultural
market”
Salganik, Dodds, and Watts,
Science, 311, 854–856, 2006. [32]

https://pdodds.w3.uvm.edu//research/papers/others/everything/salganik2006a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/salganik2006a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/salganik2006a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/salganik2006a.pdf


The PoCSverse
Allotaxonometry
81 of 125

A plenitude of
distances

Rank-turbulence
divergence

Probability-
turbulence
divergence

Explorations

Stories

Mechanics of
Fame

Superspreading

Lexical Ultrafame

Turbulent times

References

Resolving the paradox:

Increased social awareness leads to
Stronger inequality + Less predictability.



The PoCSverse
Allotaxonometry
82 of 125

A plenitude of
distances

Rank-turbulence
divergence

Probability-
turbulence
divergence

Explorations

Stories

Mechanics of
Fame

Superspreading

Lexical Ultrafame

Turbulent times

References

Payola/Deceptive advertising hurts us all:
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“Mistake” 2:
Seeing success is ‘due to social’ and
wanting to say ‘all your interactions are
belong to us’
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“This is truly the last time, believe me”

By Geoffrey A. Fowler and Chiqui Esteban April 9, 2018

Business 

14 years of Mark Zuckerberg saying sorry, not sorry

S

 Analysis○

Do you trust Mark Zuckerberg?Do you trust Mark Zuckerberg?

From the moment the Facebook founder entered the public eye in 2003 forFrom the moment the Facebook founder entered the public eye in 2003 for

creating a Harvard student hot-or-not rating site, he’s been apologizing. Socreating a Harvard student hot-or-not rating site, he’s been apologizing. So

we collected this abbreviated history of his public mea culpas.we collected this abbreviated history of his public mea culpas.

It reads like a record on repeat. Zuckerberg, who made “move fast andIt reads like a record on repeat. Zuckerberg, who made “move fast and

break things” his slogan, says sorry for being naive, and then promisesbreak things” his slogan, says sorry for being naive, and then promises

solutions such as privacy “controls,” “transparency” and better policysolutions such as privacy “controls,” “transparency” and better policy

“enforcement.” And then he promises it again the next time. You can track“enforcement.” And then he promises it again the next time. You can track

his his sorries in orange  and  and promises in blue  in the timeline below. in the timeline below.

All the while, Facebook’s access to our personal data increases and littleAll the while, Facebook’s access to our personal data increases and little

changes about the way Zuckerberg handles it. So as Zuckerberg prepares tochanges about the way Zuckerberg handles it. So as Zuckerberg prepares to

apologize for the first time in front of Congress, the question that lingers is:apologize for the first time in front of Congress, the question that lingers is:

What will be different this time?What will be different this time?

December 2007

After launching Beacon, which opted-in everyone to sharing with

advertisers what they were doing in outside websites and apps.

“ We simply did a bad job with this release,

and I apologize for it.  … People need to be

able to explicitly choose what they share.  ”

February 2009

After unveiling new terms of service that angered users.

“ Over the past couple of days, we received a lot

of questions and comments. … Based on this

feedback, we have decided to return to our

previous terms of use  while we resolve the

issues. ”

Commission for deceiving consumers about privacy.

“ I’m the first to admit that we’ve made a

bunch of mistakes.  … Facebook has always

been committed to being transparent about the

information you have stored with us — and we

have led the internet in building tools to give

people the ability to see and control what they

share . ”

July 2014

After an academic paper exposed that Facebook conducted

psychological tests on nearly 700,000 users without their knowledge.

(Apology by Facebook COO Sheryl Sandberg)

Robert Godwin Sr.

“ Our hearts go out  to the family and friends

of Robert Godwin Sr., and we have a lot of work

— and we will keep doing all we can  to

prevent tragedies like this from happening. ”

September 2017

While revealing a nine-step plan to stop nations from using Facebook to

interfere in one another’s elections, noting that the amount of

“problematic content” found so far is “relatively small.”

“ I care deeply about the democratic process

and protecting its integrity. … It is a new

challenge for internet communities to deal with

“ We won’t prevent all mistakes or abuse, but

we currently make too many errors  enforcing

our policies and preventing misuse of our tools.

… This will be a serious year of self-

improvement  and I’m looking forward to

learning from working to fix our issues together.

”

March 2018

After details emerged about Cambridge Analytica taking user data.

“ We have a responsibility to protect your

data, and if we can’t then we don’t deserve to

serve you.  … We will learn from this

experience to secure our platform further and

make our community safer  for everyone going

forward. ”

“ It was my mistake, and I’m sorry.  … There’s

more we can do here to limit the information

developers can access and put more

safeguards in place  to prevent abuse. ”

Related stories

Facebook: Most users may have had publica dataFacebook: Most users may have had publica data ‘scraped’ ‘scraped’

Facebook COO Sheryl Sandberg on data leak: ‘I am really sorry, we are late’Facebook COO Sheryl Sandberg on data leak: ‘I am really sorry, we are late’

As Facebook confronts data misuse, foreign governments might force real changeAs Facebook confronts data misuse, foreign governments might force real change

What if we paid for Facebook — instead of letting it spy on us for free?What if we paid for Facebook — instead of letting it spy on us for free?

" # $ % 332 Comments

About this story

Photoillustrations based on photos by Tony Avelar/Bloomberg News, Drew

Angerer/Getty Images, Jeff Roberson/AP, Jim Watson/Getty Images, Craig

Ruttle/AP, Paul Sakuma/AP, Stephen Lam/Reuters, Jose Gomez/Reuters, Richard

Drew/AP.

More stories

The Facebook ads Russians showed to
different groups

Facebook has said these ads were created by the Internet

WaPo article

https://www.washingtonpost.com/graphics/2018/business/facebook-zuckerberg-apologies/
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The hypodermic model of influence:
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The two step model of influence: [19]
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The network model of influence:
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The network model of influence:

How superspreading works:
Many interconnected, average,
trusting people
must benefit from both
receiving and sharing a message
far from its source.

441

! 2007 by JOURNAL OF CONSUMER RESEARCH, Inc. ● Vol. 34 ● December 2007

All rights reserved. 0093-5301/2007/3404-0002$10.00

Influentials, Networks, and Public Opinion
Formation

DUNCAN J. WATTS
PETER SHERIDAN DODDS*

A central idea in marketing and diffusion research is that influentials—a minority
of individuals who influence an exceptional number of their peers—are important
to the formation of public opinion. Here we examine this idea, which we call the
“influentials hypothesis,” using a series of computer simulations of interpersonal
influence processes. Under most conditions that we consider, we find that large
cascades of influence are driven not by influentials but by a critical mass of easily
influenced individuals. Although our results do not exclude the possibility that in-
fluentials can be important, they suggest that the influentials hypothesis requires
more careful specification and testing than it has received.

FIGURE 1

SCHEMATIC OF THE TWO-STEP FLOW MODEL
OF INFLUENCE

I n the 1940s and 1950s, Paul Lazarsfeld, Elihu Katz, andcolleagues (Katz and Lazarsfeld 1955; Lazarsfeld, Ber-
elson, and Gaudet 1968) formulated a breakthrough theory
of public opinion formation that sought to reconcile the role
of media influence with the growing realization that, in a
variety of decision-making scenarios, ranging from political
to personal, individuals may be influenced more by exposure
to each other than to the media. According to their theory,
illustrated schematically in figure 1, a small minority of
“opinion leaders” (stars) act as intermediaries between the
mass media and the majority of society (circles). Because
information, and thereby influence “flows” from the media
through opinion leaders to their respective followers, Katz
and Lazarsfeld (1955) called their model the “two-step flow”
of communication, in contrast with the then paradigmatic
one-step, or “hypodermic,” model that treated individuals
as atomized objects of media influence (Bineham 1988).
In the decades after the introduction of the two-step flow,

the idea of opinion leaders, or “influentials” as they are also
called (Merton 1968), came to occupy a central place in the
literatures of the diffusion of innovations (Coleman, Katz,
and Menzel 1966; Rogers 1995; Valente 1995), communi-
cations research (Weimann 1994), and marketing (Chan and

*Duncan J. Watts is professor of sociology, Columbia University, New
York, NY 10025 (djw24@columbia.edu). Peter Sheridan Dodds is assistant
professor of mathematics and statistics, University of Vermont, Burlington
VT 05404 (peter.dodds@uvm.edu). The authors acknowledge the helpful
input of the editor, associate editor, and reviewers. This research was sup-
ported in part by the National Science Foundation (SES-0094162 and SES-
0339023), and the McDonnell Foundation.

John Deighton served as editor and Tulin Erdem served as associate editor

for this article.

Electronically published May 30, 2007

Misra 1990; Coulter, Feick, and Price 2002; Myers and Rob-
ertson 1972; Van den Bulte and Joshi 2007; Vernette 2004).
By the late 1960s, the theory had been hailed as one of
most important formulations in the behavioral sciences
(Arndt 1967), and by the late 1970s, according to Gitlin
(1978), the two-step flow had become the “dominant par-
adigm” of media sociology. According to Weimann (1994),

“Influentials, Networks, and Public Opinion
Formation”
Watts and Dodds,
J. Consum. Res., 34, 441–458, 2007. [37]

https://pdodds.w3.uvm.edu//research/papers/others/everything/watts2007a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/watts2007a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/watts2007a.pdf
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Fame and Ultrafame: Measuring and comparing daily levels of ‘being talked about’

for United States’ presidents, their rivals, God, countries, and K-pop

Peter Sheridan Dodds,1, 2, ∗ Joshua R. Minot,1 Michael V. Arnold,1 Thayer Alshaabi,1 Jane Lydia
Adams,1 David Rushing Dewhurst,1 Andrew J. Reagan,3 and Christopher M. Danforth1, 2

1Computational Story Lab, Vermont Complex Systems Center,

MassMutual Center of Excellence for Complex Systems and Data Science,

Vermont Advanced Computing Core, University of Vermont, Burlington, VT 05401.
2Department of Mathematics & Statistics, University of Vermont, Burlington, VT 05401.

3MassMutual Data Science, Amherst, MA 01002.

(Dated: October 2, 2019)

When building a global brand of any kind—a political actor, clothing style, or belief system—
developing widespread awareness is a primary goal. Short of knowing any of the stories or products
of a brand, being talked about in whatever fashion—raw fame—is, as Oscar Wilde would have it,
better than not being talked about at all. Here, we measure, examine, and contrast the day-to-day
raw fame dynamics on Twitter for U.S. Presidents and major U.S. Presidential candidates from
2008 to 2019: Barack Obama, John McCain, Mitt Romney, Hillary Clinton, and Donald Trump.
We assign “lexical fame” to be the number and (Zipfian) rank of the (lowercased) mentions made
for each individual across all languages. We show that all five political figures have at some point
reached extraordinary volume levels of what we define to be “lexical ultrafame”: An overall rank of
approximately 300 or less which is largely the realm of function words and demarcated by the highly
stable rank of ‘god’. By this measure, ‘trump’ has become enduringly ultrafamous, from the 2016
election on. We use typical ranks for country names and function words as standards to improve
perception of scale. We quantify relative fame rates and find that in the eight weeks leading up
the 2008 and 2012 elections, ‘obama’ held a 1000:757 volume ratio over ‘mccain’ and 1000:892 over
‘romney’, well short of the 1000:544 volume favoring ‘trump’ over ‘hillary’ in the 8 weeks leading
up to the 2016 election. Finally, we track how one other entity has more sustained ultrafame than
‘trump’ on Twitter: The Korean pop boy band BTS. We chart the dramatic rise of BTS, finding
their Twitter handle ‘@bts twt’ has been able to compete with ‘a’ and ‘the’, reaching a rank of three
at the day scale and a rank of one at the quarter-hour scale.

I. INTRODUCTION

“It is silly of you, for there is only one thing in
the world worse than being talked about, and
that is not being talked about.”

— Oscar Wilde, The Picture of Dorian Gray [1].

“Being talked about” is the essence of fame, a word
that accurately encodes this most basic of sociological
mechanisms as it traces back to the Latin fāma (“speak”)
with φήμη (ph´ēmē, “talk”) as its Greek cognate.
Achieving widespread awareness is arguably the prima-

ry goal of any people-centric enterprise seeking to scale.
Of course any such enterprise will want the valence of
fame to be positive, and for “talk” to be self-sustaining.
Examples abound. To take just one, in the sphere of
sport, Lance Armstrong’s archetypal fall-from-grace fol-
lowed a global expansion of awareness of cancer research,
the Tour de France, and cycling. Armstrong himself
became famous as an eight-fold kill-the-monster hero,
first conquering cancer then the Tour seven times in a
row, all ending with a televised confession of betrayal to
Oprah.

∗ peter.dodds@uvm.edu

We also know that fame is profoundly a social con-
struct, a complex mix of system randomness, an individ-
ual’s luck, timing, history, and, to the extent that it exists
at all in a given field, inherent quality [2–4]. From the
perspective of collective evaluation of cultural entities,
the existence and perceived importance of ranked lists
of anything (wealthy individuals, songs, books, colleges,
cities, countries) leaves social systems vulnerable to those
unethical actors who would seek fame. Knowing that
“getting the word out there” is the foundational work
allows system-level manipulation by individuals or orga-
nizations pretending to be at or near the top of such lists
by gaming myriad sociotechnical algorithms (many/some
“people are saying” [5, 6], payola [7], “John Barron” [8–
10]).

In politics, a key polling question concerns whether
or not an interviewee has heard of a candidate at all—
shorn of sentiment and story. While some polls show that
increases in awareness correspond to increases in favor-
ability, politicians trace out many paths in awareness-
favorability space. For example, as we show in Fig. 1,
a series of polls carried out by Monmouth Universi-
ty during the first five months of 2019 [11] revealed a
strong correlation between awareness of and favorabil-
ity toward 24 potential Democratic candidates for the
2020 presidential election (Spearman correlation coeffi-
cient: rs=0.949). The awareness extremes were for Joe
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Computational timeline reconstruction of the stories surrounding Trump:

Story turbulence, narrative control, and collective chronopathy
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Measuring the specific kind, temporal ordering, diversity, and turnover rate of stories surrounding
any given subject is essential to developing a complete reckoning of that subject’s historical impact.
Here, we use Twitter as a distributed news and opinion aggregation source to identify and track
the dynamics of the dominant day-scale stories around Donald Trump, the 45th President of the
United States. Working with a data set comprising around 20 billion 1-grams, we first compare each
day’s 1-gram and 2-gram usage frequencies to those of a year before, to create day- and week-scale
timelines for Trump stories for 2016 onwards. We measure Trump’s narrative control, the extent to
which stories have been about Trump or put forward by Trump. We then quantify story turbulence
and collective chronopathy—the rate at which a population’s stories for a subject seem to change
over time. We show that 2017 was the most turbulent year for Trump, and that story generation
slowed dramatically during the COVID-19 pandemic in 2020. Trump story turnover for 2 months
during the COVID-19 pandemic was on par with that of 3 days in September 2017. Our methods
may be applied to any well-discussed phenomenon, and have potential, in particular, to enable the
computational aspects of journalism, history, and biography.

I. INTRODUCTION

What happened in the world last week? What about a
year ago? As individuals, it can be difficult for us to freely
recall and order in time—let alone make sense of—events
that have occurred at scopes running from personal and
day-to-day to global and historic [1–10]. One emblemat-
ic challenge for remembering story timelines is presented
by the 45th US president Donald J. Trump, our interest
here. Stories revolving around Trump have been abun-
dant and diverse in nature. Consider, for example, being
able to remember and then order stories involving: North
Korea, Charlottesville, kneeling in the National Football
League, Confederate statues, family separation, Stormy
Daniels, Space Force, and the possible purchase of Green-
land.

Added to these problems of memory is that people’s
perception of the passing of time is subjective and com-
plicated [11–18]. Days can seem like months (“this week
dragged on forever”) or might seem to be over in a flash
(“time flies”). Story-wise, periods of time can also range
from being narratively simple (“it was the only story in
town”) to complicated and hard to retell (“everything
happened all at once”). At the population scale, major
news stories may similarly arrive at slow and fast paces,
and may be coherent or disconnected. As one example,
within the space of around 15 minutes after 9 pm US
Eastern Standard Time on March 11, 2020, Tom Hanks

∗ peter.dodds@uvm.edu

and Rita Wilson announced that they had tested posi-
tive for COVID-19, the National Basketball Association
put its season on hold indefinitely due to the COVID-
19 pandemic, and Trump gave an Oval Office Address
during which the Dow Jones Industrial Average futures
dropped. And to help illustrate the potential disconnec-
tion of co-occurring stories within the realm of US poli-
tics, at the same time as the above events were unfolding,
former US vice presidential candidate Sarah Palin was
appearing on the popular Fox TV show “The Masked
Singer” performing Sir Mix-A-Lot’s “Baby Got Back” in
a bear costume.

Here, in order to quantify story turbulence around
Trump—and the collective experience of story turbulence
around Trump—we develop a data-driven, computation-
al approach to constructing a timeline of stories sur-
rounding any given subject, with high resolution in both
time and narrative (see Data and Methods, Sec. II).

For data, we use Twitter as a vast, noisy, and dis-
tributed news and opinion aggregation service [19–23],
Beyond the centrality of Twitter to Trump’s communi-
cations [24–29], a key benefit of using Twitter as “text as
data” [30–33] is that popularity of story is encoded and
recorded through social amplification by retweets [34].
We show that Twitter is an effective source for our treat-
ment though our methods may be applied broadly to any
temporally ordered, text-rich data sources.

We define, create, and explore week-scale timelines of
the most ‘narratively dominant’ 1-grams and 2-grams
in tweets containing the word Trump (Sec. III A). We
supply day-scale timelines as part of the paper’s Online
Appendices (compstorylab.org/trumpstoryturbulence/).
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 POTUSometer with the Smorgasdashbord:
http://compstorylab.org/potusometer/

 Stories surrounding Trump:
http://compstorylab.org/trumpstoryturbulence/
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Ultrafame:
Nobody expects the Spanish Inquisition K-pop:

Vox (2019-04-17):
BTS, the band that changed K-pop, explained

https://www.vox.com/culture/2018/6/13/17426350/bts-history-members-explained
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Telegnomics

Distant reading by smashing texts into storyons:

cd ~/work/stories/2019-10story-turbulence-trump/
261G
more updateall.sh
file names:
compute_rank_turbulence_divergence_sweep_the_leg

Zip files:
zless 2018-01-06/1grams/en_*.tar.tsv
zless 2021-01-05/1grams/en_*.tar.tsv
zless 2021-01-06/1grams/en_*.tar.tsv
zless 2021-01-07/1grams/en_*.tar.tsv
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“Ratioing the President: An exploration of public engagement with Obama and Trump on Twitter,”

Minot et al., 2020 [24]
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Ratiometrics:
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Emotional turbulence:

http://hedonometer.org/

http://hedonometer.org/
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Emotional turbulence:

http://hedonometer.org/

http://hedonometer.org/
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Allotaxonometry—
the comparison of complex systems:
http://compstorylab.org/allotaxonometry/

http://compstorylab.org/allotaxonometry/


http://compstorylab.org/trumpstoryturbulence/

http://compstorylab.org/trumpstoryturbulence/
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Understanding the Sociotechnocene—Stories:

xkcd.com/904/

 Toward a Science of Stories.
 Claim: Homo narrativus—we run

on stories.
 “What’s the John Dory?”
 “They’ve lost the plot/thread”
 Narrative hierarchies and scalability

of stories.
 Research: Real-time and offline

extraction of metaphors, frames,
plots, narratives, conspiracy theories,
and stories from large-scale text.

 Research: The taxonomy of human
stories.

 To be built:
Storyscopes—improvable, online,
interactive instruments.

http://xkcd.com/904/
http://nautil.us/issue/5/fame/homo-narrativus-and-the-trouble-with-fame
http://www.uvm.edu/pdodds/writings/2015-06-04narrative-hierarchy/
http://www.uvm.edu/pdodds/writings/2015-06-04narrative-hierarchy/
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*ding!*

 On Instagram at pratchett_the_cat

https://www.instagram.com/pratchett_the_cat/
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