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Generatingfunctionology

Idea: Given a sequence a.a,,a,, ..., associate
each element with a distinct function or other
mathematical object.

Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

Definition:
The generating function (g.f.) for a sequence {a,, }
is

Roughly: transforms a vector in R into a
function defined on R™.

Related to Fourier, Laplace, Mellin, ...
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Simple examples:
Rolling dice and flipping coins:
pﬁ?’ = Pr(throwinga k) = 1/6 where k =1,2,...,6.

6
1
F<®(a:) _ Zp;c@xk _ g(z+‘r2+x3+x4+‘r5+x6)_
k=1
pEeM — pr(head) = 1/2, p{°" = Pr(tail) = 1/2.
. , . 1

FEo () = a0 4 pfoMat = 2 (14 ).

A generating function for a probability distribution

is called a Probability Generating Function (p.g.f.).

We'll come back to these simple examples as we
derive various delicious properties of generating

functions.
Example
Take a degree distribution with exponential decay:
P, =ce M

where geometricsumfully, we have ¢ = 1 — e *
The generating function for this distribution is

o0 oo c
F(x) = Z Ppak = Z ce Megh = [—
k=0 k=0 re

Notice that F(1) = ¢/(1 —e ™) = 1.
For probability distributions, we must always have
F(1) =1since

F(1) = iPklk = ipk =
k=0

k=0
Check die and coin p.g.f.'s.

Properties:

Average degree:

o0 o0
(k) =Y kP,= Y kPt
k=0 k=0

d
= aF(z)

x=1

=F/(1)

z=1

In general, many calculations become simple, if a little
abstract.
For our exponential example:

(1—eMe

Fl@) = ey
e—)x
So: (k) = F/(1) = Ty

Check for die and coin p.g.f's.
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Useful pieces for probability distributions:

Normalization:
First moment:

Higher moments:

(k) = (d%) Fw)|

r=1
kth element of sequence (general):
1 d*
b= g @)
x=0

A beautiful, fundamental thing:

The generating function for the sum of two
random variables

W=U+V

is

Fy(z) = Fy(z)Fy(2).
Convolve yourself with Convolutions:
Insert question from assignment 5 &'

Try with die and coin p.g.f.'s.
1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.

Edge-degree distribution

Recall our condition for a giant component:

(k2) — (k)
()

Let's re-express our condition in terms of
generating functions.

We first need the g.f. for R,.

We'll now use this notation:

Fp(x) is the g.f. for P,,.
Fr(z)is the g.f. for R,,.

(kygp = > 1.

Giant component condition in terms of g.f. is:
(k) g = Fh(1) > 1.

Now find how F}, is related to Fip ...
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Edge-degree distribution
<> We have

= = kJrlF’,H1 ok
=Y Rz :

Shift index to j = k + 1 and pull out ﬁ:

x_iw'_z—lzim ill
Fr(@) = g5 2907 = g5 2 Pigy
s Y. Pit? = g gy (Fr@) = Po) = 75 P
G=1
Finally, since (k) = Fp(1),
Fp(z)
PR =

Edge-degree distribution

&% Recall giant component condition is
() = Fp(1) > 1.
&% Since we have Fg(z) = Fp(z)/Fp(1),

&% Setting = = 1, our condition becomes

Fp(1)

—_— 1
FL()

Size distributions

To figure out the size of the largest component (S;),
we need more resolution on component sizes.

Definitions:

& m, = probability that a random node belongs to a
finite component of size n < .

& p,, = probability that a random end of a random

link leads to a finite subcomponent of size n < co.

Local-global connection:
Pk? Rk: & Ty P

neighbors < components
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Connecting probabilities:

P

&> Markov property of random networks connects
s Prr @Nd P,

Connecting probabilities:

/’R/kék uul’\a-mg

edgeg

&> Markov property of random networks connects p,,
and R,

G.f.'s for component size distributions:
&

o0 o0
= Z ™ and F(x) = Z PrT™
n=0 n=0

The largest component:

&% Subtle key: F,_ (1) is the probability that a node
belongs to a finite component.

&% Therefore: S, =1— F,.(1).

Our mission, which we accept:

&% Determine and connect the four generating
functions

Fp,Fg,F,, and F,

kg

PoCS
@pocsvox
Generating
Functions and
Networks

Generating
Functions

References

a 190f58

PoCS
@pocsvox
Generating
Functions and
Networks

Generating
Functions

References

Qv 200f58

PoCS
@pocsvox
Generating
Functions and
Networks

Generating
Functions

References

o 210f58

Useful results we'll need for g.f.'s

Sneaky Result 1:
&5 Consider two random variables U and V' whose
values may be 0,1,2, ...

<& Write probability distributions as U,, and V,. and
g.f'sas Fy; and Fy,.

& SR1: If a third random variable is defined as

4

U
W= Z Vi) with each V(® £ v
=1
then
| Py (@) = Fy (Fy ()]
Proof of SR1:

Write probability that variable W has value k as W,.

Wy, = Z U; x Pr(sum of j draws of variable V = k)
j=0

7=0 {ig,ig,enig)
iy tigt.ti;=k

{i1ig,ijll
iy tigt.ti=k

Vi o'tV ate - Vi s

{i12ig, i)
iy tigteti =k

Proof of SR1:

With some concentration, observe:

Vi, anV; ate Vija, f
{i1,ig,i5}
iy tigt.ti=k

SIS S A

* piece of (377 Vi,xi')j

(22, Via ) = (Fy(@))’

<& Alternate, groovier proof in the accompanying
assignment.
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Useful results we'll need for g.f.'s

Sneaky Result 2:

&5 Start with a random variable U with distribution
Uy (k=0,1,2,...)
& SR2: If a second random variable is defined as

V =U-+1 then |Fy(z) = 2Fy(x)

& Reason: V,, =U,_, fork>1and V, =0.
&

“Fy(z) = i Vb = i Up_1a*

Useful results we'll need for g.f.'s

Generalization of SR2:
& MV =U+ithen

Fy(x) = 2 Fy ().
& (QIfV=U—ithen

Fy(r) = 27 Fy()

o0
=z " Z Upzk
k=0

Connecting generating functions:

&% Goal: figure out forms of the component
generating functions, F. and F,.

n odes

&% Relate 7, to P, and p,, through one step of
recursion.
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Connecting generating functions:

& 7, = probability that a random node belongs to a
finite component of size n

_ i p.xpr ( SUm of sizes of subcomponents
- k at end of k random links =n — 1

™

Therefore: |F.(z)= z Fp(F,(z))
@ g

SR1

&% Extra factor of 2 accounts for random node itself.

Connecting generating functions:

3
> ¢

/Q/ék 0‘/‘!’3“’”9

ke edges

& Relate p,, to R, and p,, through one step of
recursion.

Connecting generating functions:

& p,, = probability that a random link leads to a finite
subcomponent of size n.

&% Invoke one step of recursion:
p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

_ Z Ry xPr ( sum of sizes of subcomponents )

~= at end of k random links =n — 1

Therefore: |F,(z)= z Fg(F,(z))
@ s

SR1

&> Again, extra factor of z accounts for random node
itself.
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Connecting generating functions:

&% We now have two functional equations connecting
our generating functions:

F.(x)=aFp(F,(r)) and F,(z) =xFg (FP(IL‘))
&% Taking stock: We know Fjp(z) and
Fp(x) = Fp(2)/Fp(1).
< We first untangle the second equation to find F,

< We can do this because it only involves F, and Fp.

&% The first equation then immediately gives us F. in
terms of £, and F.

Component sizes

<& Remembering vaguely what we are doing:

Finding F,. to obtain the fractional size of the
largest component §; =1 — F,(1).

&> Setx = 1in our two equations:

F.(1)=Fp(F,(1)) and F,(1) = Fg (F,(1))

< Solve second equation numerically for F,(1).
& Plug F,(1) into first equation to obtain F,(1).

Component sizes

Example: Standard random graphs.
&> We can show Fp(z) = e (F)(1-2)

= Fg(x) = Fp(z)/Fp(1)

= <k)e‘<k>(1—’-‘>/(k)e—<k>(1‘z/>\

x’=1

= (F=2) = [ (2) ...aha!

&> RHS's of our two equations are the same.

& SO F (1) = F,(x) = aFp(F,(x)) = 2Fp(Fr(2))

<% Consistent with how our dirty (but wrong) trick
worked earlier ...

& m, =p, justas P, = R,.
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Component sizes
We are down to
F_(z) = 2FR(F, (z)) and Fg(z) = e (F(-=2),

™

F_(2) = we- (RO Fy(@)

We're first after S, =1 — F,(1) so setz =1 and

replace F,.(1) by 1 —S;:
. -

1— Sl = €7<k>sl

1 1 0
Or: <k>:571|n175 o
1

0.2]

1 2 3 4
k0O

Just as we found with our dirty trick ...
Again, we (usually) have to resort to numerics ...

A few simple random networks to contemplate
and play around with:

if i = j and 0 otherwise.

P =641-
P = 6p0.
P, = 0p5.

P, = 4y, for some fixed k¥’ > 0.

P = 3051 + 3043

P, =ady; + (1 —a)ds, with0 <a <1.

Py, = 16,1 + 16, for some fixed &’ > 2.

Py, = ady, + (1 —a)d,, for some fixed & > 2 with
0<a<l

A joyful example [

1 1
Pk = §5k1 + §5k3.

We find (two ways): R, = 16,0 + 36,,.
A giant component exists because:
(kY =0x1/4+2x3/4=3/2>1.
Generating functions for P, and R;:

1 .13 _ Lo, 32

Fp(z) = 5T+ 5 and Fr(z) = 5t
Check for goodness:

Fp(z) = Fpp()/Fp(1) and Fp(1) = Fr(1) = 1.

Fp(1) = (k)p =2and Fp(1) = (k)5 = 3.
Things to figure out: Component size generating
functions for r,, and p,,, and the size of the giant
component.
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Find £ (z) first:

We know:

/T[ié/k uu}j\‘mg

edgey

Sticking things in things, we have:

Rearranging:

3z [Fp(:L')]2 —4F (x)4+z =0.

Please and thank you:

o= (121-52)

Time for a Taylor series expansion.

The promise: non-negative powers of = with
non-negative coefficients.

First: which sign do we take?

Because p,, is a probability distribution, we know
F,(1)<1and F,(z) <1for0 <z <1.

Thinking about the limit z — 0 in

o= & (121-32).

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

So we must have:

o= 2 (1-1-32).

We can now deploy the Taylor expansion:

2= (5)0+ (1) + () + (5) +
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where we've used I'(z + 1) = zI'(z) and noted that
() =,

Note: (1+ 2)? ~ 1+ 0z always.

a v 440f58

Totally psyched, we go back to here:

Fp(z):% (171/172;%).

Setting z = — 222 and expanding, we have:

Fo(z) =
2 1/ 3,\" 173 ,\° 1/ 3.,°
?(“{“5(7” *g(”ﬂ”) +E(7I> *
Giving:

Fyx)=3 p,a" =
n=0

1030, 9 0 E(%)k (CDITE) s
1 e 5 T3 \4) Trore Rt T

Do odd powers make sense?
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We can now find F, (x) with: Networks

F.(z)=xzFp (Fp(x))

Generating
Functions

3
1|2 / 3 23 / 3
== |—|1—4/1—=2x2 1—4/1— 222  Average
“2 {31' ( 4’ ) * (3z)3 ( 4* ) :| References

Delicious.
In principle, we can now extract all the .

But let’s just find the size of the giant component.
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First, we need Fp(l): @pocsv(?x Average Component Slze @pocsvt.)x Let's return to our example: Pk — %51@1 + %5k3~ @po(sv?x
Generating Generating Generating
Functions and Example: Standard random graphs. Functions and We're after: Functions and

2 3 1 Networks Networks . Networks
F,(z)| =7<1_,/1_712) —— Use factthat Fp = Frand F,. = F,.
P =1 3-1 4 3 o _ ’ /

Generating Two differentiated equations reduce to only one: Generating (n) = Fr(1) = Fp (F,(1)) + Fj(1)Fp (F,(1)) Generating

Fur

Functions Functions

This is the probability that a random edge leads to a where we first need to compute

sub-component of finite size.
Next:

FL(2) = Fp (Fy(2) + 2F} (@) Fp (Fy ()

F)(1) = Fg (F,(1)) + F,(1)Fg (F,(1)) .

1 11 1/71\3 5 |l Rearrange: F’(z)= %
F,.(1)=1.Fp(F,(1)) = Fp <§> =3373 (5) =37 References — 2Fp (Fr(2)) I Place stick between teeth, and recall that we have:
Simplify denominator using Fp(z) = (k) Fp(z) Fp(z) = lm + lzs and Fp(z) = lmo + §m2,
This is the probability that a random chosen node Replace Fp(F (z)) using F.(z) = xFp(F,(x)). 2 2 4 4
belongs to a finite component. Setx =1 and replace F, (1) with 1 — S;. Differentiation gives us:
Finally, we have ( 1 3 3
1-5) Fp(z) ==+ =x%2and Fr(z)= -z
5 22 Endresult: (n) = Fr(1) = — ey P 272 R 2
Si=1-F()=1-5 =5 g L= R=5) B o
Qv 47 0f 58 va v 510f58 a v 540f 58
PoCS H PoCS PoCS
5“ FMU(,.‘W 5’]’% @pocsvox Average Componeﬂt SIZG @pocsvox We bite harder and use Fp<1) — % to f|nd @pocsvox
Generatin; Generatin; Generatin;
[ of oSF Functiozsgand Our result for standard random networks: FunmoEsind , , , FunaioEsgand
( e e e — - 0:;‘3WPDM Networks (1 g ) Networks Fp(l) — FR (Fp(]')) + Fp<1)FR (Fp(]_)) Networks
enerating (n)=Fp(l) = -—rs o
Funcions® 1—(k)(1—5y) Functanc® 1 L1 Funcione®
; —Fp (5) +F(1)F) (§> e
Recall that (k) = 1 is the critical value of average : : o
degree for standard random networks. 1 g1 o 31
Look at what happens when we increase (k) to 1 YRR ol )53
from below.
We have S; =0 forall (k) <1 so References After some reallocation of objects, we have Fj(1) = 12, rererences
(m) = 1
n) = -—-+
=) Finally: (n) = F/.(1) = Fp (1) L Bp (1)
3 2 3
This blows up as (k) — 1. _11 11 131 g1y 5 13 122
s . 23 233 2 \2 23¢ 27 3 27
Reason: we have a power law distribution of
i 1) component sizes at (k) = 1. )
<‘(>wﬂfﬂ~‘ il .p | critical poi <b>h | So, kinda small.
DA 490f58 Typlca critica pomt ehavior... v 520f58 DA 550f58
Average component size Brocsvox Average component size Brocsvox Nutshell Gpocsvox
Generatin; Generatin; Generatin;
Next: find average size of finite components (n). LZTSJL‘?E;"" Lﬂgﬂ(ﬁgﬂgind ;uent;;mgand
Using standard G.F. result: (n) = F.(1). Limits of (k) = 0 and co make sense for
Try to avoid finding F, () ... Generating (1-5,) Generating peneranng
' uncions IO -5 unctions unctons
Starting from 7 (z) = «Fp (F,(x)), we (n) = Fr(1) = 1— (K125, . : Generating functions allow us to strangely
differentiate: calculate features of random networks.
Fi(a) = Fp (F,(@)) + 2F4(@) Fp (F(x) po by 205, ~ 0 and ) = L They're a bit scary and magical.
™ P P P ;
All nodes are isolated. 7 we'll find generating functions useful for
While F,(z) = 2Fg (F,(z)) gives References As (k) = o0, S; — 1 and (n) — 0. References contagion. References
No nodes are outside of the giant component. But we'll also see that more direct, physics-bearing
F/ = Fgr (F F/(x)Fp (F . . !
o) = Fr (F,(@)) + 2F5 (@) Fg (F, (1)) calculations are possible.
Now set z = 1 in both equations. Extra on largest component size:
We solve the second equation for F/ (1) (we must For (k) =1, S; ~ N2/3/N.
already have F,(1)). For (k) < 1,8, ~ (logN)/N.
Plug F;(1) and F,(1) into first equation to find il il B

FL(1).

v 500f58 (v 530f58 Dav 560f 58
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