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Special Guest Executive Producer

 On Instagram at pratchett_the_cat

https://www.instagram.com/pratchett_the_cat/
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Describe | Explain | Create | Share | Ethos: Play

vermontcomplexsystems.org

http://www.vermontcomplexsystems.org


Leveling up—Scaffolded educational mission:

 Data Science Undergrad.

 Graduate Certificate in
Complex Systems and
Data Science

 Fall, 2015–: MS in Complex
Systems and Data Science

 Fall, 2018–: PhD in The
Study of Interesting Things
Complex Systems and
Data Science

All the words: http://vermontcomplexsystems.org.

http://vermontcomplexsystems.org
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150,000 lines of LATEX …

https://pdodds.w3.uvm.edu/teaching/
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Exciting details regarding these slides:
 Three servings (all in pdf):

1. Fresh: For in-class Deliveration.
2. On toast: Flattened for page-turning joy.
3. Freeze-dried: Pack-and-go, 3x3 slides per page.

 Presentation versions are hyperly navigable:
. .. .. .≡ back + search + forward.

 Web links look like this.
 References in slides link to full citation at end. [4]

 Citations contain links to pdfs for papers (if
available).

 Some books will be linked to on Amazon.
 Brought to you by a frightening melange of

X ELATEX, Beamer, perl, PerlTeX, fevered
command-line madness, and an almost
fanatical devotion to the indomitable emacs.
#totallynormal

http://www.google.com
http://en.wikipedia.org/wiki/XeTeX
http://en.wikipedia.org/wiki/Beamer_(LaTeX)
http://www.perl.org/
http://www.ctan.org/tex-archive/macros/latex/contrib/perltex/
http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Command-line_interface
http://www.youtube.com/watch?v=uprjmoSMJ-o
http://www.youtube.com/watch?v=uprjmoSMJ-o
http://en.wikipedia.org/wiki/Emacs
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The Science of Complex Systems Manifesto:

1. Systems are ubiquitous and systems matter.

2. Consequently, much of science is about understanding
how pieces dynamically fit together.

3. 1700 to 2000 = Golden Age of Reductionism:
Atoms!, sub-atomic particles, DNA, genes, people, …

4. Understanding and creating systems (including new
‘atoms’) is the greater part of science and engineering.

5. Universality: systems with quantitatively different
micro details exhibit qualitatively similar macro
behavior.

6. Computing advances make the Science of Complex
Systems possible:

6.1 We can measure and record enormous amounts
of data, research areas continue to transition from
data scarce to data rich.

6.2 We can simulate, model, and create complex
systems in extraordinary detail.

http://www.uvm.edu/%7Epdodds/fama/2015/06/04/complex-sytems-a-manifesto/
http://en.wikipedia.org/wiki/Universality_(dynamical_systems)
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net•work |ˈnetˌwərk|
noun

1 an arrangement of intersecting horizontal and vertical lines.

• a complex system of roads, railroads, or other transportation routes :

a network of railroads.

2 a group or system of interconnected people or things : a trade network.

• a group of people who exchange information, contacts, and

experience for professional or social purposes : a support network.

• a group of broadcasting stations that connect for the simultaneous

broadcast of a program : the introduction of a second TV network | [as adj. ]

network television.

• a number of interconnected computers, machines, or operations :

specialized computers that manage multiple outside connections to a network | a

local cellular phone network.

• a system of connected electrical conductors.

verb [ trans. ]

connect as or operate with a network : the stock exchanges have proven to be

resourceful in networking these deals.

• link (machines, esp. computers) to operate interactively : [as adj. ] (

networked) networked workstations.

• [ intrans. ] [often as n. ] ( networking) interact with other people to

exchange information and develop contacts, esp. to further one's

career : the skills of networking, bargaining, and negotiation.
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Thesaurus deliciousness:

network
noun

1 a network of arteries WEB, lattice, net, matrix, mesh,

crisscross, grid, reticulum, reticulation; Anatomy plexus.

2 a network of lanes MAZE, labyrinth, warren, tangle.

3 a network of friends SYSTEM, complex, nexus, web,

webwork.
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Ancestry:

From Keith Briggs’s etymological investigation:

 Opus
reticulatum:

 A Latin origin?

[http://serialconsign.com/2007/11/we-put-net-

network]

http://keithbriggs.info/network.html
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Ancestry:

First known use: Geneva Bible, 1560
‘And thou shalt make unto it a grate like networke of
brass (Exodus xxvii 4).’

From the OED via Briggs:
 1658–: reticulate structures in animals
 1839–: rivers and canals
 1869–: railways
 1883–: distribution network of electrical cables
 1914–: wireless broadcasting networks
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Ancestry:
Net and Work are venerable old words:
 ‘Net’ first used to mean spider web (King Ælfréd,

888).
 ‘Work’ appear to have long meant purposeful

action.

 ‘Network’ = something built based on the idea of
natural, flexible lattice or web.

 c.f., ironwork, stonework, fretwork.
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Key Observation:
 Many complex systems

can be viewed as complex networks
of physical or abstract interactions.

 Opens door to mathematical and numerical
analysis.

 Dominant approach of the first decade was of a
theoretical-physics/stat-mechish flavor.

 Mindboggling amount of work published on
complex networks since 1998 …

 … largely due to your typical theoretical physicist:

 Piranha physicus

 Hunt in packs.

 Feast on new and interesting ideas
(see chaos, cellular automata, …)

 See also: https://xkcd.com/793/

https://xkcd.com/793/
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Complex Systems is the Big Story:

 Only a bit networky: Fluids-at-large (the
atmosphere, oceans, …), organism cells, …
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................

Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................

Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L " Lrandom but C q Crandom.

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

p

L(p) / L(0)

C(p) / C(0)

Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv # 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

“Collective dynamics of ‘small-world’
networks”
Watts and Strogatz,
Nature, 393, 440–442, 1998. [112]

Times cited: ∼ 51, 622  (as of May 19, 2023)

ing systems form a huge genetic network

whose vertices are proteins and genes, the

chemical interactions between them repre-

senting edges (2). At a different organization-

al level, a large network is formed by the

nervous system, whose vertices are the nerve

cells, connected by axons (3). But equally

complex networks occur in social science,

where vertices are individuals or organiza-

tions and the edges are the social interactions

between them (4 ), or in the World Wide Web

(WWW), whose vertices are HTML docu-

ments connected by links pointing from one

page to another (5, 6 ). Because of their large

size and the complexity of their interactions,

the topology of these networks is largely

unknown.

Traditionally, networks of complex topol-

ogy have been described with the random

graph theory of Erdős and Rényi (ER) (7 ),

but in the absence of data on large networks,

the predictions of the ER theory were rarely

tested in the real world. However, driven by

the computerization of data acquisition, such

topological information is increasingly avail-

able, raising the possibility of understanding

the dynamical and topological stability of

large networks.

Here we report on the existence of a high

degree of self-organization characterizing the

large-scale properties of complex networks.

Exploring several large databases describing

the topology of large networks that span

fields as diverse as the WWW or citation

patterns in science, we show that, indepen-

dent of the system and the identity of its

constituents, the probability P(k) that a ver-

tex in the network interacts with k other

vertices decays as a power law, following

P(k) ; k2g. This result indicates that large

networks self-organize into a scale-free state,

a feature unpredicted by all existing random

network models. To explain the origin of this

scale invariance, we show that existing net-

work models fail to incorporate growth and

preferential attachment, two key features of

real networks. Using a model incorporating

these two ingredients, we show that they are

responsible for the power-law scaling ob-

served in real networks. Finally, we argue

that these ingredients play an easily identifi-

able and important role in the formation of

many complex systems, which implies that

our results are relevant to a large class of

networks observed in nature.

Although there are many systems that

form complex networks, detailed topological

data is available for only a few. The collab-

oration graph of movie actors represents a

well-documented example of a social net-

work. Each actor is represented by a vertex,

two actors being connected if they were cast

together in the same movie. The probability

that an actor has k links (characterizing his or

her popularity) has a power-law tail for large

k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-

work with over 800 million vertices (8) is the

WWW, where a vertex is a document and the

edges are the links pointing from one docu-

ment to another. The topology of this graph

determines the Web’s connectivity and, con-

sequently, our effectiveness in locating infor-

mation on the WWW (5). Information about

P(k) can be obtained using robots (6 ), indi-

cating that the probability that k documents

point to a certain Web page follows a power

law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A

network whose topology reflects the histori-

cal patterns of urban and industrial develop-

ment is the electrical power grid of the west-

ern United States, the vertices being genera-

tors, transformers, and substations and the

edges being to the high-voltage transmission

lines between them (10). Because of the rel-

atively modest size of the network, contain-

ing only 4941 vertices, the scaling region is

less prominent but is nevertheless approxi-

mated by a power law with an exponent

gpower . 4 (Fig. 1C). Finally, a rather large

complex network is formed by the citation

patterns of the scientific publications, the ver-

tices being papers published in refereed jour-

nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has

shown that the probability that a paper is

cited k times (representing the connectivity of

a paper within the network) follows a power

law with exponent gcite 5 3.

The above examples (12) demonstrate that

many large random networks share the com-

mon feature that the distribution of their local

connectivity is free of scale, following a power

law for large k with an exponent g between

2.1 and 4, which is unexpected within the

framework of the existing network models.

The random graph model of ER (7 ) assumes

that we start with N vertices and connect each

pair of vertices with probability p. In the

model, the probability that a vertex has k

edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-

duced by Watts and Strogatz (WS) (10), N

vertices form a one-dimensional lattice,

each vertex being connected to its two

nearest and next-nearest neighbors. With

probability p, each edge is reconnected to a

vertex chosen at random. The long-range

connections generated by this process de-

crease the distance between the vertices,

leading to a small-world phenomenon (13),

often referred to as six degrees of separa-

tion (14 ). For p 5 0, the probability distri-

bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in

the lattice; whereas for finite p, P(k) still

peaks around z, but it gets broader (15). A

common feature of the ER and WS models

is that the probability of finding a highly

connected vertex (that is, a large k) decreas-

es exponentially with k; thus, vertices with

large connectivity are practically absent. In

contrast, the power-law tail characterizing

P(k) for the networks studied indicates that

highly connected (large k) vertices have a

large chance of occurring, dominating the

connectivity.

There are two generic aspects of real net-

works that are not incorporated in these mod-

els. First, both models assume that we start

with a fixed number (N) of vertices that are

then randomly connected (ER model), or re-

connected (WS model), without modifying

N. In contrast, most real world networks are

open and they form by the continuous addi-

tion of new vertices to the system, thus the

number of vertices N increases throughout

the lifetime of the network. For example, the

actor network grows by the addition of new

actors to the system, the WWW grows expo-

nentially over time by the addition of new

Web pages (8), and the research literature

constantly grows by the publication of new

papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.

R E P O R T S

15 OCTOBER 1999 VOL 286 SCIENCE www.sciencemag.org510
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“Emergence of scaling in random
networks”
Barabási and Albert,
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Abstract

Coupled biological and chemical systems, neural networks, social interacting species, the Internet and the World Wide Web,

are only a few examples of systems composed by a large number of highly interconnected dynamical units. The first approach to

capture the global properties of such systems is to model them as graphs whose nodes represent the dynamical units, and whose

links stand for the interactions between them. On the one hand, scientists have to cope with structural issues, such as characterizing

the topology of a complex wiring architecture, revealing the unifying principles that are at the basis of real networks, and developing

models to mimic the growth of a network and reproduce its structural properties. On the other hand, many relevant questions arise

when studying complex networks’ dynamics, such as learning how a large ensemble of dynamical systems that interact through a

complex wiring topology can behave collectively. We review the major concepts and results recently achieved in the study of the

structure and dynamics of complex networks, and summarize the relevant applications of these ideas in many different disciplines,

ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

© 2005 Elsevier B.V. All rights reserved.
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I Introduction 3

FIG. 2 Three examples of the kinds of networks that are the topic of this review. (a) A food web of predator-prey interactions
between species in a freshwater lake [272]. Picture courtesy of Neo Martinez and Richard Williams. (b) The network of
collaborations between scientists at a private research institution [171]. (c) A network of sexual contacts between individuals
in the study by Potterat et al. [342].

A. Types of networks

A set of vertices joined by edges is only the simplest
type of network; there are many ways in which networks
may be more complex than this (Fig. 3). For instance,
there may be more than one different type of vertex in a
network, or more than one different type of edge. And
vertices or edges may have a variety of properties, nu-
merical or otherwise, associated with them. Taking the
example of a social network of people, the vertices may
represent men or women, people of different nationalities,
locations, ages, incomes, or many other things. Edges
may represent friendship, but they could also represent
animosity, or professional acquaintance, or geographical
proximity. They can carry weights, representing, say,
how well two people know each other. They can also be
directed, pointing in only one direction. Graphs com-
posed of directed edges are themselves called directed

graphs or sometimes digraphs, for short. A graph rep-
resenting telephone calls or email messages between in-
dividuals would be directed, since each message goes in
only one direction. Directed graphs can be either cyclic,
meaning they contain closed loops of edges, or acyclic
meaning they do not. Some networks, such as food webs,
are approximately but not perfectly acyclic.

One can also have hyperedges—edges that join more
than two vertices together. Graphs containing such edges
are called hypergraphs. Hyperedges could be used to in-
dicate family ties in a social network for example—n in-
dividuals connected to each other by virtue of belonging
to the same immediate family could be represented by
an n-edge joining them. Graphs may also be naturally
partitioned in various ways. We will see a number of
examples in this review of bipartite graphs : graphs that
contain vertices of two distinct types, with edges running
only between unlike types. So-called affiliation networks

“The structure and function of complex
networks”
M. E. J. Newman,
SIAM Rev., 45, 167–256, 2003. [77]
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Statistical mechanics of complex networks

Réka Albert* and Albert-László Barabási

Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

(Published 30 January 2002)

Complex networks describe a wide range of systems in nature and society. Frequently cited examples

include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of

routers and computers connected by physical links. While traditionally these systems have been

modeled as random graphs, it is increasingly recognized that the topology and evolution of real

networks are governed by robust organizing principles. This article reviews the recent advances in the

field of complex networks, focusing on the statistical mechanics of network topology and dynamics.

After reviewing the empirical data that motivated the recent interest in networks, the authors discuss

the main models and analytical tools, covering random graphs, small-world and scale-free networks,

the emerging theory of evolving networks, and the interplay between topology and the network’s

robustness against failures and attacks.
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Popularity according to textbooks:

Textbooks:
 Mark Newman (Physics, Michigan)

“Networks: An Introduction”
 David Easley and Jon Kleinberg (Economics and

Computer Science, Cornell)
“Networks, Crowds, and Markets: Reasoning About a
Highly Connected World”

http://www.amazon.com/Networks-Introduction-Mark-Newman/dp/0199206651
http://www.cs.cornell.edu/home/kleinber/networks-book/
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Popularity according to popular books:

The Tipping Point: How Little Things can
make a Big Difference—Malcolm
Gladwell [43]

Nexus: Small Worlds and the
Groundbreaking Science of
Networks—Mark Buchanan
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Means—Albert-Laszlo Barabási

Six Degrees: The Science of a Connected
Age—Duncan Watts [107]
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Numerous others …
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More observations

 But surely networks aren’t new …
 Graph theory was well established …
 Study of social networks started in the 1930’s …
 So why all this ‘new’ research on networks?
 Answer: Oodles of Easily Accessible Data.
 We can now inform (alas) our theories

with a much more measurable reality.∗
 Graph theory missed “becoming”: Stories =

Characters + Time
 A worthy goal: establish mechanistic explanations.∗If this is upsetting, maybe string theory is for you …
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More observations

 Internet-scale data sets can be overly exciting.

Witness:
 The End of Theory: The Data Deluge Makes the

Scientific Theory Obsolete (Anderson, Wired)
 “The Unreasonable Effectiveness of Data,”

Halevy et al. [51].
 c.f. Wigner’s “The Unreasonable Effectiveness of

Mathematics in the Natural Sciences” [114]

But:
 For scientists, description is only part of the battle.
 We still need to understand.

http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
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Super Basic definitions

Nodes = A collection of entities which have
properties that are somehow related to each
other
 e.g., people, forks in rivers, proteins, webpages,

organisms, …

Links = Connections between nodes
 Links may be directed or undirected.
 Links may be binary or weighted.

Other spiffing words: vertices and edges.
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Super Basic definitions

Node degree = Number of links per node
 Notation: Node 𝑖’s degree = 𝑘𝑖.
 𝑘𝑖 = 0,1,2,….
 Notation: the average degree of a network = ⟨𝑘⟩

(and sometimes 𝑧)
 Connection between number of edges 𝑚 and

average degree: ⟨𝑘⟩ = 2𝑚𝑁 .
 Defn: 𝒩𝑖 = the set of 𝑖’s 𝑘𝑖 neighbors
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Super Basic definitions

Adjacency matrix:
 We can represent a network by a matrix 𝐴 with

link weight 𝑎𝑖𝑗 for nodes 𝑖 and 𝑗 in entry (𝑖, 𝑗).
 e.g.,

𝐴 = ⎡⎢⎢⎢⎣
0 1 1 1 00 0 1 0 11 0 0 0 00 1 0 0 10 1 0 1 0

⎤⎥⎥⎥⎦
 For numerical work, we always use sparse

matrices.
 For many real networks, 𝐴 is a function of time.
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Examples

So what passes for a complex network?
 Complex networks are large (in node number)
 Complex networks are sparse (low edge to node

ratio)
 Complex networks are usually dynamic and

evolving
 Complex networks can be social, economic,

natural, informational, abstract, …
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Examples

Physical networks

 River networks
 Neural networks
 Trees and leaves
 Blood networks

 The internet (pipes)
 Road networks
 Power grids

 Distribution (branching) versus redistribution
(cyclical)
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Examples

Interaction networks
 The Blogosphere (RIP)
 Biochemical networks
 Gene-protein

networks
 Food webs: who eats

whom
 Airline networks
 Call networks (AT&T)
 The Media
 The internet (World

Wide Web)

datamining.typepad.com

http://datamining.typepad.com
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Examples

Interaction networks:
social networks
 Snogging
 Friendships
 Acquaintances
 Boards and directors
 Organizations
 facebook twitter, (Bearman et al., 2004)

 ‘Remotely sensed’ by: email activity, instant
messaging, phone logs (*cough*).

http://www.facebook.com
http://www.twitter.com
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Examples

Relational networks
 Consumer purchases

(Walmart, Target, Amazon, …)

 Thesauri: Networks of words generated by meanings

 Knowledge/Databases/Ideas

 Metadata—Tagging, Keywords bit.ly flickr

 Large Language Models

common tags     cloud | list

community  daily  dictionary  education  encyclopedia
english  free  imported  info  information  internet  knowledge

learning  news  reference  research  resource

resources  search  tools  useful  web  web2.0  wiki

wikipedia

http://bit.ly
http://www.flickr.com
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Clickworthy Science:

“Clickstream Data Yields High-Resolution Maps of Science”,
Bollen et al. [18], 2009.
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A notable feature of large-scale networks:
 Graphical renderings are often just a big mess.

⇐ Typical hairball

 number of nodes 𝑁 = 500

 number of edges 𝑚 = 1000

 average degree ⟨𝑘⟩ = 4
 And even when renderings somehow look good:

“That is a very graphic analogy which aids
understanding wonderfully while being, strictly
speaking, wrong in every possible way”
said Ponder [Stibbons] —Making Money, T. Pratchett.

 We need to extract digestible, meaningful aspects.
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Some key aspects of real complex networks:

 degree distribution∗
 assortativity
 homophily
 clustering
 motifs
 modularity

 concurrency
 hierarchical scaling
 network distances
 centrality
 efficiency
 interconnectedness
 robustness

 Plus coevolution of network structure
and processes on networks.∗ Degree distribution is the elephant in the room
that we are now all very aware of …
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1. degree distribution 𝑃𝑘
 𝑃𝑘 is the probability that a randomly selected

node has degree 𝑘.
 𝑘 = node degree = number of connections.
 ex 1: Erdős-Rényi random networks have Poisson

degree distributions:𝑃𝑘 = 𝑒−⟨𝑘⟩ ⟨𝑘⟩𝑘𝑘!
 ex 2: “Scale-free” networks: 𝑃𝑘 ∝ 𝑘−𝛾 ⇒ ‘hubs’.
 link cost controls skew.
 hubs may facilitate or impede contagion.
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Note:
 Erdős-Rényi random networks are a mathematical

construct.
 ‘Scale-free’ networks are growing networks that

form according to a plausible mechanism.
 Randomness is out there, just not to the degree of

a completely random network.
 “Becoming”: Stories = Characters + Time
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2. Assortativity/3. Homophily:
 Social networks: Homophily = birds of a feather
 e.g., degree is standard property for sorting:

measure degree-degree correlations.
 Assortative network: [74] similar degree nodes

connecting to each other.
Often social: company directors, coauthors, actors.

 Disassortative network: high degree nodes
connecting to low degree nodes.
Often techological or biological: internet, WWW,
protein interactions, neural networks, food webs.

http://en.wikipedia.org/wiki/Homophily
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Local socialness:

4. Clustering:

 Your friends tend to know
each other.

 Two measures (explained
on following slides):
1. Watts & Strogatz [112]𝐶1 = ⟨∑𝑗1𝑗2∈𝒩𝑖 𝑎𝑗1𝑗2𝑘𝑖(𝑘𝑖 − 1)/2 ⟩𝑖
2. Newman [77]𝐶2 = 3 × #triangles

#triples
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Example network:

Calculation of 𝐶1:

 𝐶1 is the average fraction of
pairs of neighbors who are
connected.

 Fraction of pairs of
neighbors who are
connected is∑𝑗1𝑗2∈𝒩𝑖 𝑎𝑗1𝑗2𝑘𝑖(𝑘𝑖 − 1)/2
where 𝑘𝑖 is node 𝑖’s degree,
and 𝒩𝑖 is the set of 𝑖’s
neighbors.

 Averaging over all nodes, we
have:𝐶1 = 1𝑛∑𝑛𝑖=1 ∑𝑗1𝑗2∈𝒩𝑖 𝑎𝑗1𝑗2𝑘𝑖(𝑘𝑖−1)/2 =⟨∑𝑗1𝑗2∈𝒩𝑖 𝑎𝑗1𝑗2𝑘𝑖(𝑘𝑖−1)/2 ⟩𝑖
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Triples and triangles

Example network:

Triangles:

Triples:

 Nodes 𝑖1, 𝑖2, and 𝑖3 form a
triple around 𝑖1 if 𝑖1 is
connected to 𝑖2 and 𝑖3.

 Nodes 𝑖1, 𝑖2, and 𝑖3 form a
triangle if each pair of nodes is
connected

 The definition 𝐶2 = 3×#triangles
#triples

measures the fraction of
closed triples

 The ‘3’ appears because for
each triangle, we have 3 closed
triples.

 Social Network Analysis (SNA):
fraction of transitive triples.
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Clustering:
Sneaky counting for undirected, unweighted
networks:
 If the path 𝑖–𝑗–ℓ exists then 𝑎𝑖𝑗𝑎𝑗ℓ = 1.
 Otherwise, 𝑎𝑖𝑗𝑎𝑗ℓ = 0.
 We want 𝑖 ≠ ℓ for good triples.
 In general, a path of 𝑛 edges between nodes 𝑖1

and 𝑖𝑛 travelling through nodes 𝑖2, 𝑖3, …𝑖𝑛−1 exists⟺ 𝑎𝑖1𝑖2𝑎𝑖2𝑖3𝑎𝑖3𝑖4 ⋯ 𝑎𝑖𝑛−2𝑖𝑛−1𝑎𝑖𝑛−1𝑖𝑛 = 1.

 #triples = 12 ( 𝑁∑𝑖=1 𝑁∑ℓ=1 [𝐴2]𝑖ℓ − Tr𝐴2)
 #triangles = 16Tr𝐴3
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5. motifs:
 small, recurring functional subnetworks
 e.g., Feed Forward Loop:

Shen-Orr, Uri Alon, et al. [89]
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6. modularity and structure/community
detection:

Clauset et al., 2006 [24]: NCAA football
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7. concurrency:
 transmission of a contagious element only occurs

during contact
 rather obvious but easily missed in a simple model
 dynamic property—static networks are not

enough
 knowledge of previous contacts crucial
 beware cumulated network data
 Kretzschmar and Morris, 1996 [58]

 “Temporal networks” become a concrete area of
study for Piranha Physicus in 2013.
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8. Horton-Strahler ratios:
 Metrics for branching networks:

 Method for ordering streams hierarchically
 Number: 𝑅𝑛 = 𝑁𝜔/𝑁𝜔+1
 Segment length: 𝑅𝑙 = ⟨𝑙𝜔+1⟩/⟨𝑙𝜔⟩
 Area/Volume: 𝑅𝑎 = ⟨𝑎𝜔+1⟩/⟨𝑎𝜔⟩
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9. network distances:

(a) shortest path length 𝑑𝑖𝑗:
 Fewest number of steps between nodes 𝑖 and 𝑗.
 (Also called the chemical distance between 𝑖 and𝑗.)
(b) average path length ⟨𝑑𝑖𝑗⟩:
 Average shortest path length in whole network.
 Good algorithms exist for calculation.
 Weighted links can be accommodated.
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9. network distances:
 network diameter 𝑑max:

Maximum shortest path length between any two
nodes.

 closeness 𝑑cl = [∑𝑖𝑗 𝑑 −1𝑖𝑗 /(𝑛2 )]−1:
Average ‘distance’ between any two nodes.

 Closeness handles disconnected networks
(𝑑𝑖𝑗 = ∞)

 𝑑cl = ∞ only when all nodes are isolated.
 Closeness perhaps compresses too much into one

number
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10. centrality:
 Many such measures of a node’s ‘importance.’
 ex 1: Degree centrality: 𝑘𝑖.
 ex 2: Node 𝑖’s betweenness

= fraction of shortest paths that pass through 𝑖.
 ex 3: Edge ℓ’s betweenness

= fraction of shortest paths that travel along ℓ.
 ex 4: Recursive centrality: Hubs and Authorities

(Jon Kleinberg [56])
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Interconnected networks and robustness (two for
one deal):
“Catastrophic cascade of failures in interdependent
networks” [21]. Buldyrev et al., Nature 2010.

a b c

Figure 1 | Modelling a blackout in Italy. Illustration of an iterative process of
a cascade of failures using real-world data from a power network (located on
the map of Italy) and an Internet network (shifted above the map) that were
implicated in an electrical blackout that occurred in Italy in September
200320. The networks are drawn using the real geographical locations and
every Internet server is connected to the geographically nearest power
station. a, One power station is removed (red node on map) from the power
network and as a result the Internet nodes depending on it are removed from
the Internet network (red nodes above the map). The nodes that will be
disconnected from the giant cluster (a cluster that spans the entire network)

at the next step are marked in green. b, Additional nodes that were
disconnected from the Internet communication network giant component
are removed (red nodes above map). As a result the power stations
depending on them are removed from the power network (red nodes on
map). Again, the nodes that will be disconnected from the giant cluster at the
next step are marked in green. c, Additional nodes that were disconnected
from the giant component of the power network are removed (red nodes on
map) as well as the nodes in the Internet network that depend on them (red
nodes above map).
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Branching networks are useful things:
 Fundamental to material supply and collection
 Supply: From one source to many sinks in 2- or

3-d.
 Collection: From many sources to one sink in 2- or

3-d.
 Typically observe hierarchical, recursive

self-similar structure

Examples:
 River networks
 Cardiovascular networks
 Plants
 Evolutionary trees
 Organizations (only in theory …)
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Branching networks are everywhere …

http://hydrosheds.cr.usgs.gov/

http://hydrosheds.cr.usgs.gov/
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Branching networks are everywhere …

http://en.wikipedia.org/wiki/Image:Applebox.JPG

http://en.wikipedia.org/wiki/Image:Applebox.JPG
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“The Development of Drainage Systems: A
Synoptic View”
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Abstraction,
Absorption.

https://pdodds.w3.uvm.edu//research/papers/others/everything/glock1931a.pdf
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D E V E L O P M E N T O F D R A I N A G E S Y S T E M S 4 g ,

believed, an ideal scheme should follow. Little doubt can exist that
such an .deal scheme acts as an axis of variation about which natural

phenomena appear to group themselves.

Fig. 8—An ideal diagrammatic summary of the development or a drainage system g.ven for purposes

on°Td7L°;_y- Thef i - ! ' °Urr -h—-n. thus: r. in i t ia t ion; _ . e la t ion; .S __£"on. and 4. maximum extension. Parts 5 and 6 represent steps during integration.
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The Stage of Integration

The processes responsible for integration may be designated as

follows: (1) abstraction, the loss of identity suffered bv a secondary-

stream at the hands of its primary; (2) absorption, the disappearance
ot a stream save immediately after rainfall; and (3) a sort of adjust

ment or aggression, the attempt made by the main stream to reach

the sea by the shortest route consistent with regional slope. The

reappearance of the skeletonized form out of the intricate plexus
of streams some time after maximum extension definitely marks

the existence of integration (Fig. 6). It constitutes the second and

nnal stage in the developmental history of a drainage system.

_ Abstraction refers to the elimination of a secondary stream by
its primary. As the stream swings from side to side it constantlv

I '

The sequential stages recognized in the evolution of a
drainage system are “extension” and “integration”; the
first, a stage of increasing complexity; the second, of
simplification.
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Allometry

 Isometry:
dimensions scale
linearly with each
other.

 Allometry:
dimensions scale
nonlinearly.
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Basin allometry

a
L?0

L? Lk = L
a0 ll0Lk0

Allometric
relationships:
 ℓ ∝ 𝑎ℎ
 ℓ ∝ 𝐿𝑑
 Combine above:𝑎 ∝ 𝐿𝑑/ℎ ≡ 𝐿𝐷



‘Laws’
 Hack’s law (1957) [50]: ℓ ∝ 𝑎ℎ

reportedly 0.5 < ℎ < 0.7
 Scaling of main stream length with basin size:ℓ ∝ 𝐿𝑑∥

reportedly 1.0 < 𝑑 < 1.1
 Basin allometry: 𝐿∥ ∝ 𝑎ℎ/𝑑 ≡ 𝑎1/𝐷𝐷 < 2 → basins elongate.
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There are a few more ‘laws’: [31]

Relation: Name or description:𝑇𝑘 = 𝑇1(𝑅𝑇 )𝑘−1 Tokunaga’s lawℓ ∼ 𝐿𝑑 self-affinity of single channels𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛 Horton’s law of stream numbers̄ℓ𝜔+1/ ̄ℓ𝜔 = 𝑅ℓ Horton’s law of main stream lengths̄𝑎𝜔+1/ ̄𝑎𝜔 = 𝑅𝑎 Horton’s law of basin areas̄𝑠𝜔+1/ ̄𝑠𝜔 = 𝑅𝑠 Horton’s law of stream segment lengths𝐿⟂ ∼ 𝐿𝐻 scaling of basin widths𝑃(𝑎) ∼ 𝑎−𝜏 probability of basin areas𝑃(ℓ) ∼ ℓ−𝛾 probability of stream lengthsℓ ∼ 𝑎ℎ Hack’s law𝑎 ∼ 𝐿𝐷 scaling of basin areasΛ ∼ 𝑎𝛽 Langbein’s law𝜆 ∼ 𝐿𝜑 variation of Langbein’s law
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Reported parameter values: [31]

Parameter: Real networks:𝑅𝑛 3.0–5.0𝑅𝑎 3.0–6.0𝑅ℓ = 𝑅𝑇 1.5–3.0𝑇1 1.0–1.5𝑑 1.1 ± 0.01𝐷 1.8 ± 0.1ℎ 0.50–0.70𝜏 1.43 ± 0.05𝛾 1.8 ± 0.1𝐻 0.75–0.80𝛽 0.50–0.70𝜑 1.05 ± 0.05
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Stream Ordering:

1. Label all source streams as order 𝜔 = 1 and
remove.

2. Label all new source streams as order 𝜔 = 2 and
remove.

3. Repeat until one stream is left (order = Ω)
4. Basin is said to be of the order of the last stream

removed.
5. Example above is a basin of order Ω = 3.
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Basic algorithm for extracting networks from
Digital Elevation Models (DEMs):

 Also:
/Users/dodds/work/rivers/1998dems/kevinlakewaster.c
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Horton’s laws
Self-similarity of river networks
 First quantified by Horton (1945) [53], expanded by

Schumm (1956) [88]

Three laws:
 Horton’s law of stream numbers:𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛 > 1
 Horton’s law of stream lengths:̄ℓ𝜔+1/ ̄ℓ𝜔 = 𝑅ℓ > 1
 Horton’s law of basin areas:̄𝑎𝜔+1/ ̄𝑎𝜔 = 𝑅𝑎 > 1
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Network Architecture
Tokunaga’s law [101, 102, 103]

 Property 1: Scale independence—depends only
on difference between orders:𝑇𝜇,𝜈 = 𝑇𝜇−𝜈

 Property 2: Number of side streams grows
exponentially with difference in orders:𝑇𝜇,𝜈 = 𝑇1(𝑅𝑇 )𝜇−𝜈−1

 We usually write Tokunaga’s law as:𝑇𝑘 = 𝑇1(𝑅𝑇 )𝑘−1 where 𝑅𝑇 ≃ 2
.
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Connecting exponents

Only 3 parameters are independent:
e.g., take 𝑑, 𝑅𝑛, and 𝑅𝑠

relation: scaling relation/parameter: [31]ℓ ∼ 𝐿𝑑 𝑑𝑇𝑘 = 𝑇1(𝑅𝑇 )𝑘−1 𝑇1 = 𝑅𝑛 − 𝑅𝑠 − 2 + 2𝑅𝑠/𝑅𝑛𝑅𝑇 = 𝑅𝑠𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛 𝑅𝑛̄𝑎𝜔+1/ ̄𝑎𝜔 = 𝑅𝑎 𝑅𝑎 = 𝑅𝑛̄ℓ𝜔+1/ ̄ℓ𝜔 = 𝑅ℓ 𝑅ℓ = 𝑅𝑠ℓ ∼ 𝑎ℎ ℎ = ln𝑅𝑠/ln𝑅𝑛𝑎 ∼ 𝐿𝐷 𝐷 = 𝑑/ℎ𝐿⟂ ∼ 𝐿𝐻 𝐻 = 𝑑/ℎ − 1𝑃(𝑎) ∼ 𝑎−𝜏 𝜏 = 2 − ℎ𝑃(ℓ) ∼ ℓ−𝛾 𝛾 = 1/ℎΛ ∼ 𝑎𝛽 𝛽 = 1 + ℎ𝜆 ∼ 𝐿𝜑 𝜑 = 𝑑
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Single source optimal supply

 

)c()b()a(

(a) 𝛾 > 1: Braided (bulk) flow
(b) 𝛾 < 1: Local minimum: Branching flow
(c) 𝛾 < 1: Global minimum: Branching flow
 Note: This is a single source supplying a region.

From Bohn and Magnasco [16]

See also Banavar et al. [6]: “Topology of the Fittest
Transportation Network”; focus is on presence or absence
of loops—same story
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Single source optimal supply
Optimal paths related to transport (Monge)
problems:
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In transport problems of Monge’s types, the total cost of a transport map is usually an
integral of some function of the distance, such as |x − y|p. In many real applications,

the actual cost may naturally be determined by a transport path. For shipping two
items to one location, a “Y shaped” path may be preferable to a “V shaped” path.

Here, we show that any probability measure can be transported to another probability
measure through a general optimal transport path, which is given by a vector measure

in our setting. Moreover, we define a new distance on the space of probability measures
which in fact metrizies the weak * topology of measures. Under this distance, the space

of probability measures becomes a length space. Relations as well as related problems
about transport paths and transport plans are also discussed in the end.

Keywords: Optimal transport problem; size minimizing current; optimal transport path.

Mathematics Subject Classification 2000: 90B06, 49Q20

1. Introduction

The transport problem introduced by Monge in 1781 [8] has been studied in many

interesting works in the last 10 years [1, 4, 5, 7, 11]. In these works, the cost of

a transport mapping or a transport plan is usually an integral of some convex

(or concave [7]) function of the distance, such as |x − y|p. However, in some

real applications, the actual cost of the transport procedures is not necessarily

determined by just knowing an optimal mapping from the starting position to the

target position. For example in shipping two items from nearby cities to the same

far away city, it may be less expensive to first bring them to a common location and

put them on a single truck for most of the transport. In this case, a “Y shaped”

path is preferable to a “V shaped” path. In both cases, the transport mapping is

trivially the same, but the actual transport path naturally gives the total cost. We

may consider the following general problem.

Problem 1.1. Given two general probability measures µ
+ and µ

−, find an optimal

path for transporting µ
+ to µ

−.

251

“Optimal paths related to transport
problems”
Qinglan Xia,
Communications in Contemporary
Mathematics, 5, 251–279, 2003. [116]

https://en.wikipedia.org/wiki/Transportation_theory_(mathematics)
https://en.wikipedia.org/wiki/Transportation_theory_(mathematics)
https://pdodds.w3.uvm.edu//research/papers/others/everything/xia2003a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/xia2003a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/xia2003a.pdf
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Growing networks: [117]
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α=0.68,   β=0.38,   totalcost=49.5418
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α=0.66,   β=0.7,   totalcost=525.9653

α=0.55,   β=0.7, ε=5 α=0.65,   β=0.7, ε=7

 Top: 𝛼 = 0.66, 𝛽 = 0.38; Bottom: 𝛼 = 0.66, 𝛽 = 0.70
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Single source optimal supply

An immensely controversial issue …
 The form of natural branching networks:

Random, optimal, or some
combination? [55, 113, 7, 33, 27]

 River networks, blood networks, trees, …

Two observations:
 Self-similar networks appear everywhere in nature

for single source supply/single sink collection.
 Real networks differ in details of scaling but

reasonably agree in scaling relations.
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Optimization—Murray’s law

 Murray’s law (1926)
connects branch radii at
forks: [72, 71, 73, 59, 100]𝑟3
parent = 𝑟3

offspring1 + 𝑟3
offspring2

where 𝑟parent = radius of
‘parent’ branch, and𝑟offspring1 and 𝑟offspring2 are
radii of the two ‘offspring’
sub-branches.

 Holds up well for outer branchings of blood
networks [90].

 Also found to hold for trees [73, 66] when xylem is
not a supporting structure [67].

 See D’Arcy Thompson’s “On Growth and Form” for
background and general inspiration [99, 100].

https://en.wikipedia.org/wiki/Murray%27s_law
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Animal power

Fundamental biological and ecological constraint:𝑃 = 𝑐 𝑀 𝛼𝑃 = basal metabolic rate𝑀 = organismal body mass
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Stories—The Fraction Assassin:
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Quarterology spreads throughout the land:
The Cabal assassinates 2/3-scaling:

 1964: Troon, Scotland.

 3rd Symposium on Energy Metabolism.

 𝛼 = 3/4 made official … … 29 to zip.

 But the Cabal slipped up by publishing the conference
proceedings …

 “Energy Metabolism; Proceedings of the 3rd
symposium held at Troon, Scotland, May 1964,” Ed. Sir
Kenneth Blaxter [13]
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Somehow, optimal river networks are
connected:

a
L?0

L? Lk = L
a0 ll0Lk0  𝑎 = drainage

basin area
 ℓ = length of

longest (main)
stream

 𝐿 = 𝐿∥ =
longitudinal
length of basin
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Mysterious allometric scaling in river
networks

 1957: J. T. Hack [50]

“Studies of Longitudinal Stream Profiles in Virginia
and Maryland” ℓ ∼ 𝑎ℎℎ ∼ 0.6

 Anomalous scaling: we would expect ℎ = 1/2 …
 Subsequent studies: 0.5 ≲ ℎ ≲ 0.6
 Another quest to find universality/god …
 A catch: studies done on small scales.
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Large-scale networks:
(1992) Montgomery and Dietrich [69]:

Fig. 1. Without a scale bar it
is almost impossible to de-
termine even the approxi-
mate scale of a topographic
map. The upper two maps
show adjacent drainage ba-
sins in the Oregon Coast
Range and illustrate the ef-
fect of depicting an area of
similar topography at diffier-
ent scales. The map on the
right covers an area four
times as large as, and has
twice the contour interval
of, the map on the left. The
lower two maps depict very
different landscapes, and de-
tailed mapping was done to
resolve the finest scale val- - --
leys, which determine the -
extent, or scale, of landscape
dissection. The map on the
left shows a portion of a/
small badlands area at Perth
Amboy, New Jersey (28)
(scale bar represents 2 m;
contour interval is 0.3 in).
The map on the right shows
a portion of the San Gabriel
Mountains of southern Cal-
ifornia (20) (scale bar repre-
sents 100 m; contour inter-
val is 15 in). Dashed fines on
both lower maps represent
the limit of original map-
ping. The drainage basin outlet on each map is oriented toward the bottom of the page. All four maps
suggest a limit to landscape dissection, defined by the size of the hilislopes, separating valleys. This
apparent limit, however, only corresponds to the extent of valley dissection definable in the field for the
case of the lower two maps.

We collected data from small drainage
basins in a variety of geologic settings that
represent a range in climate and vegetation
(4, 5). We measured the drainage area (A),
basin length (L), and local slope (S) for
locations in convergent topography along
low-order channel networks, at channel
heads, and along unchanneled valleys in
drainage basins where we had mapped the
channel networks in the field (4, 5). Drain-
age area was defined as the area upslope of
the measurement location, basin length was

defined as the length along the main valley
axis to the drainage divide, and local slope
was measured in the field. The structural
relation ofdrainage area to basin length (10)
for our composite data set is

L = 1.78A49 (1)

E

5

c
U

Drainage area (m2)

where L andA are expressed in meters. This
relation is well approximated by the simple,
isometric relation

L (3 A)05 (2)

Inclusion of reported drainage area and
mainstream length data from larger net-
works (11-15) provides a composite data
set that also is reasonably fit (5) by this
relation. The data span a range of more
than 11 orders of magnitude in basin area,
from unchanneled hillside depressions to
the world's largest rivers (Fig. 2). This
relation suggests that there is a basic geo-
metric similarity between drainage basins
and the smaller basins contained within
them that holds down to the finest scale to

which the landscape is dissected (Fig. 3).
In the field this scale is easily recognized as

Fig. 2. Basin length versus drainage
area for unchanneled valleys, source
areas, and low-order channels mapped
in this study (0) and mainstream
length versus drainage area data report-
ed for large channel networks (0).
Sources of mainstream length data are

given in (5).

Fig. 3. The coherence of the data in Fig. 2 across
11 orders of magnitude indicates a geometric
similarity between small drainage basins and the
larger drainage basins that contain them. Al-
though the variance about the trend in Fig. 2
indicates a range in individual basin shapes, this
general relation apparently characterizes the land-
scape down to the finest scale of convergent
topography.

that ofthe topographically divergent ridges
that separate these fine-scale valleys.
Equation 1 differs, however, from the

relation between the mainstream length
and drainage area first reported by Hack
(11), in which basin area increases as L`.
Many subsequent workers interpreted sim-
ilar relations as indicating that drainage
network planform geometry changes with
increasing scale. Relations between main-
stream length and drainage area also have
been used to infer the fractal dimension of
individual channels and channel networks
(1, 16). Mueller (15), however, reported
that the exponent in the relation of main-
stream length to drainage area is not con-
stant, but decreases from 0.6 to -0.5 with
increasing network size, and Hack (11)
noted that the exponent in this relation
varies for individual drainage networks.
We cannot compare our data more quanti-
tatively with those reported by others be-
cause the mainstream length will diverge
from the basin length in proportion to the
area upslope of the stream head. We sus-
pect that the difference in the relations
derived from our data and those reported
previously reflects variation in the head-
ward extent ofthe stream network depicted
on maps of varying scale (17) as well as
downstream variations in both channel sin-
uosity (14) and drainage density (18). The
general scale independence indicated in
Fig. 2 suggests that landscape dissection
results in an integrated network of valleys
that capture geometrically similar drainage
basins at scales ranging from the largest
rivers to the finest scale valleys. Within this
scale range there appears to be little inher-
ent to the channel network and to the
corresponding shape of the drainage area it
captures that provides reference to an ab-
solute scale.

Nonetheless, field studies in semiarid to

humid regions demonstrate that there is a

finite extent to the branching channel net-

work (4, 5, 19-22). Channels do not occupy
the entire landscape; rather, they typically
begin at the foot of an unchanneled valley,

REPORT 827
14 FEBRUARY 1992 Composite data set: includes everything from

unchanneled valleys up to world’s largest rivers.
 Estimated fit: 𝐿 ≃ 1.78𝑎0.49
 Mixture of basin and main stream lengths.
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World’s largest rivers only:
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i) 37 of the world’s biggest basins

h ≃ 0.498

 Data from Leopold (1994) [60, 32]

 Estimate of Hack exponent: ℎ = 0.50 ± 0.06
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Nutrient delivering networks:
 1960’s: Rashevsky considers blood networks and

finds a 2/3 scaling.
 1997: West et al. [113] use a network story to find3/4 scaling.
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Geometric argument

 Allometrically growing regions:

Ω Ω L’2

L 1 L’

2L

1

(V)
(V’)

 Have 𝑑 length scales which scale as𝐿𝑖 ∝ 𝑉 𝛾𝑖 where 𝛾1 + 𝛾2 + … + 𝛾𝑑 = 1.
 For isometric growth, 𝛾𝑖 = 1/𝑑.
 For allometric growth, we must have at least two

of the {𝛾𝑖} being different
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Spherical cows and pancake cows:
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Minimal network volume:

Real supply networks are close to optimal:

(a) (b) (c) (d)

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (c) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

Gastner and Newman (2006): “Shape and efficiency in
spatial distribution networks” [41]
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Rules for Biologically Inspired
Adaptive Network Design
Atsushi Tero,1,2 Seiji Takagi,1 Tetsu Saigusa,3 Kentaro Ito,1 Dan P. Bebber,4 Mark D. Fricker,4

Kenji Yumiki,5 Ryo Kobayashi,5,6 Toshiyuki Nakagaki1,6*

Transport networks are ubiquitous in both social and biological systems. Robust network performance

involves a complex trade-off involving cost, transport efficiency, and fault tolerance. Biological

networks have been honed by many cycles of evolutionary selection pressure and are likely to yield

reasonable solutions to such combinatorial optimization problems. Furthermore, they develop without

centralized control and may represent a readily scalable solution for growing networks in general. We

show that the slime mold Physarum polycephalum forms networks with comparable efficiency, fault

tolerance, and cost to those of real-world infrastructure networks—in this case, the Tokyo rail system.

The core mechanisms needed for adaptive network formation can be captured in a biologically

inspired mathematical model that may be useful to guide network construction in other domains.

T
ransport networks are a critical part of the

infrastructure needed to operate a modern

industrial society and facilitate efficient

movement of people, resources, energy, and

information. Despite their importance, most net-

works have emerged without clear global design

principles and are constrained by the priorities

imposed at their initiation. Thus, the main motiva-

tion historically was to achieve high transport

efficiency at reasonable cost, but with correspond-

ingly less emphasis on making systems tolerant to

interruption or failure. Introducing robustness

inevitably requires additional redundant pathways

that are not cost-effective in the short term. In recent

years, the spectacular failure of key infrastructure

such as power grids (1, 2), financial systems (3, 4),

airline baggage-handling systems (5), and railway

networks(6),aswellasthepredictedvulnerabilityof

systems such as information networks (7) or supply

networks (8) to attack, have highlighted the need to

develop networks with greater intrinsic resilience.

Some organisms grow in the form of an inter-

connected network as part of their normal forag-

ing strategy to discover and exploit new resources

(9–12). Such systems continuously adapt to their

environment and must balance the cost of produc-

ing an efficient network with the consequences of

even limited failure in a competitive world. Unlike

anthropogenic infrastructure systems, these biolog-

ical networks have been subjected to successive

rounds of evolutionary selection and are likely to

have reached a point at which cost, efficiency, and

resilience are appropriately balanced. Drawing in-

spiration from biology has led to useful approaches

to problem-solving such as neural networks, ge-

netic algorithms, and efficient search routines de-

veloped from ant colony optimization algorithms

(13). We exploited the slime mold Physarum

polycephalum to develop a biologically inspired

model for adaptive network development.

Physarum is a large, single-celled amoeboid

organism that forages for patchily distributed

food sources. The individual plasmodium ini-

tially explores with a relatively contiguous for-

aging margin to maximize the area searched.

However, behind the margin, this is resolved into

a tubular network linking the discovered food

sources through direct connections, additional in-

termediate junctions (Steiner points) that reduce

the overall length of the connecting network,

and the formation of occasional cross-links that

improve overall transport efficiency and resil-

ience (11, 12). The growth of the plasmodium is

influenced by the characteristics of the sub-

strate (14) and can be constrained by physical

barriers (15) or influenced by the light regime

(16), facilitating experimental investigation of

the rules underlying network formation. Thus,

for example, Physarum can find the shortest

path through a maze (15–17) or connect dif-

ferent arrays of food sources in an efficient

manner with low total length (TL) yet short

averageminimum distance (MD) between pairs

of food sources (FSs), with a high degree of

fault tolerance (FT) to accidental disconnection

(11, 18, 19). Capturing the essence of this sys-

tem in simple rules might be useful in guiding

the development of decentralized networks in

other domains.

We observed Physarum connecting a template

of 36 FSs that represented geographical locations

of cities in the Tokyo area, and compared the result

with the actual rail network in Japan. The

Physarum plasmodium was allowed to grow from

Tokyo and initially filled much of the available

land space, but then concentrated on FSs by

thinning out the network to leave a subset of larger,

interconnecting tubes (Fig. 1). An alternative

protocol, in which the plasmodium was allowed

to extend fully in the available space and the FSs

were then presented simultaneously, yielded sim-

ilar results. To complete the network formation, we

allowed any excess volume of plasmodium to
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Sapporo 060-0812, Japan. 2PRESTO, JST, 4-1-8 Honcho,
Kawaguchi, Saitama, Japan. 3Graduate School of Engineering,
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Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.
5Department of Mathematical and Life Sciences, Hiroshima
University, Higashi-Hiroshima 739-8526, Japan. 6JST, CREST, 5
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“Rules for Biologically Inspired Adaptive
Network Design”
Tero et al.,
Science, 327, 439-442, 2010. [98]

Urban deslime in action:
https://www.youtube.com/watch?v=GwKuFREOgmo

https://pdodds.w3.uvm.edu//research/papers/others/everything/tero2010a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/tero2010a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/tero2010a.pdf
https://www.youtube.com/watch?v=GwKuFREOgmo
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Blood networks

 Then 𝑃 , the rate of overall energy use in Ω, can at
most scale with volume as𝑃 ∝ 𝜌𝑉 ∝ 𝜌 𝑀 ∝ 𝑀 (𝑑−1)/𝑑

 For 𝑑 = 3 dimensional organisms, we have𝑃 ∝ 𝑀 2/3
 Including other constraints may raise scaling

exponent to a higher, less efficient value.
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 Exciting bonus: Scaling obtained by the supply
network story and the surface-area law only
match for isometrically growing shapes.
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Hack’s law
 Volume of water in river network can be

calculated by adding up basin areas
 Flows sum in such a way that𝑉net = ∑

all pixels
𝑎pixel 𝑖

 Hack’s law again: ℓ ∼ 𝑎ℎ
 Can argue 𝑉net ∝ 𝑉 1+ℎ

basin = 𝑎1+ℎ
basin

where ℎ is Hack’s exponent.
 ∴ minimal volume calculations givesℎ = 1/2
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Real data:

 Banavar et al.’s
approach [7] is
okay because 𝜌
really is constant.

 The irony: shows
optimal basins
are isometric

 Optimal Hack’s
law: ℓ ∼ 𝑎ℎ withℎ = 1/2

 (Zzzzz)
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Even better—prefactors match up:
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Optimal design of spatial distribution networks

Michael T. Gastner
1,2

and M. E. J. Newman
2,3
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Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA

2
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
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We consider the problem of constructing facilities such as hospitals, airports, or malls in a country with a

nonuniform population density, such that the average distance from a person’s home to the nearest facility is

minimized. We review some previous approximate treatments of this problem that indicate that the optimal

distribution of facilities should have a density that increases with population density, but does so slower than

linearly, as the two-thirds power. We confirm this result numerically for the particular case of the United States

with recent population data using two independent methods, one a straightforward regression analysis, the

other based on density-dependent map projections. We also consider strategies for linking the facilities to form

a spatial network, such as a network of flights between airports, so that the combined cost of maintenance of

and travel on the network is minimized. We show specific examples of such optimal networks for the case of

the United States.

DOI: 10.1103/PhysRevE.74.016117 PACS number�s�: 89.65.�s, 01.75.�m, 89.75.Da, 89.75.Hc

I. INTRODUCTION

Suppose we are given the population density ��r� of a

country or province, by which we mean the number of

people per unit area as a function of geographical position r.

And suppose we are charged with choosing the sites of p

facilities, such as hospitals, post offices, supermarkets, gas

stations, or schools, so that the mean distance to the nearest

facility averaged over the population is minimized. In most

countries, population density is highly nonuniform, in which

case a uniform distribution of facilities would be a poor

choice: it benefits us little to build a lot of facilities in

sparsely populated areas. A more sensible choice would be to

distribute facilities in proportion to population density, so

that a region with twice as many people has twice as many

facilities. But this distribution too turns out to be suboptimal,

because we also gain little by having closely spaced facilities

in the highly populated areas—when facilities are closely

spaced the typical person is not much farther from their

second-closest facility than from their closest, so one or the

other can often be removed with little penalty and substantial

savings.

Although an exact analytic solution to this optimal loca-

tion problem has yet to be found, a variety of approximate

treatments have been given, which suggest that the ideal so-

lution lies somewhere between these two extremes, with the

density of facilities increasing as the two-thirds power of

population density, a prediction that we verify here using

simulations and visualizations based on cartograms, with ac-

tual population data for the United States. In addition, one is

often interested in connections between facilities, such as

flights between airports �1� or transmission lines between

power stations �2�. In the second half of this paper, we gen-

erate networks based on a simple model that optimizes net-

work topology with respect to the cost of maintaining and

traveling across the network. Depending on the benefit func-

tion chosen, we find structures ranging from completely de-

centralized networks to hub-and-spoke networks.

II. OPTIMAL DISTRIBUTION OF FACILITIES

We wish to distribute p facilities over a two-dimensional

area A such that the objective function

f�r1, . . . ,rp� = �
A

��r� min
i��1¯p�

�r − ri�d
2r �1�

is minimized. Here �r1 , . . . ,rp� is the set of positions of the

facilities and ��r� is the population density within the region

A of interest. This objective function is proportional to the

mean distance that a person will have to travel to reach their

nearest facility.

Seemingly simple, this so-called p-median problem has

been shown to be NP-hard �3�, so in practice most studies

rely either on approximate numerical optimization or ap-

proximate analytic treatments �4�. A number of different ap-

proaches have been used �5–9�; the calculation given here is

essentially that of Gusein-Zade �10�.
Our p facilities naturally partition the area A into Voronoi

cells. �The Voronoi cell Vi for the ith facility is defined as the

set of points that are closer to ri than to any other facility.�
Let us define s�r� to be the area of the Voronoi cell to which

the point r belongs. In two dimensions, a person living at

point r will on average be a distance g�s�r��1/2 from the

nearest facility, where g is a geometric factor of order 1,

whose exact value depends on the shape of the Voronoi cell,

but which will in any case drop out of the final result. The

distance to the nearest facility averaged over all members of

the population is proportional to

f = g�
A

��r��s�r��1/2d2r , �2�

where we are making an approximation by neglecting varia-

tion of the geometric factor g between cells.

PHYSICAL REVIEW E 74, 016117 �2006�

1539-3755/2006/74�1�/016117�6� ©2006 The American Physical Society016117-1

“Optimal design of spatial distribution networks”
Gastner and Newman,
Phys. Rev. E, 74, 016117, 2006. [40]

 Approximately optimal location of 5000 facilities.
 Based on 2000 Census data.
 Simulated annealing + Voronoi tessellation.

https://pdodds.w3.uvm.edu//research/papers/others/everything/gastner2006c.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/gastner2006c.pdf
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Optimal source allocation

 Optimal facility density 𝜌fac vs. population density𝜌pop.
 Fit is 𝜌fac ∝ 𝜌0.66

pop with 𝑟2 = 0.94.
 Looking good for a 2/3 power …
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Deriving the optimal source distribution:
 Basic idea: Minimize the average distance from a

random individual to the nearest facility. [40]

 Assume given a fixed population density 𝜌pop
defined on a spatial region Ω.

 Formally, we want to find the locations of 𝑛
sources { ⃗𝑥1, … , ⃗𝑥𝑛} that minimizes the cost
function𝐹({ ⃗𝑥1, … , ⃗𝑥𝑛}) = ∫Ω 𝜌pop( ⃗𝑥)min𝑖|| ⃗𝑥 − ⃗𝑥𝑖||d ⃗𝑥 .

 Also known as the p-median problem, and
connected to cluster analysis.

 Not easy …in fact this one is an NP-hard
problem. [40]

 Approximate solution originally due to
Gusein-Zade [49].
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Global redistribution networks
One more thing:
 How do we supply these facilities?
 How do we best redistribute mail? People?
 How do we get beer to the pubs?
 Gastner and Newman model: cost is a function of

basic maintenance and travel time:𝐶maint + 𝛾𝐶travel.
 Travel time is more complicated: Take ‘distance’

between nodes to be a composite of shortest path
distance ℓ𝑖𝑗 and number of legs to journey:(1 − 𝛿)ℓ𝑖𝑗 + 𝛿(#hops).

 When 𝛿 = 1, only number of hops matters.
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Global redistribution networks

From Gastner and Newman (2006) [40]
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Public versus private facilities
Beyond minimizing distances:
 “Scaling laws between population and facility

densities” by Um et al., Proc. Natl. Acad. Sci.,
2009. [104]

 Um et al. find empirically and argue theoretically
that the connection between facility and
population density 𝜌fac ∝ 𝜌𝛼

pop

does not universally hold with 𝛼 = 2/3.
 Two idealized limiting classes:

1. For-profit, commercial facilities: 𝛼 = 1;
2. Pro-social, public facilities: 𝛼 = 2/3.

 Um et al. investigate facility locations in the United
States and South Korea.
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Public versus private facilities: evidence

 Left plot: ambulatory hospitals in the U.S.
 Right plot: public schools in the U.S.
 Note: break in scaling for public schools.

Transition from 𝛼 ≃ 2/3 to 𝛼 = 1 around𝜌pop ≃ 100.
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Public versus private facilities: evidence
US facility α (SE) R

2

Ambulatory hospital 1.13(1) 0.93

Beauty care 1.08(1) 0.86

Laundry 1.05(1) 0.90

Automotive repair 0.99(1) 0.92

Private school 0.95(1) 0.82

Restaurant 0.93(1) 0.89

Accommodation 0.89(1) 0.70

Bank 0.88(1) 0.89

Gas station 0.86(1) 0.94

Death care 0.79(1) 0.80

* Fire station 0.78(3) 0.93

* Police station 0.71(6) 0.75

Public school 0.69(1) 0.87

SK facility α (SE) R
2

Bank 1.18(2) 0.96

Parking place 1.13(2) 0.91

* Primary clinic 1.09(2) 1.00

* Hospital 0.96(5) 0.97

* University/college 0.93(9) 0.89

Market place 0.87(2) 0.90

* Secondary school 0.77(3) 0.98

* Primary school 0.77(3) 0.97

Social welfare org. 0.75(2) 0.84

* Police station 0.71(5) 0.94

Government office 0.70(1) 0.93

* Fire station 0.60(4) 0.93

* Public health center 0.09(5) 0.19

Rough transition
between public
and private at𝛼 ≃ 0.8.
Note: * indicates
analysis is at
state/province
level; otherwise
county level.
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Random network generator for 𝑁 = 3:

 Get your own exciting generator here.
 As 𝑁 ↗, polyhedral die rapidly becomes a ball …

https://pdodds.w3.uvm.edu/teaching/courses/2022-2023pocsverse/docs/2011-02-26random-network-generator.png
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Random networks: examples for 𝑁=500

𝑚 = 100⟨𝑘⟩ = 0.4

𝑚 = 260⟨𝑘⟩ = 1.04

𝑚 = 200⟨𝑘⟩ = 0.8

𝑚 = 280⟨𝑘⟩ = 1.12

𝑚 = 230⟨𝑘⟩ = 0.92

𝑚 = 300⟨𝑘⟩ = 1.2

𝑚 = 240⟨𝑘⟩ = 0.96

𝑚 = 500⟨𝑘⟩ = 2

𝑚 = 250⟨𝑘⟩ = 1

𝑚 = 1000⟨𝑘⟩ = 4
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Random networks: largest components

𝑚 = 100⟨𝑘⟩ = 0.4

𝑚 = 260⟨𝑘⟩ = 1.04

𝑚 = 200⟨𝑘⟩ = 0.8

𝑚 = 280⟨𝑘⟩ = 1.12

𝑚 = 230⟨𝑘⟩ = 0.92

𝑚 = 300⟨𝑘⟩ = 1.2

𝑚 = 240⟨𝑘⟩ = 0.96

𝑚 = 500⟨𝑘⟩ = 2

𝑚 = 250⟨𝑘⟩ = 1

𝑚 = 1000⟨𝑘⟩ = 4
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Giant component
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Clustering in random networks:

 So for large random
networks (𝑁 → ∞),
clustering drops to zero.

 Key structural feature of
random networks is that
they locally look like
pure branching networks

 No small loops.
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Degree distribution:
 Recall 𝑃𝑘 = probability that a randomly selected

node has degree 𝑘.
 Consider method 1 for constructing random

networks: each possible link is realized with
probability 𝑝.

 Now consider one node: there are ‘𝑁 − 1 choose 𝑘’
ways the node can be connected to 𝑘 of the other𝑁 − 1 nodes.

 Each connection occurs with probability 𝑝, each
non-connection with probability (1 − 𝑝).

 Therefore have a binomial distribution:𝑃(𝑘; 𝑝, 𝑁) = (𝑁 − 1𝑘 )𝑝𝑘(1 − 𝑝)𝑁−1−𝑘.

https://en.wikipedia.org/wiki/Binomial_distribution
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Limiting form of 𝑃(𝑘; 𝑝, 𝑁):
 Our degree distribution:𝑃(𝑘; 𝑝, 𝑁) = (𝑁−1𝑘 )𝑝𝑘(1 − 𝑝)𝑁−1−𝑘.
 What happens as 𝑁 → ∞?
 We must end up with the normal distribution

right?
 If 𝑝 is fixed, then we would end up with a Gaussian

with average degree ⟨𝑘⟩ ≃ 𝑝𝑁 → ∞.
 But we want to keep ⟨𝑘⟩ fixed …
 So examine limit of 𝑃(𝑘; 𝑝, 𝑁) when 𝑝 → 0 and𝑁 → ∞ with ⟨𝑘⟩ = 𝑝(𝑁 − 1) = constant.𝑃(𝑘; 𝑝, 𝑁) ≃ ⟨𝑘⟩𝑘𝑘! (1 − ⟨𝑘⟩𝑁 − 1)𝑁−1−𝑘 → ⟨𝑘⟩𝑘𝑘! 𝑒−⟨𝑘⟩
 This is a Poisson distribution with mean ⟨𝑘⟩.

http://en.wikipedia.org/wiki/Poisson_distribution
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Poisson basics:

𝑃(𝑘; 𝜆) = 𝜆𝑘𝑘! 𝑒−𝜆  𝜆 > 0
 𝑘 = 0, 1, 2, 3, …
 Classic use: probability

that an event occurs 𝑘
times in a given time
period, given an
average rate of
occurrence.

 e.g.:
phone calls/minute,
horse-kick deaths.

 ‘Law of small numbers’
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Models

Generalized random networks:
 Arbitrary degree distribution 𝑃𝑘.
 Create (unconnected) nodes with degrees

sampled from 𝑃𝑘.
 Wire nodes together randomly.
 Create ensemble to test deviations from

randomness.
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Building random networks: Stubs

Phase 1:
 Idea: start with a soup of unconnected nodes with

stubs (half-edges):

 Randomly select stubs
(not nodes!) and
connect them.

 Must have an even
number of stubs.

 Initially allow self- and
repeat connections.
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Building random networks: First rewiring

Phase 2:
 Now find any (A) self-loops and (B) repeat edges

and randomly rewire them.

(A) (B)
 Being careful: we can’t change the degree of any

node, so we can’t simply move links around.
 Simplest solution: randomly rewire two edges at a

time.
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General random rewiring algorithm
1

1

i
3

i
4

i
2

e
2

e
i

 Randomly choose two edges.
(Or choose problem edge and
a random edge)

 Check to make sure edges are
disjoint.

i
3

i
4

i
2

1

e’
2

i

e’

1  Rewire one end of each edge.

 Node degrees do not change.

 Works if 𝑒1 is a self-loop or
repeated edge.

 Same as finding on/off/on/off
4-cycles. and rotating them.
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Sampling random networks

Phase 2:
 Use rewiring algorithm to remove all self and

repeat loops.

Phase 3:
 Randomize network wiring by applying rewiring

algorithm liberally.
 Rule of thumb: # Rewirings ≃ 10 × # edges [68].
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Random sampling

 Problem with only joining up stubs is failure to
randomly sample from all possible networks.

 Example from Milo et al. (2003) [68]:

1 configuration 90 configurations

(a) (b)

0

0.5

1

0

0.5

1

%
 f

re
q
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cy
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f 
o
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u
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0

0.5

1

switching algorithm

go with the winners

matching algorithm

(c)
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Network motifs

 Idea of motifs [89] introduced by Shen-Orr, Alon et
al. in 2002.

 Looked at gene expression within full context of
transcriptional regulation networks.

 Specific example of Escherichia coli.
 Directed network with 577 interactions (edges)

and 424 operons (nodes).
 Used network randomization to produce

ensemble of alternate networks with same degree
frequency 𝑁𝑘.

 Looked for certain subnetworks (motifs) that
appeared more or less often than expected
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Network motifs

feedforward loop

Z

X

Y

X

n

Y

crp

araC

araBAD

a

b

a

 𝑍 only turns on in response to sustained activity in𝑋.
 Turning off 𝑋 rapidly turns off 𝑍.
 Analogy to elevator doors.
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The edge-degree distribution:
 The degree distribution 𝑃𝑘 is fundamental for our

description of many complex networks

 Again: 𝑃𝑘 is the degree of randomly chosen node.

 A second very important distribution arises from
choosing randomly on edges rather than on nodes.

 Define 𝑄𝑘 to be the probability the node at a random
end of a randomly chosen edge has degree 𝑘.

 Now choosing nodes based on their degree (i.e., size):𝑄𝑘 ∝ 𝑘𝑃𝑘
 Normalized form:𝑄𝑘 = 𝑘𝑃𝑘∑∞𝑘′=0 𝑘′𝑃𝑘′ = 𝑘𝑃𝑘⟨𝑘⟩ .
 Big deal: Rich-get-richer mechanism is built into this

selection process.
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The edge-degree distribution:

 For networks, 𝑄𝑘 is also the probability that a
friend (neighbor) of a random node has 𝑘 friends.

 Useful variant on 𝑄𝑘:𝑅𝑘 = probability that a friend of a random node
has 𝑘 other friends.

 𝑅𝑘 = (𝑘 + 1)𝑃𝑘+1∑𝑘′=0(𝑘′ + 1)𝑃𝑘′+1 = (𝑘 + 1)𝑃𝑘+1⟨𝑘⟩
 Equivalent to friend having degree 𝑘 + 1.
 Natural question: what’s the expected number of

other friends that one friend has?
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 Probability of randomly
selecting a node of degree 𝑘
by choosing from nodes:𝑃1 = 3/7, 𝑃2 = 2/7, 𝑃3 = 1/7,𝑃6 = 1/7.

 Probability of landing on a
node of degree 𝑘 after
randomly selecting an edge
and then randomly choosing
one direction to travel:𝑄1 = 3/16, 𝑄2 = 4/16,𝑄3 = 3/16, 𝑄6 = 6/16.

 Probability of finding #
outgoing edges = 𝑘 after
randomly selecting an edge
and then randomly choosing
one direction to travel:𝑅0 = 3/16 𝑅1 = 4/16,𝑅2 = 3/16, 𝑅5 = 6/16.
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Two reasons why this matters
Reason #1:
 Average # friends of friends per node is⟨𝑘2⟩ = ⟨𝑘⟩ × ⟨𝑘⟩𝑅 = ⟨𝑘⟩ 1⟨𝑘⟩ (⟨𝑘2⟩ − ⟨𝑘⟩) = ⟨𝑘2⟩ − ⟨𝑘⟩.
 Key: Average depends on the 1st and 2nd moments of𝑃𝑘 and not just the 1st moment.

 Three peculiarities:

1. We might guess ⟨𝑘2⟩ = ⟨𝑘⟩(⟨𝑘⟩ − 1) but it’s actually⟨𝑘(𝑘 − 1)⟩.
2. If 𝑃𝑘 has a large second moment,

then ⟨𝑘2⟩ will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you … [37, 76]

4. See also: class size paradoxes (nod to: Gelman)
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Figure 1 | The paradox holding probability h(k, x) as a function of degree k and node characteristic x. For the Physical Review (PR) coauthorship

network, we use (a) the number of coauthors, i.e., x 5 k, (b) the number of citations, (c) the number of publication, and (d) the average number of

citations per publication, while for the Google Scholar (GS) coauthorship network, we use (e) the number of coauthors, i.e., x5 k, and (f) the number of

citations.

Table I | Empirical results for the generalized friendship paradox in two coauthorship networks from Physical Review (PR) journals and from
Google Scholar (GS) profiles. For each node characteristic x, we measure the Pearson correlation coefficient with degree rkx, the
characteristic assortativity rxx, the average paradox holding probabilityH, and average characteristics of nodes Æxæ and their neighbors
Æxænn

characteristic x rkx rxx H Æxæ Æxænn

The number of coauthors (PR) 1.00 0.47 0.934 58.3 , 771.7
The number of citations (PR) 0.69 0.21 0.921 110.1 , 1135.7
The number of publications (PR) 0.79 0.25 0.912 10.2 , 102.1
The average number of citations per
publication (PR)

0.07 0.34 0.720 7.8 , 12.4

The number of coauthors (GS) 1.00 20.02 0.863 6.9 , 16.1
The number of citations (GS) 0.44 0.14 0.792 3089.8 , 5401.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4603 | DOI: 10.1038/srep04603 3

“Generalized friendship paradox in
complex networks: The case of scientific
collaboration”
Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. [35]

Your friends really are monsters #winners:1

 Go on, hurt me: Friends have more coauthors,
citations, and publications.

 Other horrific studies: your connections on
Twitter have more followers than you, are happier
than you [17], more sexual partners than you, …

 The hope: Maybe they have more enemies and
diseases too.

 Research possibility: The Frenemy Paradox.

1Some press here [MIT Tech Review].

https://pdodds.w3.uvm.edu//research/papers/others/everything/eom2014a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/eom2014a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/eom2014a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/eom2014a.pdf
https://www.washingtonpost.com/news/style-blog/wp/2014/01/14/study-your-friends-really-are-happier-more-popular-than-you/
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Spreading on Random Networks

 For random networks, we know local structure is
pure branching.

 Successful spreading is ∴ contingent on single
edges infecting nodes.
Success Failure:

 Focus on binary case with edges and nodes either
infected or not.

 First big question: for a given network and
contagion process, can global spreading from a
single seed occur?
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Global spreading condition
 We need to find: [30]

R = the average # of infected edges that one
random infected edge brings about.

 Call R the gain ratio.
 Define 𝐵𝑘1 as the probability that a node of

degree 𝑘 is infected by a single infected edge.


R = ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩⏟
prob. of
connecting to
a degree 𝑘 node

• (𝑘 − 1)⏟
# outgoing
infected
edges

• 𝐵𝑘1⏟
Prob. of
infection

+ ∞∑𝑘=0 ⏞𝑘𝑃𝑘⟨𝑘⟩ • 0⏟
# outgoing
infected
edges

• (1 − 𝐵𝑘1)⏟⏟⏟⏟⏟
Prob. of
no infection
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Global spreading condition

 Our global spreading condition is then:

R = ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) • 𝐵𝑘1 > 1.
 Case 1–Rampant spreading: If 𝐵𝑘1 = 1 then

R = ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) = ⟨𝑘(𝑘 − 1)⟩⟨𝑘⟩ > 1.
 Good: This is just our giant component condition

again.
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Global spreading condition

 Case 2—Simple disease-like: If 𝐵𝑘1 = 𝛽 < 1 then

R = ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) • 𝛽 > 1.
 A fraction (1-𝛽) of edges do not transmit infection.
 Analogous phase transition to giant component

case but critical value of ⟨𝑘⟩ is increased.
 Aka bond percolation.

 Resulting degree distribution ̃𝑃𝑘:̃𝑃𝑘 = 𝛽𝑘 ∞∑𝑖=𝑘 (𝑖𝑘)(1 − 𝛽)𝑖−𝑘𝑃𝑖.

http://en.wikipedia.org/wiki/Percolation_theory
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Random directed networks:
 So far, we’ve largely studied networks with

undirected, unweighted edges.

 Now consider directed, unweighted edges.

 Nodes have 𝑘i and 𝑘o incoming and outgoing
edges, otherwise random.

 Network defined by joint in- and out-degree
distribution: 𝑃𝑘i,𝑘o

 Normalization: ∑∞𝑘i=0 ∑∞𝑘o=0 𝑃𝑘i,𝑘o
= 1

 Marginal in-degree and out-degree distributions:𝑃𝑘i
= ∞∑𝑘o=0 𝑃𝑘i,𝑘o

and 𝑃𝑘o
= ∞∑𝑘i=0 𝑃𝑘i,𝑘o

 Required balance:⟨𝑘i⟩ = ∞∑𝑘i=0 ∞∑𝑘o=0 𝑘i𝑃𝑘i,𝑘o
= ∞∑𝑘i=0 ∞∑𝑘o=0 𝑘o𝑃𝑘i,𝑘o

= ⟨𝑘o⟩
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Directed network structure:

From Boguñá and Serano. [15]

 GWCC = Giant Weakly
Connected Component
(directions removed);

 GIN = Giant
In-Component;

 GOUT = Giant
Out-Component;

 GSCC = Giant Strongly
Connected Component;

 DC = Disconnected
Components (finite).

 When moving through a family of increasingly
connected directed random networks, GWCC
usually appears before GIN, GOUT, and GSCC
which tend to appear together. [80, 15]



The PoCSverse
Complex
Networks
151 of 321

The PoCSverse

Basic definitions

Examples

Basic Properties
Branching Networks

Supply Networks

Random
networks

Major Models
Generalized Affiliation
Networks

Thresholds

Generating
Functions

Structure
Detection

Big Nutshell

References

Observation:
 Directed and undirected random networks are

separate families …

 …and analyses are also disjoint.

 Need to examine a larger family of random networks
with mixed directed and undirected edges.

 Consider nodes with three types of
edges:

1. 𝑘u undirected edges,
2. 𝑘i incoming directed edges,
3. 𝑘o outgoing directed edges.

 Define a node by generalized degree:𝑘⃗ = [ 𝑘u 𝑘i 𝑘o ]T.
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Correlations:

 Now add correlations (two point or Markovian) :
1. 𝑃 (u)(𝑘⃗ | 𝑘⃗′) = probability that an undirected edge

leaving a degree 𝑘⃗′ nodes arrives at a degree 𝑘⃗
node.

2. 𝑃 (i)(𝑘⃗ | 𝑘⃗′) = probability that an edge leaving a
degree 𝑘⃗′ nodes arrives at a degree 𝑘⃗ node is an
in-directed edge relative to the destination node.

3. 𝑃 (o)(𝑘⃗ | 𝑘⃗′) = probability that an edge leaving a
degree 𝑘⃗′ nodes arrives at a degree 𝑘⃗ node is an
out-directed edge relative to the destination node.

 Now require more refined (detailed) balance.
 Conditional probabilities cannot be arbitrary.

1. 𝑃 (u)(𝑘⃗ | 𝑘⃗′) must be related to 𝑃 (u)(𝑘⃗′ | 𝑘⃗).
2. 𝑃 (o)(𝑘⃗ | 𝑘⃗′) and 𝑃 (i)(𝑘⃗ | 𝑘⃗′) must be connected.
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Correlations—Undirected edge balance:

 Randomly choose an edge, and randomly choose
one end.

 Say we find a degree 𝑘⃗ node at this end, and a
degree 𝑘⃗′ node at the other end.

 Define probability this happens as 𝑃 (u)(𝑘⃗, 𝑘⃗′).
 Observe we must have 𝑃 (u)(𝑘⃗, 𝑘⃗′) = 𝑃 (u)(𝑘⃗′, 𝑘⃗).

 Conditional probability
connection:𝑃 (u)(𝑘⃗, 𝑘⃗′) = 𝑃 (u)(𝑘⃗ | 𝑘⃗′)𝑘′

u𝑃(𝑘⃗′)⟨𝑘′
u⟩฀𝑃 (u)(𝑘⃗′, 𝑘⃗) = 𝑃 (u)(𝑘⃗′ | 𝑘⃗)𝑘u𝑃(𝑘⃗)⟨𝑘u⟩ .
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Correlations—Directed edge balance:
 The quantities𝑘o𝑃(𝑘⃗)⟨𝑘o⟩ and

𝑘i𝑃(𝑘⃗)⟨𝑘i⟩
give the probabilities that in
starting at a random end of a
randomly selected edge, we
begin at a degree 𝑘⃗ node and
then find ourselves travelling:

1. along an outgoing edge, or
2. against the direction of an incoming edge.

 We therefore have𝑃 (dir)(𝑘⃗, 𝑘⃗′) = 𝑃 (i)(𝑘⃗ | 𝑘⃗′)𝑘′
o𝑃(𝑘⃗′)⟨𝑘′

o⟩ = 𝑃 (o)(𝑘⃗′ | 𝑘⃗)𝑘i𝑃(𝑘⃗)⟨𝑘i⟩ .
 Note that 𝑃 (dir)(𝑘⃗, 𝑘⃗′) and 𝑃 (dir)(𝑘⃗′, 𝑘⃗) are in general

not related if 𝑘⃗ ≠ 𝑘⃗′.
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Summary of contagion conditions for
uncorrelated networks:
 I. Undirected, Uncorrelated—𝑓(𝑑 + 1) = f(𝑑):

R = ∑𝑘u

𝑃 (u)(𝑘u | ∗) • (𝑘u − 1) • 𝐵𝑘u,∗
 II. Directed, Uncorrelated—𝑓(𝑑 + 1) = f(𝑑):

R = ∑𝑘i,𝑘o

𝑃 (i)(𝑘i, 𝑘o | ∗) • 𝑘o • 𝐵𝑘i,∗
 III. Mixed Directed and Undirected, Uncorrelated—[ 𝑓 (u)(𝑑 + 1)𝑓 (o)(𝑑 + 1) ] = R [ 𝑓 (u)(𝑑)𝑓 (o)(𝑑) ]

R = ∑⃗𝑘 [ 𝑃 (u)(𝑘⃗ | ∗) • (𝑘u − 1) 𝑃 (i)(𝑘⃗ | ∗) • 𝑘u𝑃 (u)(𝑘⃗ | ∗) • 𝑘o 𝑃 (i)(𝑘⃗ | ∗) • 𝑘o ]•𝐵𝑘u𝑘i,∗
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Summary of contagion conditions for correlated
networks:
 IV. Undirected,

Correlated—𝑓𝑘u
(𝑑 + 1) = ∑𝑘′

u
𝑅𝑘u𝑘′

u
𝑓𝑘′

u
(𝑑)𝑅𝑘u𝑘′

u
= 𝑃 (u)(𝑘u | 𝑘′

u) • (𝑘u − 1) • 𝐵𝑘u𝑘′
u

 V. Directed,
Correlated—𝑓𝑘i𝑘o

(𝑑 + 1) = ∑𝑘′
i ,𝑘′

o
𝑅𝑘i𝑘o𝑘′

i 𝑘′
o
𝑓𝑘′

i 𝑘′
o
(𝑑)𝑅𝑘i𝑘o𝑘′

i 𝑘′
o

= 𝑃 (i)(𝑘i, 𝑘o | 𝑘′
i , 𝑘′

o) • 𝑘o • 𝐵𝑘i𝑘o𝑘′
i 𝑘′

o

 VI. Mixed Directed and Undirected, Correlated—[ 𝑓 (u)𝑘⃗ (𝑑 + 1)𝑓 (o)𝑘⃗ (𝑑 + 1) ] = ∑𝑘′ R𝑘⃗𝑘⃗′ [ 𝑓 (u)𝑘⃗′ (𝑑)𝑓 (o)𝑘⃗′ (𝑑) ]
R𝑘⃗𝑘⃗′ = [ 𝑃 (u)(𝑘⃗ | 𝑘⃗′) • (𝑘u − 1) 𝑃 (i)(𝑘⃗ | 𝑘⃗′) • 𝑘u𝑃 (u)(𝑘⃗ | 𝑘⃗′) • 𝑘o 𝑃 (i)(𝑘⃗ | 𝑘⃗′) • 𝑘o

] • 𝐵𝑘⃗𝑘⃗′
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Full generalization:
~α′ = (ν′, λ′)

λ
′

~α = (ν, λ)

ν

ν
′

λ

λ
′′

𝑓𝛼⃗(𝑑 + 1) = ∑⃗𝛼′ 𝑅𝛼⃗𝛼⃗′𝑓𝛼⃗′(𝑑)𝑅𝛼⃗𝛼⃗′ is the gain ratio
matrix and has the form:𝑅𝛼⃗𝛼⃗′ = 𝑃𝛼⃗𝛼⃗′ • 𝑘𝛼⃗𝛼⃗′ • 𝐵𝛼⃗𝛼⃗′ .

 𝑃𝛼⃗𝛼⃗′ = conditional probability that a type 𝜆′ edge
emanating from a type 𝜈′ node leads to a type 𝜈
node.

 𝑘𝛼⃗𝛼⃗′ = potential number of newly infected edges
of type 𝜆 emanating from nodes of type 𝜈.

 𝐵𝛼⃗𝛼⃗′ = probability that a type 𝜈 node is eventually
infected by a single infected type 𝜆′ link arriving
from a neighboring node of type 𝜈′.

 Generalized contagion condition:

max|𝜇| ∶ 𝜇 ∈ 𝜎 (R) > 1
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Some claims for social networks:

 Social networks yes, but groups, groups, groups
 Sufficiently large social groups are:

1. Fandoms.
2. Pyramid Schemes,
3. Or both.

 Homo narrativus: Storytellers, believers,
spreaders.

 Stories ∼ Characters + Time.
 Characters are shortcuts to stories.
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For novel diseases:
1. Can we predict the size of an epidemic?
2. How important is the reproduction number 𝑅0?𝑅0 approximately same for all of the following:
 1918-19 “Spanish Flu” ∼ 75,000,000 world-wide,

500,000 deaths in US.
 1957-58 “Asian Flu” ∼ 2,000,000 world-wide,

70,000 deaths in US.
 1968-69 “Hong Kong Flu” ∼ 1,000,000 world-wide,

34,000 deaths in US.
 2003 “SARS Epidemic” ∼ 800 deaths world-wide.
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Improving simple models

Idea for social networks: incorporate identity

Identity is formed from attributes such as:
 Geographic location
 Type of employment
 Age
 Recreational activities

Groups are crucial …
 formed by people with at least one similar

attribute
 Attributes ⇔ Contexts ⇔ Interactions ⇔

Networks. [110]
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Generalized context space

100

eca b d

geography occupation age

0

(Blau & Schwartz [12], Simmel [91], Breiger [20])
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A toy agent-based model:
Multiscale, resurgent epidemics in a hierarchical
metapopulation model
Duncan J. Watts*†‡§, Roby Muhamad*, Daniel C. Medina¶, and Peter S. Dodds†

*Department of Sociology, and †Institute for Social and Economic Research and Policy, Columbia University, New York, NY 10027; ‡Santa Fe Institute,
1399 Hyde Park Road, Santa Fe, NM 87501; and ¶College of Physicians and Surgeons, Columbia University, New York, NY 10032

Edited by David O. Siegmund, Stanford University, Stanford, CA, and approved June 14, 2005 (received for review February 12, 2005)

Although population structure has long been recognized as rele-

vant to the spread of infectious disease, traditional mathematical

models have understated the role of nonhomogenous mixing in

populations with geographical and social structure. Recently, a

wide variety of spatial and network models have been proposed

that incorporate various aspects of interaction structure among

individuals. However, these more complex models necessarily

suffer from limited tractability, rendering general conclusions

difficult to draw. In seeking a compromise between parsimony and

realism, we introduce a class of metapopulation models in which

we assume homogeneous mixing holds within local contexts, and

that these contexts are embedded in a nested hierarchy of succes-

sively larger domains. We model the movement of individuals

between contexts via simple transport parameters and allow

diseases to spread stochastically. Our model exhibits some impor-

tant stylized features of real epidemics, including extreme size

variation and temporal heterogeneity, that are difficult to charac-

terize with traditional measures. In particular, our results suggest

that when epidemics do occur the basic reproduction number R0

may bear little relation to their final size. Informed by our model’s

behavior, we suggest measures for characterizing epidemic thresh-

olds and discuss implications for the control of epidemics.

math model � population structure

The role and importance of interaction structure is a central
yet unresolved issue in mathematical epidemiology (1). At

the broadest level, the issue is straightforward: clearly not all
people interact equally with all others; hence diseases of humans
cannot spread in real populations precisely as they would if all
individuals were to mix uniformly at random. Moving beyond
this simple insight, however, poses considerable empirical and
theoretical obstacles: empirical, because the amount and variety
of structure present in real populations of different sizes defies
existing measurement technologies; and theoretical, because
without such knowledge it is difficult to model and thus assess
the impact of interaction structure on the spread of human-to-
human diseases. In this article, we focus on two key aspects of
large populations that we believe have not received adequate
attention in the existing literature: (i) that large populations
exhibit structure at many scales; and (ii) that the movement of
individuals between these scales is essential to the spread of a
large epidemic. These features can be represented formally with
a straightforward variation of a commonly studied class of
disease-spreading models, metapopulation models (e.g., ref. 2),
yet they nevertheless carry important implications for under-
standing and possibly controlling diseases, such as severe acute
respiratory syndrome (SARS) and influenza, that have the
potential to spread on many scales.

Metapopulation models can in general be characterized as a
theoretical compromise between the simplest and most analyt-
ically tractable disease-spreading models, often called compart-
ment models, and models in the recent network epidemiology
tradition that attempt to capture population structure in a
realistic way, but which necessarily exhibit far greater complex-
ity. Compartment models assume a continuous population that

is divided into a number of compartments (or states), typically
susceptible, infected, and recovered. Disease transmission oc-
curs because of contact between susceptible and infected indi-
viduals, and the mixing within and between compartments is
assumed to be random, where transition rules (for example, the
rate at which an infected person recovers) specify how individ-
uals move from one compartment to another (3).

Population structure can be introduced into these simple
models by specifying additional compartments, corresponding
not only to the different stages of within-host behavior, but also
to various differentiating features of the population, such as age
(4), susceptibility (5), risk behavior (6), and social status (2, 7),
along with a correspondingly complex set of mixing rates.
Individual-level f luctuations can also be included by specifying
fully stochastic versions of these models (8) without overly
compromising their mathematical tractability. Nevertheless,
compartment models rely heavily on the assumption that pop-
ulation structure can be represented solely in terms of individual
attributes (e.g., disease state, age, behavior), an assumption that
clearly cannot be satisfied in cases of diseases spreading over
spatially extended regions, where the physical distribution of the
population matters, or when disease transmission depends on
specific types of interactions (such as for sexually transmitted
diseases), whose structure may cut across physical locations and
social categories in unknown and complicated ways.

Spatial models (4, 9–11) address part of this problem by
modeling transmission as a function of geographical distance and
have been effective in capturing the dynamics of diseases in wild
(12) and domesticated (13) animals, as well as in suggesting
control strategies. However, spatial models are less relevant to
epidemics of modern human societies, in part because of the
importance of modern modes of transportation that shortcut
long geographical distances (14–16), and in part because many
diseases are transmitted by close-contact networks that charac-
terize families, organizational affiliations (e.g., school or work)
(7), or sexual relations (17). In recent years, therefore, models
that attempt to characterize the actual pattern of interactions
associated with a particular population and disease transmission
mechanism have become increasingly popular (17–21). How-
ever, although network models are appealing from a theoretical
perspective, the more elements of interaction structure that any
such model incorporates, the more free parameters and assump-
tions are required, and the harder it becomes to perform robust
and reliable analyses (1). Exacerbating this problem of model
complexity is the difficulty of determining parameters or justi-
fying assumptions empirically.

Metapopulation models (2) therefore offer a potentially use-
ful compromise between compartment models and networks.
Like compartment models, metapopulation models assume ran-
dom mixing within subpopulations (or patches) that are typically

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: SARS, severe acute respiratory syndrome.

§To whom correspondence should be addressed. E-mail: djw24@columbia.edu.
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www.pnas.org�cgi�doi�10.1073�pnas.0501226102 PNAS � August 9, 2005 � vol. 102 � no. 32 � 11157–11162

A
P

P
L
IE

D

M
A

T
H

E
M

A
T
IC

S

“Multiscale, resurgent epidemics in a
hierarchcial metapopulation model”
Watts et al.,
Proc. Natl. Acad. Sci., 102, 11157–11162,
2005. [111]

Geography: allow people to move between
contexts
 Locally: standard SIR model with random mixing
 discrete time simulation
 𝛽 = infection probability
 𝛾 = recovery probability
 𝑃 = probability of travel
 Movement distance: Pr(𝑑) ∝ exp(−𝑑/𝜉)
 𝜉 = typical travel distance

https://pdodds.w3.uvm.edu//research/papers/others/everything/watts2005a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/watts2005a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/watts2005a.pdf
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A toy agent-based model

Schematic:
b=2

i j

x ij =2l=3

n=8
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Example model output: size distributions
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N

(ψ
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 Flat distributions are possible for certain 𝜉 and 𝑃 .
 Different 𝑅0’s may produce similar distributions
 Same epidemic sizes may arise from different 𝑅0’s
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Model output—resurgence
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Journal entry, 2020/02/21:

Twitter DMs to Sam Scarpino:
 Okay: The scientists studying pandemics need to

be able to present some kind set of numbers that
show how bad things are. The whole 𝑅0 disaster
has been waiting to happen because people have
been … lazily having fun with math models?
Unconcerned about how to communicate vital
scientific information? Stupid? I don’t know.
Maybe a radar plot visualization. I don’t know.

 “When these three boundaries are crossed, we are
in trouble”

 Measles has an 𝑅0 of 20. We should all have it. Of
course, there’s no f**king time scale for 𝑅0 so we
don’t know when that happens.
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The Last of Us: Groups.
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Understanding distributed social search

Milgram’s social search experiment

http://www.stanleymilgram.com

 Target person =
Boston stockbroker.

 296 senders from Boston
and Omaha.

 20% of senders reached
target.

 chain length ≃ 6.5.
Popular terms:
 The Small World

Phenomenon;
 “Six Degrees of Separation.”

http://www.stanleymilgram.com
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The model—results

Milgram’s Nebraska-Boston data:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

L

n(
L

)

Model parameters:
 𝑁 = 108,
 𝑧 = 300, 𝑔 = 100,
 𝑏 = 10,
 𝛼 = 1, 𝐻 = 2;
 ⟨𝐿model⟩ ≃ 6.7
 𝐿data ≃ 6.5
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Social search—the Columbia experiment

 60,000+ participants in 166 countries
 18 targets in 13 countries including

 a professor at an Ivy League university,
 an archival inspector in Estonia,
 a technology consultant in India,
 a policeman in Australia,

and
 a veterinarian in the Norwegian army.

 24,000+ chains

We were lucky and contagious:
“Using E-Mail to Count Connections”, Sarah Milstein,
New York Times, Circuits Section (December, 2001)

http://www.nytimes.com/2001/12/20/technology/circuits/20STUD.html
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Jonathan Harris’s Wordcount:
A word frequency distribution explorer:

http://wordcount.org
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The long tail of knowledge:

Take a scrolling voyage
to the citational abyss,
starting at the surface with
the lonely, giant citaceans,
moving down
to the legion of strange,
sometimes misplaced,
unloved creatures,
that dwell in
Kahneman’s Google Scholar
page

https://scholar.google.com/citations?user=ImhakoAAAAAJ
https://scholar.google.com/citations?user=ImhakoAAAAAJ
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“Thing Explainer: Complicated Stuff in
Simple Words ”
by Randall Munroe (2015). [70]

Up goer five

http://www.amazon.com/dp/0544668251/
http://www.amazon.com/dp/0544668251/
http://www.amazon.com/dp/0544668251/
https://xkcd.com/1133
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Nature (2014):
Most cited papers
of all time

http://www.nature.com/news/the-top-100-papers-1.16224
http://www.nature.com/news/the-top-100-papers-1.16224
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Size distributions:

Brown Corpus (1,015,945 words):

CCDF:
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Zipf:

0 0.5 1 1.5 2 2.5 3 3.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

log
10

 rank i
lo

g
1
0
 q

i

 The, of, and, to, a, …= ‘objects’
 ‘Size’ = word frequency
 Beep: (Important) CCDF and Zipf plots are related

…
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Pre-Zipf’s law observations of Zipf’s law

 1910s: Word frequency examined re
Stenography (or shorthand or brachygraphy or
tachygraphy), Jean-Baptiste Estoup [36].

 1910s: Felix Auerbach pointed out the Zipfitude
of city sizes in
“Das Gesetz der Bevölkerungskonzentration”
(“The Law of Population Concentration”) [5].

 1924: G. Udny Yule [118]:
# Species per Genus (offers first theoretical
mechanism)

 1926: Lotka [61]:
# Scientific papers per author (Lotka’s law)

https://en.wikipedia.org/wiki/Shorthand
http://en.wikipedia.org/wiki/Jean-Baptiste_Estoup
http://en.wikipedia.org/wiki/Felix_Auerbach
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Theoretical Work of Yore:

 1949: Zipf’s “Human Behaviour and the Principle
of Least-Effort” is published. [120]

 1953: Mandelbrot [62]:
Optimality argument for Zipf’s law; focus on
language.

 1955: Herbert Simon [92, 120]:
Zipf’s law for word frequency, city size, income,
publications, and species per genus.

 1965/1976: Derek de Solla Price [26, 83]:
Network of Scientific Citations.

 1999: Barabasi and Albert [8]:
The World Wide Web, networks-at-large.
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Essential Extract of a Growth Model:

Random Competitive Replication (RCR):
1. Start with 1 elephant (or element) of a particular

flavor at 𝑡 = 1
2. At time 𝑡 = 2, 3, 4, …, add a new elephant in one of

two ways:
 With probability 𝜌, create a new elephant with a

new flavor
= Mutation/Innovation

 With probability 1 − 𝜌, randomly choose from all
existing elephants, and make a copy.
= Replication/Imitation

 Elephants of the same flavor form a group
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Random Competitive Replication:

Example: Words appearing in a language
 Consider words as they appear sequentially.
 With probability 𝜌, the next word has not

previously appeared
= Mutation/Innovation

 With probability 1 − 𝜌, randomly choose one word
from all words that have come before, and reuse
this word
= Replication/Imitation

Note: This is a terrible way to write a novel.
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For example:



The PoCSverse
Complex
Networks
183 of 321

The PoCSverse

Basic definitions

Examples

Basic Properties
Branching Networks

Supply Networks

Random
networks

Major Models
Generalized Affiliation
Networks

Thresholds

Generating
Functions

Structure
Detection

Big Nutshell

References

 Micro-to-Macro story with 𝜌 and 𝛾 measurable.𝛾 = (2 − 𝜌)(1 − 𝜌) = 1 + 1(1 − 𝜌)
 Observe 2 < 𝛾 < ∞ for 0 < 𝜌 < 1.
 For 𝜌 ≃ 0 (low innovation rate):𝛾 ≃ 2
 ‘Wild’ power-law size distribution of group sizes,

bordering on ‘infinite’ mean.
 For 𝜌 ≃ 1 (high innovation rate):𝛾 ≃ ∞
 All elephants have different flavors.
 Upshot: Tunable mechanism producing a family

of universality classes.
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Simon’s fundamental rich-get-richer model entails a dominant first-mover advantage

Peter Sheridan Dodds,1,* David Rushing Dewhurst,1 Fletcher F. Hazlehurst,1 Colin M. Van Oort,1 Lewis Mitchell,2

Andrew J. Reagan,1 Jake Ryland Williams,3 and Christopher M. Danforth1

1Vermont Complex Systems Center, Computational Story Lab, Vermont Advanced Computing Core, Department of Mathematics & Statistics,

University of Vermont, Burlington, Vermont 05401, USA
2School of Mathematical Sciences, North Terrace Campus, University of Adelaide, South Australia 5005, Australia

3Department of Information Science, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA

(Received 16 August 2016; published 1 May 2017)

Herbert Simon’s classic rich-get-richer model is one of the simplest empirically supported mechanisms capable

of generating heavy-tail size distributions for complex systems. Simon argued analytically that a population of

flavored elements growing by either adding a novel element or randomly replicating an existing one would

afford a distribution of group sizes with a power-law tail. Here, we show that, in fact, Simon’s model does not

produce a simple power-law size distribution as the initial element has a dominant first-mover advantage, and

will be overrepresented by a factor proportional to the inverse of the innovation probability. The first group’s

size discrepancy cannot be explained away as a transient of the model, and may therefore be many orders of

magnitude greater than expected. We demonstrate how Simon’s analysis was correct but incomplete, and expand

our alternate analysis to quantify the variability of long term rankings for all groups. We find that the expected

time for a first replication is infinite, and show how an incipient group must break the mechanism to improve

their odds of success. We present an example of citation counts for a specific field that demonstrates a first-mover

advantage consistent with our revised view of the rich-get-richer mechanism. Our findings call for a reexamination

of preceding work invoking Simon’s model and provide an expanded understanding going forward.

DOI: 10.1103/PhysRevE.95.052301

I. INTRODUCTION

Across the spectrum of natural and constructed phenomena,

descriptions of the architecture and dynamical behavior of

complex systems repeatedly involve heavy-tailed distributions.

For systems involving components of variable size S, many

bear size distributions with power-law decays of the form

P(S) ∼ S−γ [1,2]: word usage frequency in language [3–5],

the number of species per genus [1,6], citation numbers for

scientific papers [7,8], node degree in networks [9–12], firm

sizes [13], and the extent of system failures such as forest fires

[14,15]. These size distributions are often alternately cast in

the form of a Zipf distribution [3] with components ordered by

decreasing size and Sr ∼ r−α where r (= 1,2, . . .) is the size

rank and α = 1/(γ − 1) [16].

Elucidating and understanding the most essential dynamical

models leading to power-law size distributions is an essential

task. While the mechanisms giving rise to such distributions

are diverse, they generally involve growth and replication.

In his famous 1955 paper on skewed distributions [1],

Simon built on classical urn model theory to show that a

simple, single parameter, rich-get-richer mechanism could

lead a growing population to produce a pure power-law size

distribution of groups of elements of matching type [17].

Simon’s model is governed by an innovation probability

ρ which Simon argued controls the group size distribution

exponent as γ = 1 + 1/(1 − ρ) and, equivalently, the Zipf’s

law exponent as α = 1 − ρ (we rederive these results as part

of our analysis in Sec. III).

Simon’s model has endured because it is at once a boiled-

down, easy-to-understand toy model representative of a large

*peter.dodds@uvm.edu

class of rich-get-richer mechanisms, and yet it is also a

model that has a remarkable ability to capture the essential

growth dynamics of disparate, real-world complex systems.

While not without controversy, particularly for language

[18–26], Simon’s micro-to-macro link between the separately

measurable innovation rate and power-law scaling for system

component size distribution has been observed to roughly hold

for word counts in books [1], citation counts in scientific

literature [10,27,28], the early growth of the Web [11], and

the development of software such as the Linux kernel [29].

Rich-get-richer models adjacent to Simon’s model have

been employed to characterize the essential features of many

kinds of systems such as the emergence of novelties [30,31].

Arguably the most profound role of rich-get-richer mech-

anisms has been uncovered in complex networks. Simon’s

model is the explicit core of Price’s cumulative advantage

mechanism for the growth of citation networks in scientific

literature [7,8]. A modified version of Simon’s model is also

at the heart of the independently discovered growing network

model of preferential attachment due to the field-starting work

of Barabási and Albert [9].

Here, we show analytically and through simulations that Si-

mon’s analysis, for all its successes, was strikingly incomplete:

The initial group enjoys a profound “first-mover advantage”

on the order of the inverse of the innovation probability, 1/ρ.

This is not a small correction to a long established theory.

As the innovation probability is typically less than 0.1 and

often much closer to 0 [2,3,5,11,29,32], the initial group’s size

may be orders of magnitude greater than would be consistent

with a simple power law. Nor, as we will show, can the first

group be dismissed as a transient or as a kind of null group

and not part of the system. Indeed, we provide evidence from

scientific citation data that a first-mover advantage manifested

by Simon’s model is a real phenomenon.

2470-0045/2017/95(5)/052301(7) 052301-1 ©2017 American Physical Society

“Simon’s fundamental rich-get-richer model
entails a dominant first-mover advantage”
Dodds et al.,
Physical Review E, 95, 052301, 2017. [29]
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 See visualization at paper’s online app-endices

https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2017a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2017a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2017a.pdf
http://compstorylab.org/share/papers/dodds2016b/
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 Any one simulation shows a high amount of
disorder.

 Two orders of magnitude variation in possible
rank.

 Rank ordering creates a smooth Zipf distribution.
 Size distribution for the 𝑛th arriving group show

exponential decay.
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The Quickening—Mandelbrot v. Simon:
There Can Be Only One:

 Things there should be only one of:
Theory, Highlander Films.

 Feel free to play Queen’s It’s a Kind of Magic in
your head (funding remains tight).

http://www.cc.com/video-clips/p8mamb/the-colbert-report-stephen-claims-lou-dobbs--audience
http://en.wikipedia.org/wiki/Highlander_(film)
http://en.wikipedia.org/wiki/A_Kind_of_Magic
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We were born to be Princes of the Universe

vs.

Mandelbrot vs. Simon:
 Mandelbrot (1953): “An Informational Theory of

the Statistical Structure of Languages” [62]

 Simon (1955): “On a class of skew distribution
functions” [92]

 Mandelbrot (1959): “A note on a class of skew
distribution functions: analysis and critique of a
paper by H.A. Simon” [63]

 Simon (1960): “Some further notes on a class of
skew distribution functions” [93]
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I have no rival, No man can be my equal

vs.

Mandelbrot vs. Simon:
 Mandelbrot (1961): “Final note on a class of skew

distribution functions: analysis and critique of a
model due to H.A. Simon” [64]

 Simon (1961): “Reply to ‘final note’ by Benoit
Mandelbrot” [95]

 Mandelbrot (1961): “Post scriptum to ‘final
note”’ [65]

 Simon (1961): “Reply to Dr. Mandelbrot’s post
scriptum” [94]
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Scale-free networks

 Real networks with power-law degree distributions
became known as scale-free networks.

 Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:𝑃𝑘 ∼ 𝑘−𝛾 for ‘large’ 𝑘

 One of the seminal works in complex networks:
ing systems form a huge genetic network

whose vertices are proteins and genes, the

chemical interactions between them repre-

senting edges (2). At a different organization-

al level, a large network is formed by the

nervous system, whose vertices are the nerve

cells, connected by axons (3). But equally

complex networks occur in social science,

where vertices are individuals or organiza-

tions and the edges are the social interactions

between them (4 ), or in the World Wide Web

(WWW), whose vertices are HTML docu-

ments connected by links pointing from one

page to another (5, 6 ). Because of their large

size and the complexity of their interactions,

the topology of these networks is largely

unknown.

Traditionally, networks of complex topol-

ogy have been described with the random

graph theory of Erdős and Rényi (ER) (7 ),

but in the absence of data on large networks,

the predictions of the ER theory were rarely

tested in the real world. However, driven by

the computerization of data acquisition, such

topological information is increasingly avail-

able, raising the possibility of understanding

the dynamical and topological stability of

large networks.

Here we report on the existence of a high

degree of self-organization characterizing the

large-scale properties of complex networks.

Exploring several large databases describing

the topology of large networks that span

fields as diverse as the WWW or citation

patterns in science, we show that, indepen-

dent of the system and the identity of its

constituents, the probability P(k) that a ver-

tex in the network interacts with k other

vertices decays as a power law, following

P(k) ; k2g. This result indicates that large

networks self-organize into a scale-free state,

a feature unpredicted by all existing random

network models. To explain the origin of this

scale invariance, we show that existing net-

work models fail to incorporate growth and

preferential attachment, two key features of

real networks. Using a model incorporating

these two ingredients, we show that they are

responsible for the power-law scaling ob-

served in real networks. Finally, we argue

that these ingredients play an easily identifi-

able and important role in the formation of

many complex systems, which implies that

our results are relevant to a large class of

networks observed in nature.

Although there are many systems that

form complex networks, detailed topological

data is available for only a few. The collab-

oration graph of movie actors represents a

well-documented example of a social net-

work. Each actor is represented by a vertex,

two actors being connected if they were cast

together in the same movie. The probability

that an actor has k links (characterizing his or

her popularity) has a power-law tail for large

k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-

work with over 800 million vertices (8) is the

WWW, where a vertex is a document and the

edges are the links pointing from one docu-

ment to another. The topology of this graph

determines the Web’s connectivity and, con-

sequently, our effectiveness in locating infor-

mation on the WWW (5). Information about

P(k) can be obtained using robots (6 ), indi-

cating that the probability that k documents

point to a certain Web page follows a power

law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A

network whose topology reflects the histori-

cal patterns of urban and industrial develop-

ment is the electrical power grid of the west-

ern United States, the vertices being genera-

tors, transformers, and substations and the

edges being to the high-voltage transmission

lines between them (10). Because of the rel-

atively modest size of the network, contain-

ing only 4941 vertices, the scaling region is

less prominent but is nevertheless approxi-

mated by a power law with an exponent

gpower . 4 (Fig. 1C). Finally, a rather large

complex network is formed by the citation

patterns of the scientific publications, the ver-

tices being papers published in refereed jour-

nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has

shown that the probability that a paper is

cited k times (representing the connectivity of

a paper within the network) follows a power

law with exponent gcite 5 3.

The above examples (12) demonstrate that

many large random networks share the com-

mon feature that the distribution of their local

connectivity is free of scale, following a power

law for large k with an exponent g between

2.1 and 4, which is unexpected within the

framework of the existing network models.

The random graph model of ER (7 ) assumes

that we start with N vertices and connect each

pair of vertices with probability p. In the

model, the probability that a vertex has k

edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-

duced by Watts and Strogatz (WS) (10), N

vertices form a one-dimensional lattice,

each vertex being connected to its two

nearest and next-nearest neighbors. With

probability p, each edge is reconnected to a

vertex chosen at random. The long-range

connections generated by this process de-

crease the distance between the vertices,

leading to a small-world phenomenon (13),

often referred to as six degrees of separa-

tion (14 ). For p 5 0, the probability distri-

bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in

the lattice; whereas for finite p, P(k) still

peaks around z, but it gets broader (15). A

common feature of the ER and WS models

is that the probability of finding a highly

connected vertex (that is, a large k) decreas-

es exponentially with k; thus, vertices with

large connectivity are practically absent. In

contrast, the power-law tail characterizing

P(k) for the networks studied indicates that

highly connected (large k) vertices have a

large chance of occurring, dominating the

connectivity.

There are two generic aspects of real net-

works that are not incorporated in these mod-

els. First, both models assume that we start

with a fixed number (N) of vertices that are

then randomly connected (ER model), or re-

connected (WS model), without modifying

N. In contrast, most real world networks are

open and they form by the continuous addi-

tion of new vertices to the system, thus the

number of vertices N increases throughout

the lifetime of the network. For example, the

actor network grows by the addition of new

actors to the system, the WWW grows expo-

nentially over time by the addition of new

Web pages (8), and the research literature

constantly grows by the publication of new

papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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“Emergence of scaling in random
networks”
Barabási and Albert,
Science, 286, 509–511, 1999. [8]

Times cited: ∼ 43, 853 (as of May 19, 2023)
 Somewhat misleading nomenclature …

https://pdodds.w3.uvm.edu//research/papers/others/everything/barabasi1999a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/barabasi1999a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/barabasi1999a.pdf
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=vsj2slIAAAAJ&citation_for_view=vsj2slIAAAAJ:u5HHmVD_uO8C
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Organization of growing random networks

P. L. Krapivsky and S. Redner
Center for BioDynamics, Center for Polymer Studies, and Department of Physics, Boston University, Boston, Massachusetts 02215

~Received 7 November 2000; published 24 May 2001!

The organizational development of growing random networks is investigated. These growing networks are

built by adding nodes successively, and linking each to an earlier node of degree k with an attachment

probability Ak . When Ak grows more slowly than linearly with k, the number of nodes with k links, Nk(t),

decays faster than a power law in k, while for Ak growing faster than linearly in k, a single node emerges which

connects to nearly all other nodes. When Ak is asymptotically linear, Nk(t);tk2n, with n dependent on details

of the attachment probability, but in the range 2,n,` . The combined age and degree distribution of nodes

shows that old nodes typically have a large degree. There is also a significant correlation in the degrees of

neighboring nodes, so that nodes of similar degree are more likely to be connected. The size distributions of the

in and out components of the network with respect to a given node—namely, its ‘‘descendants’’ and

‘‘ancestors’’—are also determined. The in component exhibits a robust s22 power-law tail, where s is the

component size. The out component has a typical size of order ln t, and it provides basic insights into the

genealogy of the network.

DOI: 10.1103/PhysRevE.63.066123 PACS number~s!: 02.50.Cw, 05.40.2a, 05.50.1q, 87.18.Sn

I. INTRODUCTION

Networks of many interacting units play an important role

in epidemiology, ecology, gene regulation, neural networks,

and many other fields @1–3#. In many studies of these net-

works, the number of nodes is considered to be fixed, and the
presence of a link between two nodes is treated as a random
event independent of the other links. These assumptions lead
naturally to random graph models @4,5#. While these models
have a rich behavior and considerable utility, they are not
necessarily appropriate for describing growing networks,
where the addition of nodes and links may depend on local
features of the network where the growth event is taking
place.

Typical examples of such growing networks include
transportation or electrical distribution systems, where
growth occurs in response to population-driven demands.
Two currently appealing examples are the distribution of sci-
entific citations and the structure of the worldwide web. For
both these examples there are now considerable data avail-
able, in spite of the very rapid growth of these systems. In
the former case, one may consider papers to be nodes of a
graph and citations to be links. The structure of the resulting
‘‘citation graph’’ was originally studied by Lotka in 1926
@6#, and then by many others @7–13#. The basic feature of
this citation distribution is that it appears to have a relatively
steep power-law tail; thus most papers are minimally cited
while highly cited papers are rare.

Similarly, in the web graph, much structural data were
recently obtained @14–21# which suggest that the number of
nodes with k links has a power-law tail, with an exponent
that is somewhat larger than 2. This power-law tail again
corresponds to the basic fact that most nodes of the web
graph are unimportant, while a relatively small number of
nodes garner a large fraction of ‘‘hits.’’ Due to the qualita-
tive similarities between the citation and web graphs, in-
sights developed in the field of bibliometrics @9# have been
applied to help understand the structure of the web @22#.

Because of the dynamic nature of the citation and web

graphs, it is not surprising that their topologies at any fixed

time are very different from classical random graphs. In dis-

tinction to the power-law degree distributions of the citation

and web graphs, random graphs have a Poisson node degree
distribution. Here ‘‘node degree’’ is defined as the number of
links at a node. To overcome the shortcomings of random
graphs in describing the dynamic natures of these systems,
both ‘‘small-world’’ networks @23,24# and growing random
network models @20,25–28# were recently introduced. The
former are aimed at understanding the relatively small diam-
eter of large graphs of socially interacting units, while the
latter seek to understand the growth dynamics.

In this paper, we provide a comprehensive quantitative
description of a simple growing network ~GN! model. Our
results are based on an analysis of the rate equations for the
densities of nodes of a given degree. This approach bears
many similarities to the rate equations for the kinetics of
aggregation. The rate equations for the evolution of growing
networks are relatively simple, and the results that emerge
are comprehensive. Thus it appears that the rate equation
method is better suited for probing the structure of growing
random networks compared to the classical approaches for
analyzing random graphs, such as probabilistic @4# or gener-
ating function @5# techniques. The rate equation approach
also has the advantage that it can be adapted to other evolv-
ing graph systems, including networks with the addition and
deletion of nodes and links, as well as networks with link
rewiring.

We will specifically investigate two types of models: ~a! a
GN in which nodes are added one at a time, and a link is
established with a pre-existing node according to an attach-
ment probability Ak which depends only on the degree of the
target node ~Fig. 1!; and ~b! a GN with redirection ~GNR!, in
which the newly created link can be redirected to the ‘‘an-
cestor’’ node of the original target node. An important fea-
ture of these models is that the links are directed, and the
resulting graphs have a simple treelike topology. The moti-

PHYSICAL REVIEW E, VOLUME 63, 066123

1063-651X/2001/63~6!/066123~14!/$20.00 ©2001 The American Physical Society63 066123-1

“Organization of Growing Random
Networks”
Krapivsky and Redner,
Phys. Rev. E, 63, 066123, 2001. [57]

Fooling with the mechanism:
 Krapivsky & Redner [57] explored the general

attachment kernel:

Pr(attach to node 𝑖) ∝ 𝐴𝑘 = 𝑘𝜈𝑖
where 𝐴𝑘 is the attachment kernel and 𝜈 > 0.

 KR also looked at changing the details of the
attachment kernel.

https://pdodds.w3.uvm.edu//research/papers/others/everything/krapivsky2001a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/krapivsky2001a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/krapivsky2001a.pdf
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‘The rumor spread through the city like wildfire which
had quite often spread through Ankh-Morpork since
its citizens had learned the words “fire insurance”).’

“The Truth”
by Terry Pratchett (2000). [82]

http://www.amazon.com/dp/B000W5MIEO/
http://www.amazon.com/dp/B000W5MIEO/
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From the Atlantic

http://www.theatlantic.com/technology/archive/2013/10/americas-most-popular-boys-names-since-1960-in-1-spectacular-gif/280852/
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From the Atlantic

http://www.theatlantic.com/technology/archive/2013/10/a-wondrous-gif-shows-the-most-popular-baby-names-for-girls-since-1960/280709/
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Social Contagion

Some important models:
 Tipping models—Schelling (1971) [85, 86, 87]

 Simulation on checker boards
 Idea of thresholds
 Polygon-themed online visualization. (Includes

optional diversity-seeking proclivity.)

 Threshold models—Granovetter (1978) [47]

 Herding models—Bikhchandani, Hirschleifer,
Welch (1992) [10, 11]
 Social learning theory, Informational cascades,...

http://ncase.me/polygons/
http://ncase.me/polygons/
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Social contagion models

Thresholds
 Basic idea: individuals adopt a behavior when a

certain fraction of others have adopted
 ‘Others’ may be everyone in a population, an

individual’s close friends, any reference group.
 Response can be probabilistic or deterministic.
 Individual thresholds can vary
 Assumption: order of others’ adoption does not

matter... (unrealistic).
 Assumption: level of influence per person is

uniform
(unrealistic).
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Social Contagion

Some possible origins of thresholds:
 Inherent, evolution-devised inclination to

coordinate, to conform, to imitate. [9]

 Lack of information: impute the worth of a good
or behavior based on degree of adoption (social
proof)

 Economics: Network effects or network
externalities
 Externalities = Effects on others not directly

involved in a transaction
 Examples: telephones, fax machine, TikTok,

operating systems
 An individual’s utility increases with the adoption

level among peers and the population in general
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Threshold models—response functions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

φ

p

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

φ

p

 Example threshold influence response functions:
deterministic and stochastic

 𝜙 = fraction of contacts ‘on’ (e.g., rioting)
 Two states: S and I.
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Threshold models

Action based on perceived behavior of others:

0 1
0

0.2

0.4

0.6

0.8

1

φ
i
∗

A

φ
i,t

P
r(

a i,t
+

1=
1
)

0 0.5 1
0

0.5

1

1.5

2

2.5
B

φ∗

f (
φ∗ )

0 0.5 1
0

0.2

0.4

0.6

0.8

1

φ
t

φ t+
1 =

 F
 (

φ t)

C

 Two states: S and I.
 𝜙 = fraction of contacts ‘on’ (e.g., rioting)
 Discrete time update (strong assumption!)
 This is a Critical mass model
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Threshold models

Another example of critical mass model:

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

γ

f(
γ)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

φ
t

φ t+
1

 Fragility of fixed point at 𝜙 = 0.
 Critical slope = 1.
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Threshold models

Example of single stable state model:

0 0.2 0.4 0.6 0.8 1
0

0.5
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1.5
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γ

f(
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Threshold models—Nutshell

Implications for collective action theory:
1. Collective uniformity ⇏ individual uniformity
2. Small individual changes ⇒ large global changes
3. The stories/dynamics of complex systems are

conceptually inaccessible for individual-centric
narratives.

4. System stories live in left null space of our
stories—we can’t even see them.

5. But we happily impose simplistic,
individual-centric stories—we can’t help
ourselves.

https://en.wikipedia.org/wiki/Dunning–Kruger_effect
https://en.wikipedia.org/wiki/Dunning–Kruger_effect
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Many years after Granovetter and Soong’s work:

 “A simple model of global cascades on random
networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 [106]

 Mean field model → network model
 Individuals now have a limited view of the world

Also consider:
 “Seed size strongly affects cascades on random

networks” [44]
Gleeson and Cahalane, Phys. Rev. E, 2007.

 “Direct, phyiscally motivated derivation of the
contagion condition for spreading processes on
generalized random networks” [30] Dodds, Harris, and
Payne, Phys. Rev. E, 2011

 “Influentials, Networks, and Public Opinion
Formation” [108]
Watts and Dodds, J. Cons. Res., 2007.

 “Threshold models of Social Influence” [109]
Watts and Dodds, The Oxford Handbook of Analytical
Sociology, 2009.
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Threshold model on a network

t=1 t=2 t=3

c

a

b
c

e

a

b

e

a

b
c

e

d dd

 All nodes have threshold 𝜙 = 0.2.
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Example random network structure:
 Ωcrit = Ωvuln =

critical mass =
global
vulnerable
component

 Ωtrig =
triggering
component

 Ωfinal =
potential
extent of
spread

 Ω = entire
networkΩcrit ⊂ Ωtrig; Ωcrit ⊂ Ωfinal; and Ωtrig, Ωfinal ⊂ Ω.
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Cascade condition

Back to following a link:
 A randomly chosen link, traversed in a random

direction, leads to a degree 𝑘 node with
probability ∝ 𝑘𝑃𝑘.

 Follows from there being 𝑘 ways to connect to a
node with degree 𝑘.

 Normalization: ∞∑𝑘=0 𝑘𝑃𝑘 = ⟨𝑘⟩
 So 𝑃(linked node has degree 𝑘) = 𝑘𝑃𝑘⟨𝑘⟩
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Cascade condition

Next: Vulnerability of linked node
 Linked node is vulnerable with probability𝛽𝑘 = ∫1/𝑘𝜙′∗=0 𝑓(𝜙′∗)d𝜙′∗
 If linked node is vulnerable, it produces 𝑘 − 1 new

outgoing active links
 If linked node is not vulnerable, it produces no

active links.
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Cascade condition

Putting things together:
 Expected number of active edges produced by an

active edge:

𝑅 = ⎡⎢⎢⎣ ∞∑𝑘=1 (𝑘 − 1) ⋅ 𝛽𝑘 ⋅ 𝑘𝑃𝑘⟨𝑘⟩⏟⏟⏟⏟⏟⏟⏟
success

+ 0 ⋅ (1 − 𝛽𝑘) ⋅ 𝑘𝑃𝑘⟨𝑘⟩⏟⏟⏟⏟⏟⏟⏟
failure

⎤⎥⎥⎦= ∞∑𝑘=1(𝑘 − 1) ⋅ 𝛽𝑘 ⋅ 𝑘𝑃𝑘⟨𝑘⟩
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Cascade condition

So... for random networks with fixed degree
distributions, cacades take off when:∞∑𝑘=1(𝑘 − 1) ⋅ 𝛽𝑘 ⋅ 𝑘𝑃𝑘⟨𝑘⟩ > 1.
 𝛽𝑘 = probability a degree 𝑘 node is vulnerable.
 𝑃𝑘 = probability a node has degree 𝑘.
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Cascade condition

Two special cases:
 (1) Simple disease-like spreading succeeds: 𝛽𝑘 = 𝛽𝛽 ⋅ ∞∑𝑘=1(𝑘 − 1) ⋅ 𝑘𝑃𝑘⟨𝑘⟩ > 1.
 (2) Giant component exists: 𝛽 = 11 ⋅ ∞∑𝑘=1(𝑘 − 1) ⋅ 𝑘𝑃𝑘⟨𝑘⟩ > 1.
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Cascades on random networks

1 2 3 4 5 6 7
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Example networks

Possible

No

Cascades

Low influence

Fraction of
Vulnerables

cascade size
Final

Cascades

No Cascades

Cascades

No

High influence

 Cascades occur
only if size of
max vulnerable
cluster > 0.

 System may be
‘robust-yet-
fragile’.

 ‘Ignorance’
facilitates
spreading.
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Expected size of spread

Pleasantness:
 Taking off from a single seed story is about

expansion away from a node.
 Extent of spreading story is about contraction at a

node.



The PoCSverse
Complex
Networks
217 of 321

The PoCSverse

Basic definitions

Examples

Basic Properties
Branching Networks

Supply Networks

Random
networks

Major Models
Generalized Affiliation
Networks

Thresholds

Generating
Functions

Structure
Detection

Big Nutshell

References

Early adopters—degree distributions𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3
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𝑃𝑘,𝑡 versus 𝑘
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The multiplier effect:
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Cascade size ratio

Degree ratio

 Fairly uniform levels of individual influence.
 Multiplier effect is mostly below 1.
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Extensions

 12 

2002) in which each individual i is exposed only to a fixed neighborhood of k others, drawn 

randomly from the population. We then introduce two models of networks that advance on the 

random network model by including some simple notions of group structure (section 4), and 

consider how these changes affect the likelihood of cascades for different seeding strategies.  

Although with each step up this chain, the tractability of the corresponding models decreases, we 

are nevertheless able to make progress by leveraging our understanding of the simpler models 

that we have already considered. 

 

2. Influence Cascades on Complete and Random Networks 

 Inspired by Schelling’s seminal work on neighborhood segregation (Schelling 1969) and 

coordination games (Schelling 1973), Granovetter (1978) proposed a novel method for analyzing 

the outcomes of collective action when individuals are faced with a choice to adopt some new 

(“active”) state—a behavior, belief, or even an innovation—or else to remain in their existing, 

(“inactive”) state. Granovetter illustrated the model with the example of hypothetical crowd 

poised on the brink of a riot. Because all involved are uncertain about the costs and benefits 

associated with rioting, each member of the crowd is influenced by his peers, such that each of 

them can be characterized by some threshold rule: “I will join a riot only when sufficiently many 

others do; otherwise I will refrain.”  Granovetter did not specify an explicit theory of human 

decision making from which the threshold model could be derived, and as we have discussed 

other kinds of rules are clearly possible (Dodds and Watts 2004; Lopez-Pintado and Watts 

2008b).  For the purpose of this analysis, however, we will accept Granovetter’s informal 

reasoning that under some circumstances at least, a threshold rule is a plausible rule of thumb for 

“Threshold Models of Social Influence”
Watts and Dodds,
The Oxford Handbook of Analytical
Sociology, 63, 475–497, 2009. [109]

 Assumption of sparse interactions is good
 Degree distribution is (generally) key to a

network’s function
 Still, random networks don’t represent all

networks
 Major element missing: group structure

https://pdodds.w3.uvm.edu//research/papers/others/everything/watts2009a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/watts2009a.pdf
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Group structure—Ramified random
networks

𝑝 = intergroup connection probability𝑞 = intragroup connection probability.
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Generalized affiliation model networks
with triadic closure

 Connect nodes with probability ∝ 𝑒−𝛼𝑑
where𝛼 = homophily parameter
and𝑑 = distance between nodes (height of lowest
common ancestor)

 𝜏1 = intergroup probability of friend-of-friend
connection

 𝜏2 = intragroup probability of friend-of-friend
connection
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Cascade windows for group-based
networks
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Multiplier effect for group-based networks:
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size ratio < 1!

 Multiplier almost always below 1.
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Assortativity in group-based networks
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 The most connected nodes aren’t always the most
‘influential.’

 Degree assortativity is the reason.
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Social contagion

“Without followers, evil cannot spread.” –Leonard
Nimoy

Summary
 ‘Influential vulnerables’ are key to spread.
 Early adopters are mostly vulnerables.
 Vulnerable nodes important but not necessary.
 Groups may greatly facilitate spread.
 Seems that cascade condition is a global one.
 Most extreme/unexpected cascades occur in

highly connected networks
 ‘Influentials’ are posterior constructs.
 Many potential influentials exist.
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Social contagion

Implications
 Focus on the influential vulnerables.
 Create entities that can be transmitted

successfully through many individuals rather than
broadcast from one ‘influential.’

 Only simple ideas can spread by word-of-mouth.
(Idea of opinion leaders spreads well...)

 Want enough individuals who will adopt and
display.

 Displaying can be passive = free (yo-yo’s, fashion),
or active = harder to achieve (political messages;
even so: buttons and hats).

 Entities can be novel or designed to combine with
others, e.g. block another one.
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Flavor network and the principles of food
pairing
Yong-Yeol Ahn1,2,3

*, Sebastian E. Ahnert1,4*, James P. Bagrow1,2 & Albert-László Barabási1,2

1Center for Complex Network Research, Department of Physics Northeastern University, Boston, MA 02115, 2Center for Cancer
Systems Biology Dana-Farber Cancer Institute, Harvard University, Boston, MA 02115, 3School of Informatics and Computing
Indiana University, Bloomington, IN 47408, 4Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge,
Cambridge CB3 0HE, UK.

The cultural diversity of culinary practice, as illustrated by the variety of regional cuisines, raises the question
of whether there are any general patterns that determine the ingredient combinations used in food today or
principles that transcend individual tastes and recipes. We introduce a flavor network that captures the flavor
compounds shared by culinary ingredients.Western cuisines show a tendency to use ingredient pairs that share
many flavor compounds, supporting the so-called food pairing hypothesis. By contrast, East Asian cuisines tend
to avoid compound sharing ingredients. Given the increasing availability of information on food preparation,
our data-driven investigation opens new avenues towards a systematic understanding of culinary practice.

A
s omnivores, humans have historically faced the difficult task of identifying and gathering food that
satisfies nutritional needs while avoiding foodborne illnesses1. This process has contributed to the current
diet of humans, which is influenced by factors ranging from an evolved preference for sugar and fat to

palatability, nutritional value, culture, ease of production, and climate1–9. The relatively small number of recipes
in use (,106, e.g. http://cookpad.com) compared to the enormous number of potential recipes (.1015, see
Supplementary Information Sec S1.2), together with the frequent recurrence of particular combinations in
various regional cuisines, indicates that we are exploiting but a tiny fraction of the potential combinations.
Although this pattern itself can be explained by a simple evolutionary model10 or data-driven approaches11, a
fundamental question still remains: are there any quantifiable and reproducible principles behind our choice of
certain ingredient combinations and avoidance of others?

Although many factors such as colors, texture, temperature, and sound play an important role in food
sensation12–15, palatability is largely determined by flavor, representing a group of sensations including odors
(due to molecules that can bind olfactory receptors), tastes (due to molecules that stimulate taste buds), and
freshness or pungency (trigeminal senses)16. Therefore, the flavor compound (chemical) profile of the culinary
ingredients is a natural starting point for a systematic search for principles that might underlie our choice of
acceptable ingredient combinations.

A hypothesis, which over the past decade has received attention among some chefs and food scientists, states that
ingredients sharing flavor compounds are more likely to taste well together than ingredients that do not17 (also see
http://www.foodpairing.com). This food pairing hypothesis has been used to search for novel ingredient combina-
tions and has prompted, for example, some contemporary restaurants to combine white chocolate and caviar, as they
share trimethylamine and other flavor compounds, or chocolate and blue cheese that share at least 73 flavor
compounds. As we search for evidence supporting (or refuting) any ‘rules’ that may underlie our recipes, we must
bear in mind that the scientific analysis of any art, including the art of cooking, is unlikely to be capable of explaining
every aspect of the artistic creativity involved. Furthermore, there are many ingredients whose main role in a recipe
may not be only flavoring but something else as well (e.g. eggs’ role to ensure mechanical stability or paprika’s role to
add vivid colors). Finally, the flavor of a dish owes as much to the mode of preparation as to the choice of particular
ingredients12,18,19. However, our hypothesis is that, given the large number of recipes we use in our analysis (56,498),
such factors can be systematically filtered out, allowing for the discovery of patterns that may transcend specific
dishes or ingredients.

Here we introduce a network-based approach to explore the impact of flavor compounds on ingredient
combinations. Efforts by food chemists to identify the flavor compounds contained in most culinary ingredients
allows us to link each ingredient to 51 flavor compounds on average20 1. We build a bipartite network21–26
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“Flavor network and the principles of food
pairing”
Ahn et al.,
Nature Scientific Reports, 1, 196, 2011. [1]

Figure 1 | Flavor network. (A) The ingredients contained in two recipes (left column), together with the flavor compounds that are known to be present

in the ingredients (right column). Each flavor compound is linked to the ingredients that contain it, forming a bipartite network. Some compounds

(shown in boldface) are shared bymultiple ingredients. (B) If we project the ingredient-compound bipartite network into the ingredient space, we obtain

the flavor network, whose nodes are ingredients, linked if they share at least one flavor compound. The thickness of links represents the number of flavor

compounds two ingredients share and the size of each circle corresponds to the prevalence of the ingredients in recipes. (C) The distribution of recipe size,

capturing the number of ingredients per recipe, across the five cuisines explored in our study. (D) The frequency-rank plot of ingredients across the five

cuisines show an approximately invariant distribution across cuisines.

https://pdodds.w3.uvm.edu//research/papers/others/everything/ahn2011a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/ahn2011a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/ahn2011a.pdf
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Flavor network and the principles of food
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Cambridge CB3 0HE, UK.

The cultural diversity of culinary practice, as illustrated by the variety of regional cuisines, raises the question
of whether there are any general patterns that determine the ingredient combinations used in food today or
principles that transcend individual tastes and recipes. We introduce a flavor network that captures the flavor
compounds shared by culinary ingredients.Western cuisines show a tendency to use ingredient pairs that share
many flavor compounds, supporting the so-called food pairing hypothesis. By contrast, East Asian cuisines tend
to avoid compound sharing ingredients. Given the increasing availability of information on food preparation,
our data-driven investigation opens new avenues towards a systematic understanding of culinary practice.

A
s omnivores, humans have historically faced the difficult task of identifying and gathering food that
satisfies nutritional needs while avoiding foodborne illnesses1. This process has contributed to the current
diet of humans, which is influenced by factors ranging from an evolved preference for sugar and fat to

palatability, nutritional value, culture, ease of production, and climate1–9. The relatively small number of recipes
in use (,106, e.g. http://cookpad.com) compared to the enormous number of potential recipes (.1015, see
Supplementary Information Sec S1.2), together with the frequent recurrence of particular combinations in
various regional cuisines, indicates that we are exploiting but a tiny fraction of the potential combinations.
Although this pattern itself can be explained by a simple evolutionary model10 or data-driven approaches11, a
fundamental question still remains: are there any quantifiable and reproducible principles behind our choice of
certain ingredient combinations and avoidance of others?

Although many factors such as colors, texture, temperature, and sound play an important role in food
sensation12–15, palatability is largely determined by flavor, representing a group of sensations including odors
(due to molecules that can bind olfactory receptors), tastes (due to molecules that stimulate taste buds), and
freshness or pungency (trigeminal senses)16. Therefore, the flavor compound (chemical) profile of the culinary
ingredients is a natural starting point for a systematic search for principles that might underlie our choice of
acceptable ingredient combinations.

A hypothesis, which over the past decade has received attention among some chefs and food scientists, states that
ingredients sharing flavor compounds are more likely to taste well together than ingredients that do not17 (also see
http://www.foodpairing.com). This food pairing hypothesis has been used to search for novel ingredient combina-
tions and has prompted, for example, some contemporary restaurants to combine white chocolate and caviar, as they
share trimethylamine and other flavor compounds, or chocolate and blue cheese that share at least 73 flavor
compounds. As we search for evidence supporting (or refuting) any ‘rules’ that may underlie our recipes, we must
bear in mind that the scientific analysis of any art, including the art of cooking, is unlikely to be capable of explaining
every aspect of the artistic creativity involved. Furthermore, there are many ingredients whose main role in a recipe
may not be only flavoring but something else as well (e.g. eggs’ role to ensure mechanical stability or paprika’s role to
add vivid colors). Finally, the flavor of a dish owes as much to the mode of preparation as to the choice of particular
ingredients12,18,19. However, our hypothesis is that, given the large number of recipes we use in our analysis (56,498),
such factors can be systematically filtered out, allowing for the discovery of patterns that may transcend specific
dishes or ingredients.

Here we introduce a network-based approach to explore the impact of flavor compounds on ingredient
combinations. Efforts by food chemists to identify the flavor compounds contained in most culinary ingredients
allows us to link each ingredient to 51 flavor compounds on average20 1. We build a bipartite network21–26
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Figure 2 | The backbone of the flavor network. Each node denotes an ingredient, the node color indicates food category, and node size reflects the

ingredient prevalence in recipes. Two ingredients are connected if they share a significant number of flavor compounds, link thickness representing the

number of shared compounds between the two ingredients. Adjacent links are bundled to reduce the clutter. Note that themap shows only the statistically

significant links, as identified by the algorithm of Refs.28,29 for p-value 0.04. A drawing of the full network is too dense to be informative.We use, however,

the full network in our subsequent measurements.

https://pdodds.w3.uvm.edu//research/papers/others/everything/ahn2011a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/ahn2011a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/ahn2011a.pdf
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ABSTRACT

The recording and sharing of cooking recipes, a human ac-
tivity dating back thousands of years, naturally became an
early and prominent social use of the web. The resulting
online recipe collections are repositories of ingredient com-
binations and cooking methods whose large-scale and vari-
ety yield interesting insights about both the fundamentals of
cooking and user preferences. At the level of an individual
ingredient we measure whether it tends to be essential or can
be dropped or added, and whether its quantity can be modi-
fied. We also construct two types of networks to capture the
relationships between ingredients. The complement network
captures which ingredients tend to co-occur frequently, and
is composed of two large communities: one savory, the other
sweet. The substitute network, derived from user-generated
suggestions for modifications, can be decomposed into many
communities of functionally equivalent ingredients, and cap-
tures users’ preference for healthier variants of a recipe. Our
experiments reveal that recipe ratings can be well predicted
with features derived from combinations of ingredient net-
works and nutrition information.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database applications—
Data mining

General Terms

Measurement; Experimentation

Keywords

ingredient networks, recipe recommendation

1. INTRODUCTION
The web enables individuals to collaboratively share knowl-

edge and recipe websites are one of the earliest examples of
collaborative knowledge sharing on the web. Allrecipes.com,

the subject of our present study, was founded in 1997, years
ahead of other collaborative websites such as the Wikipedia.
Recipe sites thrive because individuals are eager to share
their recipes, from family recipes that had been passed down
for generations, to new concoctions that they created that
afternoon, having been motivated in part by the ability to
share the result online. Once shared, the recipes are imple-
mented and evaluated by other users, who supply ratings
and comments.

The desire to look up recipes online may at first appear
odd given that tombs of printed recipes can be found in
almost every kitchen. The Joy of Cooking [12] alone con-
tains 4,500 recipes spread over 1,000 pages. There is, how-
ever, substantial additional value in online recipes, beyond
their accessibility. While the Joy of Cooking contains a
single recipe for Swedish meatballs, Allrecipes.com hosts
“Swedish Meatballs I”, “II”, and “III”, submitted by different
users, along with 4 other variants, including “The Amaz-
ing Swedish Meatball”. Each variant has been reviewed,
from 329 reviews for “Swedish Meatballs I” to 5 reviews
for “Swedish Meatballs III”. The reviews not only provide
a crowd-sourced ranking of the different recipes, but also
many suggestions on how to modify them, e.g. using ground
turkey instead of beef, skipping the “cream of wheat” be-
cause it is rarely on hand, etc.

The wealth of information captured by online collabora-
tive recipe sharing sites is revealing not only of the fun-
damentals of cooking, but also of user preferences. The co-
occurrence of ingredients in tens of thousands of recipes pro-
vides information about which ingredients go well together,
and when a pairing is unusual. Users’ reviews provide clues
as to the flexibility of a recipe, and the ingredients within
it. Can the amount of cinnamon be doubled? Can the nut-
meg be omitted? If one is lacking a certain ingredient, can a
substitute be found among supplies at hand without a trip
to the grocery store? Unlike cookbooks, which will contain
vetted but perhaps not the best variants for some individu-
als’ tastes, ratings assigned to user-submitted recipes allow
for the evaluation of what works and what does not.

In this paper, we seek to distill the collective knowledge
and preference about cooking through mining a popular
recipe-sharing website. To extract such information, we first
parse the unstructured text of the recipes and the accom-
panying user reviews. We construct two types of networks
that reflect different relationships between ingredients, in
order to capture users’ knowledge about how to combine in-
gredients. The complement network captures which ingre-
dients tend to co-occur frequently, and is composed of two
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“Recipe recommendation using ingredient
networks”
Teng, Lin, and Adamic,
Proceedings of the 3rd Annual ACM Web
Science Conference, 1, 298–307, 2012. [97]

cherry gelatin

graham cracker

low fat cottage cheese

pork shoulder roast

heavy whipping cream tofu

bok choy

butter cracker

baking soda

pimento pepper

milk powder

chorizo sausage

ladyfinger

steak sauce

crimushroom

radishe

shiitake mushroom

pesto

brownie mix

pumpkin pie spice

rye flour

cardamom

saffron thread

linguine

corn

fat free sour cream

basmati rice

bittersweet chocolate

bay

corn chip

cracker

french green bean

poppy seed

vegetable oil

grape tomato

pizza crust dough

low sodium beef broth

club soda

lard

soy sauce
panko bread

couscou

crab meat

mango

unpastry shell

catalina dressing

pasta shell

italian salad dressing

mexican corn

decorating gel

italian bread

napa cabbage

onion powder

white wine vinegar

cocktail rye bread

basil sauce

crouton

brown gravy mix

barbeque sauce

apple cider vinegar

hoagie roll

milk chocolate candy kisse

flounder

salt black pepper

maraschino cherry juice

chow mein noodle

tiger prawn

banana pepper

cranberry

vermicelli pasta

root beer

strawberry jam

lemon gelatin mix

creamed corn

pretzel

pie shell

sunflower kernel

rump roast

romaine

vegetable stock

lemon pepper seasoning

guacamole

louisiana hot sauce

cabbage

yellow onion

superfine sugar

orange peel

raspberry

cumin seed

candied mixed fruit peel

cream of coconut

bow tie pasta

creme fraiche

currant

pork chop

turkey gravy

fat free half and half

chicken ramen noodle

wooden skewer

whipping cream

mace

seasoning salt

mozzarella cheese
pasta sauce

lean pork

broccoli floweret

tomatillo

lemonade

tomato paste

caesar dressing

basil pesto

melon liqueur

coconut milk

whole wheat pastry flour

muenster cheese

lump crab meat

angel food cake

ring

cheese tortellini

spiral pasta

vanilla pudding

caulifloweret

smoked sausage

hot dog

pita bread

cocoa powder

garbanzo bean

tart apple

wheat bran

hot pepper sauce

chili

refried bean

salmon steak

white cheddar cheese

low fat mayonnaise

grapefruit

dijon mustard

tomato juice

yellow squash

baking apple

cream of tartar

vodka

rye bread

white chip

flat iron steak

linguine pasta

fennel

whole wheat bread

baking mix

alfredo pasta sauce

margarine

confectioners' sugar
fruit gelatin mix

pork

balsamic vinegar

pork loin chop

jicama

pre pizza crust

triple sec

teriyaki sauce

cola carbonated beverage

polish sausage

cracked black pepper

poblano chile pepper

individually wrapped caramel

roast beef

bread stuffing mix

eggnog

pear

caramel

beet

worcestershire sauce

chicken stock

horseradish

semisweet chocolate chip

basil

red grape

plum

cinnamon sugar

fajita seasoning

rice noodle

powdered milk

star anise pod

short grain rice

ramen noodle

vegetable

coconut oil

whiskey

lime gelatin mix

peanut oil

ham

ginger root

lima bean

pimento stuffed green olive

hoisin sauce

round steak

stuffing

part skim ricotta cheese

broiler fryer chicken up

milk chocolate chip

turbinado sugar

vegetable shortening

tarragon vinegar

golden delicious apple

turkey

rigatoni pasta

stuffing mix

milk

juiced

burgundy wine

red kidney bean

dill

candied pineapple

german chocolate cake mix

arborio rice

sugar free vanilla pudding mix

pine nut

green apple

cucumber oregano
pearl onion

stuffed green olive

whipped topping mix

broccoli

pinto bean

pasta

beef short rib

gelatin

garlic powder

rutabaga

chicken liver

pepperjack cheese

herb

lemon gras

sweet potato

pineapple ring

parsley flake

pie filling

spice cake mix

butterscotch chip

greek yogurt

vanilla ice cream

seafood seasoning

parsnip

applesauce

chinese five spice powder

salt pepper

beef broth

cherry tomato

sage

vanilla

vital wheat gluten

artichoke heart

mixed berry

bacon dripping

self rising flour

nilla wafer

navy bean

bacon

egg yolk

wonton wrapper

chocolate pudding mix

salsa

coconut

tomato based chili sauce

marsala wine

mussel

manicotti shell

anise extract

mustard seed

nutmeg

cayenne pepper

black bean pepper

okra

asparagu

mustard powder

firmly brown sugar

balsamic vinaigrette dressing

chicken breast
oyster

ditalini pasta

old bay seasoning tm

brown rice

process american cheese

chocolate

miso paste

pineapple

iceberg lettuce

pearl barley

oat

greek seasoning

biscuit

clove

browning sauce

chicken bouillon powder

green pea

bread dough

cream cheese
peanut butter chip

silken tofu

pineapple chip

sea scallop

ricotta cheese

papaya

red cabbage

egg substitute

zesty italian dressing

devil's food cake mix

bagel

sour mix

lamb

irish stout beer

sea salt

romaine lettuce

kalamata olive

salt

monosodium glutamate

rice wine

white potato

rum extract

grape jelly

crescent roll dough

beer

phyllo dough

fettuccine pasta

chili seasoning mix

biscuit mix

candy coated chocolate

green cabbage

ranch bean

cream of celery soup

apple pie filling

caper

nectarine

white mushroom

banana

orange gelatin mix

1% buttermilk

apple jelly

dinner roll

sugar pumpkin

salad green

shrimp

cheese ravioli

chicken wing

sour cream

saltine

cornmeal

mixed vegetable

beef tenderloin

sherry

rotini pasta

mexican cheese blend

kosher salt black pepper

mayonnaise

lobster

white onion

chocolate cookie

white bread

french baguette

bread

vanilla frosting

anise seed

ranch dressing mix

wild rice

hot

canadian bacon

cornflakes cereal

wax bean

cantaloupe

non fat yogurt

lite whipped topping

spaghetti squash

egg roll wrapper

solid pack pumpkin

recipe pastry

asafoetida powder

coffee powder

italian sauce

amaretto liqueur

shortening

turmeric

semolina flour

pomegranate juice

corned beef

skewer

shallot

spanish onion

tapioca

provolone cheese

chile sauce

vanilla bean

chile pepper

angel hair pasta

pumpkin

tilapia

brie cheese

cottage cheese

banana liqueur

lemon

smoked salmon

ginger paste

brown mustard

peanut butter

escarole

sour milk

olive oil

country pork rib

pastry shell

adobo seasoning

candy coated milk chocolate

curry
ghee

alfredo sauce

yellow cake mix

granny smith apple

beef chuck

chocolate hazelnut spread

maple syrup

squid

gingersnap cooky

raspberry gelatin

molasse
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Figure 2: Ingredient complement network. Two ingredients share an edge if they occur together more than

would be expected by chance and if their pointwise mutual information exceeds a threshold.
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ing epibiotic and pelagic communities. These

icebergs can be compared to estuaries that supply

surrounding coastal regions with nutrients. In that

respect, icebergs may be thought of as “Lagran-

gian estuaries,” drifting through the Southern

Ocean while enriching the surrounding pelagic

zone. Our preliminary studies suggest that free-

drifting icebergs and their associated communities

could serve as areas of increased production and

sequestration of organic carbon to the deep sea, a

process unaccounted for in current global carbon

budgets (33).
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The Product Space Conditions the
Development of Nations
C. A. Hidalgo,1*† B. Klinger,2* A.-L. Barabási,1 R. Hausmann2

Economies grow by upgrading the products they produce and export. The technology, capital,

institutions, and skills needed to make newer products are more easily adapted from some products

than from others. Here, we study this network of relatedness between products, or “product space,”
finding that more-sophisticated products are located in a densely connected core whereas less-

sophisticated products occupy a less-connected periphery. Empirically, countries move through the

product space by developing goods close to those they currently produce. Most countries can reach

the core only by traversing empirically infrequent distances, which may help explain why poor

countries have trouble developing more competitive exports and fail to converge to the income

levels of rich countries.

D
oes the type of product that a country

exports matter for subsequent economic

performance? The fathers of development

economics held that it does, suggesting that indus-

trialization creates spillover benefits that fuel sub-

sequent growth (1–3). Yet, lacking formal models,

mainstream economic theory has been unable to

incorporate these ideas. Instead, two approaches

have been used to explain a country’s pattern of

specialization. The first focuses on the relative pro-

portion between productive factors (i.e., physical

capital, labor, land, skills or human capital, infra-

structure, and institutions) (4). Hence, poor countries

specialize in goods intensive in unskilled labor and

land, whereas richer countries specialize in goods

requiring infrastructure, institutions, and human and

physical capital. The second approach emphasizes

technological differences (5) and has to be com-

plemented with a theory of what underlies them.

The varieties and quality ladders models (6, 7) as-

sume that there is always a slightly more ad-

vanced product, or just a different one, that

countries can move to, disregarding product

similarities when thinking about structural trans-

formation and growth.

Think of a product as a tree and the set of all

products as a forest. A country is composed of a

collection of firms, i.e., of monkeys that live on

different trees and exploit those products. The pro-

cess of growth implies moving from a poorer part

of the forest, where trees have little fruit, to better

parts of the forest. This implies thatmonkeyswould

have to jump distances, that is, redeploy (human,

physical, and institutional) capital toward goods that

are different from those currently under produc-

tion. Traditional growth theory assumes there is

always a tree within reach; hence, the structure of

this forest is unimportant. However, if this forest

is heterogeneous, with some dense areas and other

more-deserted ones, and if monkeys can jump

only limited distances, then monkeys may be un-

able to move through the forest. If this is the case,

the structure of this space and a country’s orien-

tation within it become of great importance to the

development of countries.

In theory, many possible factors may cause

relatedness between products, that is, close-

ness between trees; such as the intensity of labor,

land, and capital (8), the level of technological

sophistication (9, 10), the inputs or outputs in-

volved in a product’s value chain (e.g., cotton,

yarn, cloth, and garments) (11), or requisite insti-
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of Government, Harvard University, Cambridge, MA 02139,
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Networks and creativity:

Fig. 2. Modeling the emergence of collaboration networks in creative enterprises. (A) Creation of a
team with m 0 3 agents. Consider, at time zero, a collaboration network comprising five agents, all
incumbents (blue circles). Along with the incumbents, there is a large pool of newcomers (green
circles) available to participate in new teams. Each agent in a team has a probability p of being
drawn from the pool of incumbents and a probability 1 j p of being drawn from the pool of new-
comers. For the second and subsequent agents selected from the incumbents’ pool: (i) with probability
q, the new agent is randomly selected from among the set of collaborators of a randomly selected
incumbent already in the team; (ii) otherwise, he or she is selected at random among all incumbents in
the network. For concreteness, let us assume that incumbent 4 is selected as the first agent in the new
team (leftmost box). Let us also assume that the second agent is an incumbent, too (center-left box). In
this example, the second agent is a past collaborator of agent 4, specifically agent 3 (center-right box).
Lastly, the third agent is selected from the pool of newcomers; this agent becomes incumbent 6
(rightmost box). In these boxes and in the following panels and figures, blue lines indicate newcomer-
newcomer collaborations, green lines indicate newcomer-incumbent collaborations, yellow lines indi-
cate new incumbent-incumbent collaborations, and red lines indicate repeat collaborations. (B) Time
evolution of the network of collaborations according to the model for p 0 0.5, q 0 0.5, and m 0 3.

 Guimerà et al., Science
2005: [48] “Team
Assembly Mechanisms
Determine
Collaboration Network
Structure and Team
Performance”

 Broadway musical
industry

 Scientific collaboration
in Social Psychology,
Economics, Ecology,
and Astronomy.
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*Center for Complex Network Research and Department of Physics, University of Notre Dame, Notre Dame, IN 46556; †Center for Cancer Systems Biology
(CCSB) and ¶Department of Cancer Biology, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115; ‡Department of Genetics, Harvard Medical
School, 77 Avenue Louis Pasteur, Boston, MA 02115; §Department of Physics, Korea University, Seoul 136-713, Korea; and �Department of Pediatrics and the
McKusick–Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205

Edited by H. Eugene Stanley, Boston University, Boston, MA, and approved April 3, 2007 (received for review February 14, 2007)

A network of disorders and disease genes linked by known disorder–

gene associations offers a platform to explore in a single graph-

theoretic framework all known phenotype and disease gene associ-

ations, indicating the common genetic origin of many diseases. Genes

associated with similar disorders show both higher likelihood of

physical interactions between their products and higher expression

profiling similarity for their transcripts, supporting the existence of

distinct disease-specific functional modules. We find that essential

human genes are likely to encode hub proteins and are expressed

widely in most tissues. This suggests that disease genes also would

play a central role in the human interactome. In contrast, we find that

the vast majority of disease genes are nonessential and show no

tendency to encode hub proteins, and their expression pattern indi-

cates that they are localized in the functional periphery of the

network. A selection-based model explains the observed difference

between essential and disease genes and also suggests that diseases

caused by somatic mutations should not be peripheral, a prediction

we confirm for cancer genes.

biological networks � complex networks � human genetics � systems

biology � diseasome

Decades-long efforts to map human disease loci, at first genet-
ically and later physically (1), followed by recent positional

cloning of many disease genes (2) and genome-wide association
studies (3), have generated an impressive list of disorder–gene
association pairs (4, 5). In addition, recent efforts to map the
protein–protein interactions in humans (6, 7), together with efforts
to curate an extensive map of human metabolism (8) and regulatory
networks offer increasingly detailed maps of the relationships
between different disease genes. Most of the successful studies
building on these new approaches have focused, however, on a
single disease, using network-based tools to gain a better under-
standing of the relationship between the genes implicated in a
selected disorder (9).

Here we take a conceptually different approach, exploring
whether human genetic disorders and the corresponding disease
genes might be related to each other at a higher level of cellular and
organismal organization. Support for the validity of this approach
is provided by examples of genetic disorders that arise from
mutations in more than a single gene (locus heterogeneity). For
example, Zellweger syndrome is caused by mutations in any of at
least 11 genes, all associated with peroxisome biogenesis (10).
Similarly, there are many examples of different mutations in the
same gene (allelic heterogeneity) giving rise to phenotypes cur-
rently classified as different disorders. For example, mutations in
TP53 have been linked to 11 clinically distinguishable cancer-
related disorders (11). Given the highly interlinked internal orga-
nization of the cell (12–17), it should be possible to improve the
single gene–single disorder approach by developing a conceptual
framework to link systematically all genetic disorders (the human
‘‘disease phenome’’) with the complete list of disease genes (the
‘‘disease genome’’), resulting in a global view of the ‘‘diseasome,’’
the combined set of all known disorder/disease gene associations.

Results

Construction of the Diseasome. We constructed a bipartite graph
consisting of two disjoint sets of nodes. One set corresponds to all

known genetic disorders, whereas the other set corresponds to all
known disease genes in the human genome (Fig. 1). A disorder and
a gene are then connected by a link if mutations in that gene are
implicated in that disorder. The list of disorders, disease genes, and
associations between them was obtained from the Online Mende-
lian Inheritance in Man (OMIM; ref. 18), a compendium of human
disease genes and phenotypes. As of December 2005, this list
contained 1,284 disorders and 1,777 disease genes. OMIM initially
focused on monogenic disorders but in recent years has expanded
to include complex traits and the associated genetic mutations that
confer susceptibility to these common disorders (18). Although this
history introduces some biases, and the disease gene record is far
from complete, OMIM represents the most complete and up-to-
date repository of all known disease genes and the disorders they
confer. We manually classified each disorder into one of 22 disorder
classes based on the physiological system affected [see supporting
information (SI) Text, SI Fig. 5, and SI Table 1 for details].

Starting from the diseasome bipartite graph we generated two
biologically relevant network projections (Fig. 1). In the ‘‘human
disease network’’ (HDN) nodes represent disorders, and two
disorders are connected to each other if they share at least one gene
in which mutations are associated with both disorders (Figs. 1 and
2a). In the ‘‘disease gene network’’ (DGN) nodes represent disease
genes, and two genes are connected if they are associated with the
same disorder (Figs. 1 and 2b). Next, we discuss the potential of
these networks to help us understand and represent in a single
framework all known disease gene and phenotype associations.

Properties of the HDN. If each human disorder tends to have a
distinct and unique genetic origin, then the HDN would be dis-
connected into many single nodes corresponding to specific disor-
ders or grouped into small clusters of a few closely related disorders.
In contrast, the obtained HDN displays many connections between
both individual disorders and disorder classes (Fig. 2a). Of 1,284
disorders, 867 have at least one link to other disorders, and 516
disorders form a giant component, suggesting that the genetic
origins of most diseases, to some extent, are shared with other
diseases. The number of genes associated with a disorder, s, has a
broad distribution (see SI Fig. 6a), indicating that most disorders
relate to a few disease genes, whereas a handful of phenotypes, such
as deafness (s � 41), leukemia (s � 37), and colon cancer (s � 34),
relate to dozens of genes (Fig. 2a). The degree (k) distribution of
HDN (SI Fig. 6b) indicates that most disorders are linked to only
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“The human disease network”
Goh et al.,
Proc. Natl. Acad. Sci., 104, 8685–8690,
2007. [46]
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The complex architecture of primes and natural numbers

Guillermo Garćıa-Pérez,1 M. Ángeles Serrano,1 and Marián Boguñá1

1Departament de F́ısica Fonamental, Universitat de Barcelona

Mart́ı i Franquès 1, 08028 Barcelona, Spain

(Dated: February 18, 2014)

Natural numbers can be divided in two non-overlapping infinite sets, primes and composites,
with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the
architecture of natural numbers with primes as building blocks remains elusive. Here, we propose
a new approach to decoding the architecture of natural numbers based on complex networks and
stochastic processes theory. We introduce a parameter-free non-Markovian dynamical model that
naturally generates random primes and their relation with composite numbers with remarkable
accuracy. Our model satisfies the prime number theorem as an emerging property and a refined
version of Cramér’s conjecture about the statistics of gaps between consecutive primes that seems
closer to reality than the original Cramér’s version. Regarding composites, the model helps us to
derive the prime factors counting function, giving the probability of distinct prime factors for any
integer. Probabilistic models like ours can help not only to conjecture but also to prove results
about primes and the complex architecture of natural numbers.

I. INTRODUCTION

Prime numbers have fascinated and puzzled philoso-
phers, mathematicians, physicists and computer scien-
tists alike for the last two and a half thousand years. A
prime is a natural number that has no divisors other than
1 and itself; every natural number greater than 1 that is
not a prime is called a composite. Despite the apparent
simplicity of these definitions, the hidden structure in
the sequence of primes and their relation with the set of
natural numbers are not yet completely understood [21].
There is no known closed formula that sets apart all of
the prime numbers from composites, and many questions
about primes and their distribution amongst the set of
natural numbers still remain open. Indeed, most of the
knowledge about the sequence of primes stands on un-
proved theorems and conjectures.

The mystery of primes is not a mere conundrum of
pure mathematics. Unexpected connections can be dis-
covered between primes and different topics in Physics.
For instance, the Riemann zeta function ζ(s) –a sum over
all integers equivalent to a product over all primes– has
been considered as a partition function [1–3] such that
its sequence of zeros –encoding information about the
sequence of primes– can be seen as a spectrum of energy
levels. This idea traces back to the Hilbert-Pólya conjec-
ture [4], which states that the zeros of the ζ(s) function
might be the eigenvalues of some hermitian operator on a
Hilbert space. Recently, interesting connections have also
been found between primes and self-organized critical-
ity [5], or primes and quantum computation [6, 7] (see [8]
for an extensive bibliographical survey between the con-
nection of number theory and physics). The importance
of primes transcend theoretical aspects, and practical ap-
plications include public key cryptography algorithms [9]
and pseudorandom number generators [10].

One of the most promising approaches to solve the
enigmas of number theory is the use of probability the-
ory and stochastic processes. Akin to chaotic dynami-

cal systems, prime numbers, albeit purely deterministic,
appear to be scattered throughout natural numbers in a
non-homogeneous random fashion. Indeed, for n ≫ 1 the
probability that a randomly chosen number in a “small”
neighborhood of n is prime is given by [22]

Pn ∼
1

lnn
. (1)

This is equivalent to the well-known prime number the-
orem [11], which states that the prime counting func-
tion π(N) –counting the number of primes up to N– ap-
proaches N/ lnN in the limit of N → ∞, i.e.,

π(N) ∼

∫
N

2

dx

lnx
≡ Li(N) ∼

N

lnN
, (2)

where Li(N) is the offset logarithmic integral function.
Taking advantage of this apparent randomness, Cramér
formulated a simple model [12, 13] where each integer
n is declared as a “prime” with independent probability
given by Eq. (1). The model –that generates sequences
of random primes that are, obviously, in agreement with
the prime number theorem– allowed him to “prove”, in
a probabilistic sense, his famous conjecture about gaps
between consecutive primes [13].

Cramér’s probabilistic model plays, still today, a fun-
damental role when formulating conjectures concerning
primes. However, it presents three major drawbacks. 1)
It does not “explain” the prime number theorem; instead,
it is an input of the model. 2) Random primes in the
model are totally uncorrelated whereas there are both
short and long range correlations in the sequence of real
primes. 3) Finally, it says nothing about the relation
between prime and composite numbers. In this paper,
we combine a complex network approach with the the-
ory of stochastic processes to introduce a parameter-free
non-Markovian dynamical model that naturally gener-
ates random primes as well as the relation between primes
and composite numbers with remarkable accuracy. Our
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“The complex architecture of primes and
natural numbers”
García-Pérez, Serrano, and Boguñá,
https://arxiv.org/abs/1402.3612, 2014. [39]

https://pdodds.w3.uvm.edu//research/papers/others/everything/garcia-perez2014a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/garcia-perez2014a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/garcia-perez2014a.pdf
https://arxiv.org/abs/1402.3612
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Generatingfunctionology [115]

 Idea: Given a sequence 𝑎0, 𝑎1, 𝑎2, … , associate
each element with a distinct function or other
mathematical object.

 Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

Definition:
 The generating function (g.f.) for a sequence {𝑎𝑛}

is 𝐹(𝑥) = ∞∑𝑛=0 𝑎𝑛𝑥𝑛.
 Roughly: transforms a vector in 𝑅∞ into a

function defined on 𝑅1.
 Related to Fourier, Laplace, Mellin, …
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Simple examples:
Rolling dice and flipping coins:

 𝑝( )𝑘 = Pr(throwing a 𝑘) = 1/6 where 𝑘 = 1, 2, … , 6.𝐹 ( )(𝑥) = 6∑𝑘=1 𝑝( )𝑘 𝑥𝑘 = 16(𝑥+𝑥2 +𝑥3 +𝑥4 +𝑥5 +𝑥6).
 𝑝(coin)0 = Pr(head) = 1/2, 𝑝(coin)1 = Pr(tail) = 1/2.𝐹 (coin)(𝑥) = 𝑝(coin)0 𝑥0 + 𝑝(coin)1 𝑥1 = 12(1 + 𝑥).
 A generating function for a probability distribution

is called a Probability Generating Function (p.g.f.).
 We’ll come back to these simple examples as we

derive various delicious properties of generating
functions.
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Useful pieces for probability distributions:

 Normalization: 𝐹(1) = 1
 First moment: ⟨𝑘⟩ = 𝐹 ′(1)
 Higher moments:⟨𝑘𝑛⟩ = (𝑥 d

d𝑥)𝑛 𝐹(𝑥)∣𝑥=1
 𝑘th element of sequence (general):𝑃𝑘 = 1𝑘! d𝑘

d𝑥𝑘 𝐹(𝑥)∣𝑥=0
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Random bipartite networks:
We’ll follow this rather well cited paper:

Random graphs with arbitrary degree distributions and their applications

M. E. J. Newman,1,2 S. H. Strogatz,2,3 and D. J. Watts1,4

1Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
2Center for Applied Mathematics, Cornell University, Ithaca, New York 14853-3401

3Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853-1503
4Department of Sociology, Columbia University, 1180 Amsterdam Avenue, New York, New York 10027

~Received 19 March 2001; published 24 July 2001!

Recent work on the structure of social networks and the internet has focused attention on graphs with

distributions of vertex degree that are significantly different from the Poisson degree distributions that have

been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary

degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed

and bipartite graphs. Among other results, we derive exact expressions for the position of the phase transition

at which a giant component first forms, the mean component size, the size of the giant component if there is

one, the mean number of vertices a certain distance away from a randomly chosen vertex, and the average

vertex-vertex distance within a graph. We apply our theory to some real-world graphs, including the world-

wide web and collaboration graphs of scientists and Fortune 1000 company directors. We demonstrate that in

some cases random graphs with appropriate distributions of vertex degree predict with surprising accuracy the

behavior of the real world, while in others there is a measurable discrepancy between theory and reality,

perhaps indicating the presence of additional social structure in the network that is not captured by the random

graph.

DOI: 10.1103/PhysRevE.64.026118 PACS number~s!: 89.75.Hc, 87.23.Ge, 05.90.1m

I. INTRODUCTION
A random graph @1# is a collection of points, or vertices,

with lines, or edges, connecting pairs of them at random
@Fig. 1~a!#. The study of random graphs has a long history.
Starting with the influential work of Erdös and Rényi in the
1950s and 1960s @2–4#, random graph theory has developed
into one of the mainstays of modern discrete mathematics,
and has produced a prodigious number of results, many of
them highly ingenious, describing statistical properties of
graphs, such as distributions of component sizes, existence
and size of a giant component, and typical vertex-vertex dis-
tances.

In almost all of these studies the assumption has been
made that the presence or absence of an edge between two
vertices is independent of the presence or absence of any
other edge, so that each edge may be considered to be
present with independent probability p. If there are N verti-
ces in a graph, and each is connected to an average of z
edges, then it is trivial to show that p5z/(N21), which for
large N is usually approximated by z/N . The number of
edges connected to any particular vertex is called the degree
k of that vertex, and has a probability distribution pk given
by

pk5S N

k D pk~12p !N2k.
zke2z

k!
, ~1!

where the second equality becomes exact in the limit of large
N. This distribution we recognize as the Poisson distribution:
the ordinary random graph has a Poisson distribution of ver-
tex degrees, a point which turns out to be crucial, as we now
explain.

Random graphs are not merely a mathematical toy; they
have been employed extensively as models of real-world net-

works of various types, particularly in epidemiology. The
passage of a disease through a community depends strongly
on the pattern of contacts between those infected with the
disease and those susceptible to it. This pattern can be de-
picted as a network, with individuals represented by vertices
and contacts capable of transmitting the disease by edges. A
large class of epidemiological models known as susceptible/
infectious/recovered models @5–7# makes frequent use of the
so-called fully mixed approximation, which is the assump-
tion that contacts are random and uncorrelated, i.e., they
form a random graph.

Random graphs however turn out to have severe short-
comings as models of such real-world phenomena. Although
it is difficult to determine experimentally the structure of the
network of contacts by which a disease is spread @8#, studies
have been performed of other social networks such as net-
works of friendships within a variety of communities @9–11#,
networks of telephone calls @12,13#, airline timetables @14#,
and the power grid @15#, as well as networks in physical or

FIG. 1. ~a! A schematic representation of a random graph, the

circles representing vertices and the lines representing edges. ~b! A

directed random graph, i.e., one in which each edge runs in only

one direction.

PHYSICAL REVIEW E, VOLUME 64, 026118

1063-651X/2001/64~2!/026118~17!/$20.00 ©2001 The American Physical Society64 026118-1

“Random graphs with arbitrary degree
distributions and their applications”
Newman, Strogatz, and Watts,
Phys. Rev. E, 64, 026118, 2001. [80]

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rQ68pVwAAAAJ&citation_for_view=rQ68pVwAAAAJ:3fE2CSJIrl8C
https://pdodds.w3.uvm.edu//research/papers/others/everything/newman2001b.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/newman2001b.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/newman2001b.pdf


The PoCSverse
Complex
Networks
241 of 321

The PoCSverse

Basic definitions

Examples

Basic Properties
Branching Networks

Supply Networks

Random
networks

Major Models
Generalized Affiliation
Networks

Thresholds

Generating
Functions

Structure
Detection

Big Nutshell

References



The PoCSverse
Complex
Networks
242 of 321

The PoCSverse

Basic definitions

Examples

Basic Properties
Branching Networks

Supply Networks

Random
networks

Major Models
Generalized Affiliation
Networks

Thresholds

Generating
Functions

Structure
Detection

Big Nutshell

References

Example of a bipartite affiliation network and the
induced networks:

 Center: A small story-trope bipartite graph. [28]

 Induced trope network and the induced story
network are on the left and right.

 The dashed edge in the bipartite affiliation
network indicates an edge added to the system,
resulting in the dashed edges being added to the
two induced networks.
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Basic story:
 An example of two inter-affiliated types:

  = stories,
  = tropes.

 Stories contain tropes, tropes are in stories.
 Consider a story-trope system with 𝑁 = # stories

and 𝑁 = # tropes.
 𝑚, = number of edges between and .
 Let’s have some underlying distributions for

numbers of affiliations: 𝑃 ()𝑘 (a story has 𝑘 tropes)
and 𝑃 ()𝑘 (a trope is in 𝑘 stories).

 Average number of affiliations: ⟨𝑘⟩ and ⟨𝑘⟩.
 ⟨𝑘⟩ = average number of tropes per story.
 ⟨𝑘⟩ = average number of stories containing a

given trope.

 Must have balance: 𝑁 ⋅ ⟨𝑘⟩ = 𝑚, = 𝑁 ⋅ ⟨𝑘⟩.

http://tvtropes.org/
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Spreading through bipartite networks:

 View as bouncing back and forth between the two
connected populations. [28]

 Actual spread may be within only one population
(ideas between between people) or through both
(failures in physical and communication networks).

 The gain ratio for simple contagion on a bipartite
random network = product of two gain ratios.
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Usual helpers for understanding network’s
structure:
 Randomly select an edge connecting a to a .
 Probability the contains 𝑘 other tropes:𝑅()𝑘 = (𝑘 + 1)𝑃 ()𝑘+1∑𝑁𝑗=0(𝑗 + 1)𝑃 ()𝑗+1 = (𝑘 + 1)𝑃 ()𝑘+1⟨𝑘⟩ .
 Probability the  is in 𝑘 other stories:𝑅()𝑘 = (𝑘 + 1)𝑃 ()𝑘+1∑𝑁𝑗=0(𝑗 + 1)𝑃 ()𝑗+1 = (𝑘 + 1)𝑃 ()𝑘+1⟨𝑘⟩ .
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Networks of and  within bipartite structure:

 𝑃 ()
ind,𝑘 = probability a random is connected to 𝑘

stories by sharing at least one .

 𝑃 ()
ind,𝑘 = probability a random  is connected to 𝑘

tropes by co-occurring in at least one.

 𝑅(—)
ind,𝑘 = probability a random edge leads to a

which is connected to 𝑘 other stories by sharing at
least one .

 𝑅(—)
ind,𝑘 = probability a random edge leads to a 

which is connected to 𝑘 other tropes by
co-occurring in at least one.

 Goal: find these distributions .
 Another goal: find the induced distribution of

component sizes and a test for the presence or
absence of a giant component.

 Unrelated goal: be 10% happier/weep less.



Unstoppable spreading: Is this thing connected?

 Always about the edges: when following a random
edge toward a, what’s the expected number of new
edges leading to other stories via tropes?

 We want to determine ⟨𝑘⟩𝑅,,ind = 𝐹 ′𝑅(—)
ind

(1) (and𝐹 ′𝑅(—)
ind

(1) for the trope side of things).
 We compute with joy:⟨𝑘⟩𝑅,,ind = d

d𝑥𝐹𝑅(—)
ind,𝑘 (𝑥)∣𝑥=1 = d

d𝑥𝐹𝑅() (𝐹𝑅()(𝑥))∣𝑥=1= 𝐹 ′𝑅()(1)𝐹 ′𝑅() (𝐹𝑅()(1)) = 𝐹 ′𝑅()(1)𝐹 ′𝑅()(1) = 𝐹 ″𝑃 ()(1)𝐹 ′𝑃 ()(1) 𝐹 ″𝑃 ()(1)𝐹 ′𝑃 ()(1)
 Note symmetry.

 $happiness++;
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 In terms of the underlying distributions:⟨𝑘⟩𝑅,,ind = ⟨𝑘(𝑘 − 1)⟩⟨𝑘⟩ ⟨𝑘(𝑘 − 1)⟩⟨𝑘⟩
 We have a giant component in both induced networks

when ⟨𝑘⟩𝑅,,ind ≡ ⟨𝑘⟩𝑅,,ind > 1
.

 See this as the product of two gain ratios.
#excellent #physics

 We can mess with this condition to make it
mathematically pleasant and pleasantly inscrutable:∞∑𝑘=0 ∞∑𝑘′=0 𝑘𝑘′(𝑘𝑘′ − 𝑘 − 𝑘′)𝑃 ()𝑘 𝑃 ()𝑘′ = 0.
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Nutshell

 Generating functions allow us to strangely
calculate features of random networks.

 They’re a bit scary and magical.
 Generating functions can be used to study

contagion.
 But: For essential results like possibility and

probability of global spread, more direct,
physics-bearing calculations are possible.

 Good real thing: Bipartite affiliation structures.
 Groups, groups, groups, …
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Structure detection

▲ Zachary’s karate club [119, 79]

 The issue:
how do we
elucidate the
internal structure of
large networks
across many scales?

 Possible substructures:
hierarchies, cliques, rings, …

 Plus:
All combinations of substructures.

 Much focus on hierarchies (pyramids) …...
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a b s t r a c t

The modern science of networks has brought significant advances to our understanding of

complex systems. One of the most relevant features of graphs representing real systems

is community structure, or clustering, i.e. the organization of vertices in clusters, with

many edges joining vertices of the same cluster and comparatively few edges joining

vertices of different clusters. Such clusters, or communities, can be considered as fairly

independent compartments of a graph, playing a similar role like, e.g., the tissues or the

organs in the human body. Detecting communities is of great importance in sociology,

biology and computer science, disciplines where systems are often represented as graphs.

This problem is very hard and not yet satisfactorily solved, despite the huge effort of a

large interdisciplinary community of scientists working on it over the past few years. We

will attempt a thorough exposition of the topic, from the definition of the main elements

of the problem, to the presentation of most methods developed, with a special focus on

techniques designed by statistical physicists, from the discussion of crucial issues like the

significance of clustering and how methods should be tested and compared against each

other, to the description of applications to real networks.

© 2009 Elsevier B.V. All rights reserved.
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Hierarchy by division
Top down:
 Idea: Identify global structure first and recursively

uncover more detailed structure.
 Basic objective: find dominant components that

have significantly more links within than without,
as compared to randomized version.

 We’ll first work through “Finding and evaluating
community structure in networks” by Newman
and Girvan (PRE, 2004). [79]

 See also
1. “Scientific collaboration networks. II. Shortest

paths, weighted networks, and centrality” by
Newman (PRE, 2001). [75, 78]

2. “Community structure in social and biological
networks” by Girvan and Newman (PNAS,
2002). [42]
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Hierarchy by division

 Idea: Edges that connect communities have higher
betweenness than edges within communities.
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Hierarchy by division

One class of structure-detection algorithms:
1. Compute edge betweenness for whole network.
2. Remove edge with highest betweenness.
3. Recompute edge betweenness
4. Repeat steps 2 and 3 until all edges are removed.

5 Record when
components appear as
a function of # edges
removed.

6 Generate dendogram
revealing hierarchical
structure.

Red line indicates appearance
of four (4) components at a
certain level.
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Betweenness for electrons:
 Unit resistors on each

edge.
 For every pair of nodes𝑠 (source) and 𝑡 (sink),

set up unit currents in
at 𝑠 and out at 𝑡.

 Measure absolute
current along each
edge ℓ, |𝐼ℓ,𝑠𝑡|.

 Sum |𝐼ℓ,𝑠𝑡| over all pairs of nodes to obtain
electronic betweenness for edge ℓ.

 (Equivalent to random walk betweenness.)
 Contributing electronic betweenness for edge

between nodes 𝑖 and 𝑗:𝐵 elec𝑖𝑗,𝑠𝑡 = 𝑎𝑖𝑗|𝑉𝑖,𝑠𝑡 − 𝑉𝑗,𝑠𝑡|.
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Electronic betweenness
 Define some arbitrary voltage reference.
 Kirchhoff’s laws: current flowing out of node 𝑖

must balance:𝑁∑𝑗=1 1𝑅𝑖𝑗 (𝑉𝑗 − 𝑉𝑖) = 𝛿𝑖𝑠 − 𝛿𝑖𝑡.
 Between connected nodes, 𝑅𝑖𝑗 = 1 = 𝑎𝑖𝑗 = 1/𝑎𝑖𝑗.
 Between unconnected nodes, 𝑅𝑖𝑗 = ∞ = 1/𝑎𝑖𝑗.
 We can therefore write:𝑁∑𝑗=1 𝑎𝑖𝑗(𝑉𝑖 − 𝑉𝑗) = 𝛿𝑖𝑠 − 𝛿𝑖𝑡.
 Some gentle jiggery-pokery on the left hand side:∑𝑗 𝑎𝑖𝑗(𝑉𝑖 − 𝑉𝑗) = 𝑉𝑖 ∑𝑗 𝑎𝑖𝑗 − ∑𝑗 𝑎𝑖𝑗𝑉𝑗= 𝑉𝑖𝑘𝑖 − ∑𝑗 𝑎𝑖𝑗𝑉𝑗 = ∑𝑗 [𝑘𝑖𝛿𝑖𝑗𝑉𝑗 − 𝑎𝑖𝑗𝑉𝑗]= [(K − A) ⃗𝑉 ]𝑖
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Electronic betweenness
 Write right hand side as [𝐼ext]𝑖,𝑠𝑡 = 𝛿𝑖𝑠 − 𝛿𝑖𝑡, where𝐼ext𝑠𝑡 holds external source and sink currents.
 Matrixingly then: (K − A) ⃗𝑉 = 𝐼ext𝑠𝑡 .
 L = K − A is a beast of some utility—known as the

Laplacian.
 Solve for voltage vector ⃗𝑉 by LU decomposition

(Gaussian elimination).
 Do not compute an inverse!
 Note: voltage offset is arbitrary so no unique

solution.
 Presuming network has one component, null

space of K − A is one dimensional.
 In fact, 𝒩(K − A) = {𝑐 ⃗1, 𝑐 ∈ 𝑅} since (K − A) ⃗1 = ⃗0.
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Alternate betweenness measures:
Random walk betweenness:
 Asking too much: Need full knowledge of network

to travel along shortest paths.
 One of many alternatives: consider all random

walks between pairs of nodes 𝑖 and 𝑗.
 Walks starts at node 𝑖, traverses the network

randomly, ending as soon as it reaches 𝑗.
 Record the number of times an edge is followed

by a walk.
 Consider all pairs of nodes.
 Random walk betweenness of an edge = absolute

difference in probability a random walk travels
one way versus the other along the edge.

 Equivalent to electronic betweenness (see also
diffusion).
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Hierarchy by division

 Factions in Zachary’s karate club network. [119]
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Hierarchy by division

 Third column shows what happens if we don’t
recompute betweenness after each edge removal.
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Scientists working on networks (2004)
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Scientists working on networks (2004)
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Scientists working on networks (2004)
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Dolphins!
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Les Miserables

 More network analyses for Les Miserables here
and here.

https://arxiv.org/abs/1604.03029
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Hierarchies and missing links
Clauset et al., Nature (2008) [25]

 Idea: Shades indicate probability that nodes in left
and right subtrees of dendogram are connected.

 Handle: Hierarchical random graph models.
 Plan: Infer consensus dendogram for a given real

network.
 Obtain probability that links are missing (big

problem...).
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Uncovering the overlapping community structure of
complex networks in nature and society
Gergely Palla1,2, Imre Derényi2, Illés Farkas1 & Tamás Vicsek1,2

Many complex systems in nature and society can be described in
terms of networks capturing the intricate web of connections
among the units they are made of1–4. A key question is how to
interpret the global organization of such networks as the co-
existence of their structural subunits (communities) associated
with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins5,6,
industrial sectors7 and groups of people8,9) is crucial to the
understanding of the structural and functional properties of
networks. The existing deterministic methods used for large net-
works find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of
nodes. Here we introduce an approach to analysing the main
statistical features of the interwoven sets of overlapping commu-
nities that makes a step towards uncovering the modular structure
of complex systems. After defining a set of new characteristic
quantities for the statistics of communities, we apply an efficient
technique for exploring overlapping communities on a large scale.
We find that overlaps are significant, and the distributions we
introduce reveal universal features of networks. Our studies of
collaboration, word-association and protein interaction graphs
show that the web of communities has non-trivial correlations and
specific scaling properties.
Most real networks typically contain parts in which the nodes

(units) are more highly connected to each other than to the rest of
the network. The sets of such nodes are usually called clusters,
communities, cohesive groups or modules8,10,11–13; they have no
widely accepted, unique definition. In spite of this ambiguity,
the presence of communities in networks is a signature of the
hierarchical nature of complex systems5,14. The existing methods
for finding communities in large networks are useful if the commu-
nity structure is such that it can be interpreted in terms of separated
sets of communities (see Fig. 1b and refs 10, 15, 16–18). However,
most real networks are characterized by well-defined statistics of
overlapping and nested communities. This can be illustrated by the
numerous communities that each of us belongs to, including those
related to our scientific activities or personal life (school, hobby,
family) and so on, as shown in Fig. 1a. Furthermore, members of our
communities have their own communities, resulting in an extremely
complicated web of the communities themselves. This has long been
understood by sociologists19 but has never been studied system-
atically for large networks. Another, biological, example is that a
large fraction of proteins belong to several protein complexes
simultaneously20.
In general, each node i of a network can be characterized by a

membership number m i, which is the number of communities that
the node belongs to. In turn, any two communities a and b can share
s
ov
a;b nodes, which we define as the overlap size between these
communities. Naturally, the communities also constitute a network,

with the overlaps being their links. The number of such links of
community a can be called its community degree, dcoma : Finally, the
size scoma of any community a can most naturally be defined as the
number of its nodes. To characterize the community structure of a
large network we introduce the distributions of these four basic
quantities. In particular we focus on their cumulative distribution

LETTERS

Figure 1 | Illustration of the concept of overlapping communities. a, The
black dot in the middle represents either of the authors of this paper, with
several of his communities around. Zooming in on the scientific community
demonstrates the nested and overlapping structure of the communities, and
depicting the cascades of communities starting from some members
exemplifies the interwoven structure of the network of communities.
b, Divisive and agglomerative methods grossly fail to identify the
communities when overlaps are significant. c, An example of overlapping
k-clique communities at k ¼ 4. The yellow community overlaps the blue one
in a single node, whereas it shares two nodes and a link with the green one.
These overlapping regions are emphasized in red. Notice that any k-clique
(complete subgraph of size k) can be reached only from the k-cliques of the
same community through a series of adjacent k-cliques. Two k-cliques are
adjacent if they share k 2 1 nodes.

1Biological Physics Research Group of the Hungarian Academy of Sciences, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Department of Biological Physics, Eötvös University,

Pázmány P. stny. 1A, H-1117 Budapest, Hungary.

Vol 435|9 June 2005|doi:10.1038/nature03607

814

© 2005 Nature Publishing Group 

“Uncovering the overlapping community
structure of complex networks in nature
and society”
Palla et al.,
Nature, 435, 814–818, 2005. [81]
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“Link communities reveal multiscale
complexity in networks”
Ahn, Bagrow, and Lehmann,
Nature, 466, 761–764, 2010. [2]

Inertia

Law

Newton

Physics

Lab Biology

Scientific

Chemical

Chemistry

Science

Einstein
Theory

Hypothesis

Theorem

Gravity

Relativity

Biologist

Smart

Scientist

Sly

Bright

Genius

Intelligence

Clever

Intelligent

Gifted

Wise

Inventor Brilliant

Wisdom

Kinetic

Exceptional

Retarded

Invent

Chemist

Wit

Velocity

Intellect

Cunning

Outfox

Flask
Beaker

Test tube

Experiment

Research

Apple

Weight

Experiment, science

Newton, gravity, apple

Smart, intellect, scientists

Clever, wit

Science, scientists

f

https://pdodds.w3.uvm.edu//research/papers/others/everything/ahn2010a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/ahn2010a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/ahn2010a.pdf


The PoCSverse
Complex
Networks
271 of 321

The PoCSverse

Basic definitions

Examples

Basic Properties
Branching Networks

Supply Networks

Random
networks

Major Models
Generalized Affiliation
Networks

Thresholds

Generating
Functions

Structure
Detection

Big Nutshell

References

General structure detection

 “The discovery of structural form”
Kemp and Tenenbaum, PNAS (2008) [54]
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Example learned structures:
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 Biological features; Supreme Court votes; perceived
color differences; face differences; & distances
between cities.
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Nutshell:

Overview Key Points:
 The field of complex networks came into existence

in the late 1990s.
 Explosion of papers and interest since 1998/99.
 Hardened up much thinking about complex

systems.
 Specific focus on networks that are large-scale,

sparse, natural or people-made, evolving and
dynamic, and (crucially) measurable.

 Three main (blurred) categories:
1. Physical (e.g., river networks),
2. Interactional (e.g., social networks),
3. Abstract (e.g., thesauri).

 To solve network problems: “Follow the edges.”
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More Allegations:

 The map is not the territory.
 Sometimes the map is not the territory because

the territory does not exist.
 “But it might one day!” yelled Captain Survivor

Bias IV while holding up two pineapples to gauge
the distance between waves.

 And the mapper is never the map.
 (Scientific truths shouldn’t be named after

individuals.)
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Rather silly but great example of real
science:
“How Cats Lap: Water Uptake by Felis catus”
Reis et al., Science, 2010.

Amusing interview here

http://www.sciencemag.org/content/early/2010/11/10/science.1195421
http://video.nytimes.com/video/2010/11/11/science/1248069317702/how-cats-lap.html
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Warnings:

 Networks aren’t everything.
 Famous models of networks aren’t everything in

networks.
 Mathematical tractability ≠ meaningfulness or

viable existence in reality
 Even when networks are core to a system, the

best level of analysis may involve some scale of
grouping/averaging.

 Groups, groups, groups.
 And pyramids (∼ hierarchies)
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Basic Science ≃ Describe + Explain:

Lord Kelvin (possibly):
 “To measure is to know.”
 “If you cannot measure it,

you cannot improve it.”

Bonus:
 “X-rays will prove to be a

hoax.”
 “There is nothing new to be

discovered in physics now,
All that remains is more and
more precise
measurement.”

 “Beards will always be cool.”
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The Pyramid knows what you did.

Mass surveillance by story.

https://en.wikipedia.org/wiki/Eye_of_Providence
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The absolute basics:

Modern basic science in three steps:
1. Find interesting/meaningful/important

phenomena, optionally involving spectacular
amounts of data.

2. Describe what you see.
3. Explain it.

If you succeed at 1–3:
4. Create.
5. Share.

Always:
6. Be good people.
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