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Universal Behavior in a Generalized Model of Contagion

Peter Sheridan Dodds1,* and Duncan J. Watts2,3,†

1Institute for Social and Economic Research and Policy, Columbia University, 420 West 118th Street, NewYork, NewYork 10027, USA
2Department of Sociology, Columbia University, 1180 Amsterdam Avenue, New York, New York 10027, USA

3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
(Received 5 December 2003; published 24 May 2004)

Models of contagion arise broadly in both the biological and the social sciences, with applications
ranging from the transmission of infectious diseases to the spread of cultural fads. In this Letter, we in-
troduce a general model of contagion which, by explicitly incorporating memory of past exposures to,
for example, an infectious agent, rumor, or new product, includes the main features of existing conta-
gion models and interpolates between them. We obtain exact solutions for a simple version of the model,
finding that under general conditions only three classes of collective dynamics exist. Furthermore, we
find that, for a given length of memory, the class into which a particular system falls is determined by
only two parameters. Our model suggests novel measures for assessing the susceptibility of a population
to large contagion events, and also a possible strategy for inhibiting or facilitating them.

DOI: 10.1103/PhysRevLett.92.218701 PACS numbers: 89.75.Hc, 87.19.Xx, 87.23.Ge, 89.65.–s

Defined broadly as the transmission of an influence
from one individual to another, the concept of contagion
occupies an important place both in biology—specifi-
cally in mathematical epidemiology [1,2]—and in the
social sciences, where it is manifested in problems as
diverse as the diffusion of innovations [3,4], the spread
of cultural fads [5–7], and the outbreak of political [8] or
social [9] unrest.

Despite the wide range of social and biological phe-
nomena to which they have been applied, existing models
of contagion typically fall into one of two categories
that we delineate in terms of the relationship between
successive exposures of a ‘‘susceptible’’ to an ‘‘infec-
tious’’ individual: (i) what we call independent interac-
tion models, in which successive contacts result in
contagion with independent probability p; and (ii) thresh-
old models, in which the probability of infection changes
rapidly from low to high as a critical number of simulta-
neous exposures is exceeded (thus, the effect of any single
exposure depends strongly on the number of other expo-
sures). The SIR model [10,11], the canonical model of
biological contagion, is an example of an independent
interaction model, as is the so-called Bass model [3] from
the diffusion of innovations literature. By contrast, nu-
merous models in sociology [9], economics [12], and
political science [13] are explicitly threshold models,
while others still [14–16] embed thresholds implicitly
through the relative costs and benefits of one action versus
another.

None of these models, however, treat the interdepen-
dencies between exposures themselves as an object of
study—rather they are simply assumed to either exist
or not exist —hence, their effects on the collective dy-
namics of contagion are unknown. Furthermore, if, as we
show below, these effects turn out to be considerable,
existing models provide no way to determine the condi-

tions under which one kind of collective behavior or
another should be expected.

In this Letter, we explore a generalized model of con-
tagion that, by introducing memory of past exposures to a
contagious influence, generalizes and interpolates be-
tween independent interaction and threshold models of
contagion. Our model is defined as follows. Consider a
population of N individuals, each of which is in one of
three states S (susceptible), I (infected), or R (removed).
At each time step t, each individual i comes into contact
with one other individual j, drawn randomly from the
population. If i is susceptible and j is infected then, with
probability p, i receives a positive dose di�t�, drawn
randomly from some distribution of dose size f�d�; oth-
erwise, di�t� � 0. Each individual maintains a memory
of doses received over the previous T time steps,
recording a cumulative dose Di�t� �

P
t
t0�t�T�1 di�t

0�.
Susceptible individuals become infected if Di�t� � d�i ,
where d�i (the dose threshold of i) is drawn randomly at
t � 0 from a distribution g�d��, and remains fixed there-
after. The probability that a susceptible individual who
encounters K 	 T infected individuals in T time steps
will themselves become infected is therefore

Pinf�K� �
XK
k�1

�
K
k

�
pk�1� p�K�kPk; (1)

where

Pk �
Z 1

0
dd�g�d��P

�Xk
i�1

di � d�
�

(2)

is the average fraction of individuals infected after
receiving k positive doses in T time steps, and
P�
P

k
i�1 di � d�� is the probability that the sum of k doses

drawn from f�d� exceeds a given d�.
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Abstract

We present a model of contagion that unifies and generalizes existing models of the spread of social influences and

microorganismal infections. Our model incorporates individual memory of exposure to a contagious entity (e.g. a rumor or disease),

variable magnitudes of exposure (dose sizes), and heterogeneity in the susceptibility of individuals. Through analysis and simulation,

we examine in detail the case where individuals may recover from an infection and then immediately become susceptible again

(analogous to the so-called SIS model). We identify three basic classes of contagion models which we call epidemic threshold,

vanishing critical mass, and critical mass classes, where each class of models corresponds to different strategies for prevention or

facilitation. We find that the conditions for a particular contagion model to belong to one of the these three classes depend only on

memory length and the probabilities of being infected by one and two exposures, respectively. These parameters are in principle

measurable for real contagious influences or entities, thus yielding empirical implications for our model. We also study the case

where individuals attain permanent immunity once recovered, finding that epidemics inevitably die out but may be surprisingly

persistent when individuals possess memory.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Contagion; Epidemic; Memory; Treshold; Dose response; Critical mass; Universality; Bifuraction

1. Introduction

Contagion, in its most general sense, is the spreading
of an entity or influence between individuals in a
population, via direct or indirect contact. Contagion
processes therefore arise broadly in the social and
biological sciences, manifested as, for example the
spread of infectious diseases (Murray, 2002; Daley and
Gani, 1999; Anderson and May, 1991; Brauer and
Castillo-Chávez, 2001; Diekmann and Heesterbeek,
2000; Hethcote, 2000) and computer viruses, the
diffusion of innovations (Coleman et al., 1966; Valente,
1995; Rogers, 1995), political upheavals (Lohmann,
1994), and the dissemination of religious doctrine
(Stark, 1996; Montgomery, 1996). Existing mathema-
tical models of contagion, while motivated in a variety

of ways depending on the application at hand, fall into
one of only two broad categories, where the critical
distinction between these categories can be explained in
terms of the interdependencies between successive
contacts; that is, the extent to which the effect of an
exposure to a contagious agent is determined by the
presence or absence of previous exposures.
The standard assumption in all mathematical models

of infectious disease spreading (for example, the classic
SIR model, Kermack and McKendrick, 1927; Murray,
2002), and also in some models of social contagion
(Goffman and Newill, 1964; Daley and Kendall, 1965;
Bass, 1969), is that there is no interdependency between
contacts; rather, the infection probability is assumed to
be independent and identical across successive contacts.
All such models fall into a category that we call
independent interaction models. By contrast, what we
call threshold models assert that an individual can only
become infected when a certain critical number of

ARTICLE IN PRESS

www.elsevier.com/locate/yjtbi

0022-5193/$ - see front matter r 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jtbi.2004.09.006

�Corresponding author. Tel.: +1212 854 9647.
E-mail address: peter.dodds@columbia.edu (P.S. Dodds).

“A generalized model of social and
biological contagion”
Dodds and Watts,
J. Theor. Biol., 232, 587–604, 2005. [6]
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Generalized contagion model

Basic questions about contagion
 How many types of contagion are there?
 How can we categorize real-world contagions?
 Can we connect models of disease-like and social

contagion?
 Focus: mean field models.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Mathematical Epidemiology (recap)

The standard SIR model [11]

 = basic model of disease contagion
 Three states:

1. S = Susceptible
2. I = Infective/Infectious
3. R = Recovered or Removed or Refractory

 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1
 Presumes random interactions (mass-action

principle)
 Interactions are independent (no memory)
 Discrete and continuous time versions

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Independent Interaction Models

Discrete time automata example:

I

R

S
βI

1 − ρ

ρ

1 − βI

r
1 − r

Transition Probabilities:

𝛽 for being infected given
contact with infected
𝑟 for recovery
𝜌 for loss of immunity

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Independent Interaction Models

Original models attributed to
 1920’s: Reed and Frost
 1920’s/1930’s: Kermack and McKendrick [8, 10, 9]

 Coupled differential equations with a mass-action
principle

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Independent Interaction models

Differential equations for continuous model
d
d𝑡 𝑆 = −𝛽𝐼𝑆 + 𝜌𝑅

d
d𝑡 𝐼 = 𝛽𝐼𝑆 − 𝑟𝐼

d
d𝑡 𝑅 = 𝑟𝐼 − 𝜌𝑅

𝛽, 𝑟, and 𝜌 are now rates.

Reproduction Number 𝑅0:
 𝑅0 = expected number of infected individuals

resulting from a single initial infective
 Epidemic threshold: If 𝑅0 > 1, ‘epidemic’ occurs.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Reproduction Number 𝑅0

Discrete version:
 Set up: One Infective in a randomly mixing

population of Susceptibles
 At time 𝑡 = 0, single infective randomly bumps into

a Susceptible
 Probability of transmission = 𝛽
 At time 𝑡 = 1, single Infective remains infected with

probability 1 − 𝑟
 At time 𝑡 = 𝑘, single Infective remains infected

with probability (1 − 𝑟)𝑘

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Reproduction Number 𝑅0

Discrete version:
 Expected number infected by original Infective:

𝑅0 = 𝛽 + (1 − 𝑟)𝛽 + (1 − 𝑟)2𝛽 + (1 − 𝑟)3𝛽 + …

= 𝛽 (1 + (1 − 𝑟) + (1 − 𝑟)2 + (1 − 𝑟)3 + …)

= 𝛽 1
1 − (1 − 𝑟) = 𝛽/𝑟

 Similar story for continuous model.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Independent Interaction models

Example of epidemic threshold:

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

R
0

Fr
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tio
n 

in
fe

ct
ed

 Continuous phase transition.
 Fine idea from a simple model.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Simple disease spreading models

Valiant attempts to use SIR and co. elsewhere:
 Adoption of ideas/beliefs (Goffman & Newell,

1964) [7]

 Spread of rumors (Daley & Kendall, 1964,
1965) [3, 4]

 Diffusion of innovations (Bass, 1969) [1]

 Spread of fanatical behavior (Castillo-Chávez &
Song, 2003) [2]

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Granovetter’s model (recap of recap)

 Action based on perceived behavior of others.

0 1
0

0.2

0.4

0.6

0.8

1

φ
i
∗

A

φ
i,t

Pr
(a

i,t
+

1=
1)

0 0.5 1
0

0.5

1

1.5

2

2.5
B

φ∗

f (
φ∗ )

0 0.5 1
0

0.2

0.4

0.6

0.8

1

φ
t

φ t+
1 =

 F
 (

φ t)

C

 Two states: S and I.
 Recovery now possible (SIS).
 𝜙 = fraction of contacts ‘on’ (e.g., rioting).
 Discrete time, synchronous update.
 This is a Critical mass model.
 Interdependent interaction model.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Some (of many) issues

 Disease models assume independence of
infectious events.

 Threshold models only involve proportions:
3/10 ≡ 30/100.

 Threshold models ignore exact sequence of
influences

 Threshold models assume immediate polling.
 Mean-field models neglect network structure
 Network effects only part of story:

media, advertising, direct marketing.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Generalized model

Basic ingredients:
 Incorporate memory of a contagious element [5, 6]

 Population of 𝑁 individuals, each in state S, I, or R.
 Each individual randomly contacts another at each

time step.
 𝜙𝑡 = fraction infected at time 𝑡

= probability of contact with infected individual
 With probability 𝑝, contact with infective

leads to an exposure.

 If exposed, individual receives a dose of size 𝑑
drawn from distribution 𝑓 . Otherwise 𝑑 = 0.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Generalized model—ingredients

S ⇒ I
 Individuals ‘remember’ last 𝑇 contacts:

𝐷𝑡,𝑖 =
𝑡

∑
𝑡′=𝑡−𝑇+1

𝑑𝑖(𝑡′)

 Infection occurs if individual 𝑖’s ‘threshold’ is
exceeded:

𝐷𝑡,𝑖 ≥ 𝑑∗
𝑖

 Threshold 𝑑∗
𝑖 drawn from arbitrary distribution 𝑔

at 𝑡 = 0.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Generalized model—ingredients

I ⇒ R
When 𝐷𝑡,𝑖 < 𝑑∗

𝑖,
individual 𝑖 recovers to state R with probability 𝑟.

R ⇒ S
Once in state R, individuals become susceptible again
with probability 𝜌.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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A visual explanation

b

dt−T+1 dt−1 dtdt−T

contactφt
receive

dose d > 0infective

a
p

1 − p
1 − φt

receive

no dose

︸ ︷︷ ︸
∑

=Dt,i

I

S
1 if Dt,i ≥ d∗i

1 − ρ

1 if Dt,i < d∗i

c

R
1 − r if Dt,i < d∗i

1 if Dt,i ≥ d∗i

ρ

r(1 − ρ) if Dt,i < d∗i

rρ if Dt,i < d∗i

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Generalized mean-field model

Study SIS-type contagion first:
 Recovered individuals are immediately susceptible

again:
𝜌 = 1.

 Look for steady-state behavior as a function of
exposure probability 𝑝.

 Denote fixed points by 𝜙∗.

Homogeneous version:
 All individuals have threshold 𝑑∗

 All dose sizes are equal: 𝑑 = 1

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Homogeneous, one hit models:

Fixed points for 𝑟 < 1, 𝑑∗ = 1, and 𝑇 = 1:
 𝑟 < 1 means recovery is probabilistic.
 𝑇 = 1 means individuals forget past interactions.
 𝑑∗ = 1 means one positive interaction will infect an

individual.
 Evolution of infection level:

𝜙𝑡+1 = 𝑝𝜙𝑡⏟
a

+ 𝜙𝑡(1 − 𝑝𝜙𝑡)⏟⏟⏟⏟⏟
b

(1 − 𝑟)⏟
c

.

a: Fraction infected between 𝑡 and 𝑡 + 1,
independent of past state or recovery.

b: Probability of being infected and not being
reinfected.

c: Probability of not recovering.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Homogeneous, one hit models:

Fixed points for 𝑟 < 1, 𝑑∗ = 1, and 𝑇 = 1:
 Set 𝜙𝑡 = 𝜙∗:

𝜙∗ = 𝑝𝜙∗ + (1 − 𝑝𝜙∗)𝜙∗(1 − 𝑟)

⇒ 1 = 𝑝 + (1 − 𝑝𝜙∗)(1 − 𝑟), 𝜙∗ ≠ 0,

⇒ 𝜙∗ = 1 − 𝑟/𝑝
1 − 𝑟 and 𝜙∗ = 0.

 Critical point at 𝑝 = 𝑝𝑐 = 𝑟.
 Spreading takes off if 𝑝/𝑟 > 1
 Find continuous phase transition as for SIR model.
 Goodness: Matches 𝑅𝑜 = 𝛽/𝛾 > 1 condition.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Simple homogeneous examples

Fixed points for 𝑟 = 1, 𝑑∗ = 1, and 𝑇 > 1
 𝑟 = 1 means recovery is immediate.
 𝑇 > 1 means individuals remember at least 2

interactions.
 𝑑∗ = 1 means only one positive interaction in past

𝑇 interactions will infect individual.
 Effect of individual interactions is independent

from effect of others.
 Call 𝜙∗ the steady state level of infection.
 Pr(infected) = 1 - Pr(uninfected):

𝜙∗ = 1 − (1 − 𝑝𝜙∗)𝑇 .

https://pdodds.w3.uvm.edu
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Homogeneous, one hit models:
Fixed points for 𝑟 = 1, 𝑑∗ = 1, and 𝑇 > 1
 Closed form expression for 𝜙∗:

𝜙∗ = 1 − (1 − 𝑝𝜙∗)𝑇 .

 Look for critical infection probability 𝑝𝑐.
 As 𝜙∗ → 0, we see

𝜙∗ ≃ 𝑝𝑇 𝜙∗ ⇒ 𝑝𝑐 = 1/𝑇 .

 Again find continuous phase transition …
 Note: we can solve for 𝑝 but not 𝜙∗:

𝑝 = (𝜙∗)−1[1 − (1 − 𝜙∗)1/𝑇 ].

https://pdodds.w3.uvm.edu
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Homogeneous, one hit models:
Fixed points for 𝑟 ≤ 1, 𝑑∗ = 1, and 𝑇 ≥ 1
 Start with 𝑟 = 1, 𝑑∗ = 1, and 𝑇 ≥ 1 case we have

just examined:

𝜙∗ = 1 − (1 − 𝑝𝜙∗)𝑇 .

 For 𝑟 < 1, add to right hand side fraction who:
1. Did not receive any infections in last T time steps,
2. And did not recover from a previous infection.

 Define corresponding dose histories. Example:

𝐻1 = {… , 𝑑𝑡−𝑇−2, 𝑑𝑡−𝑇−1, 1, 0, 0, … , 0, 0⏟⏟⏟⏟⏟
𝑇 0’s

},

 With history 𝐻1, probability of being infected (not
recovering in one time step) is 1 − 𝑟.

https://pdodds.w3.uvm.edu
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Homogeneous, one hit models:
Fixed points for 𝑟 ≤ 1, 𝑑∗ = 1, and 𝑇 ≥ 1
 In general, relevant dose histories are:

𝐻𝑚+1 = {… , 𝑑𝑡−𝑇−𝑚−1, 1, 0, 0, … , 0, 0⏟⏟⏟⏟⏟
𝑚 0’s

, 0, 0, … , 0, 0⏟⏟⏟⏟⏟
𝑇 0’s

}.

 Overall probabilities for dose histories occurring:

𝑃(𝐻1) = 𝑝𝜙∗(1 − 𝑝𝜙∗)𝑇 (1 − 𝑟),

𝑃 (𝐻𝑚+1) = 𝑝𝜙∗⏟
𝑎

(1 − 𝑝𝜙∗)𝑇+𝑚⏟⏟⏟⏟⏟⏟⏟
𝑏

(1 − 𝑟)𝑚+1⏟⏟⏟⏟⏟
𝑐

.

a: Pr(infection 𝑇 + 𝑚 + 1 time steps ago)
b: Pr(no doses received in 𝑇 + 𝑚 time steps since)
c: Pr(no recovery in 𝑚 chances)

https://pdodds.w3.uvm.edu
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Homogeneous, one hit models:
Fixed points for 𝑟 ≤ 1, 𝑑∗ = 1, and 𝑇 ≥ 1
 Pr(recovery) = Pr(seeing no doses for at least 𝑇

time steps and recovering)

= 𝑟
∞
∑

𝑚=0
𝑃(𝐻𝑇+𝑚) = 𝑟

∞
∑

𝑚=0
𝑝𝜙∗(1−𝑝𝜙∗)𝑇+𝑚(1−𝑟)𝑚

= 𝑟 𝑝𝜙∗(1 − 𝑝𝜙∗)𝑇

1 − (1 − 𝑝𝜙∗)(1 − 𝑟).

 Using the probability of not recovering, we end up
with a fixed point equation:

𝜙∗ = 1 − 𝑟(1 − 𝑝𝜙∗)𝑇

1 − (1 − 𝑝𝜙∗)(1 − 𝑟).

https://pdodds.w3.uvm.edu
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Homogeneous, one hit models:

Fixed points for 𝑟 ≤ 1, 𝑑∗ = 1, and 𝑇 ≥ 1
 Fixed point equation (again):

𝜙∗ = 1 − 𝑟(1 − 𝑝𝜙∗)𝑇

1 − (1 − 𝑝𝜙∗)(1 − 𝑟).

 Find critical exposure probability by examining
above as 𝜙∗ → 0.



⇒ 𝑝𝑐 = 1
𝑇 + 1/𝑟 − 1 = 1

𝑇 + 𝜏 .

where 𝜏 = mean recovery time for simple
relaxation process.

 Decreasing 𝑟 keeps individuals infected for longer
and decreases 𝑝𝑐.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/


PoCS
@pocsvox

Generalized
Contagion

Introduction

Independent
Interaction
models

Interdependent
interaction
models

Generalized
Model
Homogeneous version

Heterogeneous version

Nutshell

Appendix

References

.
.
.
.
.

.
31 of 65

Epidemic threshold:
Fixed points for 𝑑∗ = 1, 𝑟 ≤ 1, and 𝑇 ≥ 1

 𝜙∗ = 1 − 𝑟(1−𝑝𝜙∗)𝑇

1−(1−𝑝𝜙∗)(1−𝑟)
 𝜙∗ = 0
 𝑝𝑐 = 1/(𝑇 + 𝜏)

0 0.2 1/3 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 p

φ*

 Example details: 𝑇 = 2 & 𝑟 = 1/2 ⇒ 𝑝𝑐 = 1/3.
 Blue = stable, red = unstable, fixed points.
 𝜏 = 1/𝑟 − 1 = characteristic recovery time = 1.
 𝑇 + 𝜏 ≃ average memory in system = 3.
 Phase transition can be seen as a transcritical

bifurcation. [12]

https://pdodds.w3.uvm.edu
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Homogeneous, multi-hit models:

 All right: 𝑑∗ = 1 models correspond to simple
disease spreading models.

 What if we allow 𝑑∗ ≥ 2?
 Again first consider SIS with immediate recovery

(𝑟 = 1)
 Also continue to assume unit dose sizes

(𝑓(𝑑) = 𝛿(𝑑 − 1)).
 To be infected, must have at least 𝑑∗ exposures in

last 𝑇 time steps.
 Fixed point equation:

𝜙∗ =
𝑇

∑
𝑖=𝑑∗

(𝑇
𝑖 )(𝑝𝜙∗)𝑖(1 − 𝑝𝜙∗)𝑇−𝑖.

 As always, 𝜙∗ = 0 works too.

https://pdodds.w3.uvm.edu
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Homogeneous, multi-hit models:

Fixed points for 𝑟 = 1, 𝑑∗ > 1, and 𝑇 ≥ 1
 Exactly solvable for small 𝑇 .
 e.g., for 𝑑∗ = 2, 𝑇 = 3:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 p

φ* ( 
p)

 Fixed point equation:
𝜙∗ =
3𝑝2𝜙∗2(1 − 𝑝𝜙∗) + 𝑝3𝜙∗3

 See new structure: a
saddle node
bifurcation [12] appears
as 𝑝 increases.

 (𝑝𝑏, 𝜙∗) = (8/9, 27/32).

 Behavior akin to output of Granovetter’s threshold
model.
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Homogeneous, multi-hit models:

 Another example:

Critical Mass Models

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 p

φ*

 𝑟 = 1, 𝑑∗ = 3, 𝑇 = 12 Saddle-node bifurcation.
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Fixed points for 𝑟 = 1, 𝑑∗ > 1, and 𝑇 ≥ 1

 𝑇 = 24, 𝑑∗ = 1, 2, …23.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

φ*

 𝑑∗ = 1 → 𝑑∗ > 1:
jump between
continuous
phase transition
and pure critical
mass model.

 Unstable curve
for 𝑑∗ = 2 does
not hit 𝜙∗ = 0.

 See either simple phase transition or saddle-node
bifurcation, nothing in between.
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Fixed points for 𝑟 = 1, 𝑑∗ > 1, and 𝑇 ≥ 1

 Bifurcation points for example fixed 𝑇 , varying 𝑑∗:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p
b

φ*
 b

 𝑇 = 96 ( ).
 𝑇 = 24 (▷),
 𝑇 = 12 (◁),
 𝑇 = 6 (□),
 𝑇 = 3 (○),

https://pdodds.w3.uvm.edu
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Fixed points for 𝑟 < 1, 𝑑∗ > 1, and 𝑇 ≥ 1
 For 𝑟 < 1, need to determine probability of

recovering as a function of time since dose load
last dropped below threshold.

 Partially summed random walks:

𝐷𝑖(𝑡) =
𝑡

∑
𝑡′=𝑡−𝑇+1

𝑑𝑖(𝑡′)

 Example for 𝑇 = 24, 𝑑∗ = 14:

0 10 20 30 40 50 60 70 80
0

4

8
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16

20

24

t

D
(t

)
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Fixed points for 𝑟 < 1, 𝑑∗ > 1, and 𝑇 ≥ 1

 Define 𝛾𝑚 as fraction of individuals for whom 𝐷(𝑡)
last equaled, and has since been below, their
threshold 𝑚 time steps ago,

 Fraction of individuals below threshold but not
recovered:

Γ(𝑝, 𝜙∗; 𝑟) =
∞
∑

𝑚=1
(1 − 𝑟)𝑚𝛾𝑚(𝑝, 𝜙∗).

 Fixed point equation:

𝜙∗ = Γ(𝑝, 𝜙∗; 𝑟) +
𝑇

∑
𝑖=𝑑∗

(𝑇
𝑖 )(𝑝𝜙∗)𝑖(1 − 𝑝𝜙∗)𝑇−𝑖.

https://pdodds.w3.uvm.edu
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Fixed points for 𝑟 < 1, 𝑑∗ > 1, and 𝑇 ≥ 1
Example: 𝑇 = 3, 𝑑∗ = 2
 Want to examine how dose load can drop below

threshold of 𝑑∗ = 2:

𝐷𝑛 = 2 ⇒ 𝐷𝑛+1 = 1

 Two subsequences do this:
{𝑑𝑛−2, 𝑑𝑛−1, 𝑑𝑛, 𝑑𝑛+1} = {1, 1, 0, 0}
and {𝑑𝑛−2, 𝑑𝑛−1, 𝑑𝑛, 𝑑𝑛+1, 𝑑𝑛+2} = {1, 0, 1, 0, 0}.

 Note: second sequence includes an extra 0 since
this is necessary to stay below 𝑑∗ = 2.

 To stay below threshold, observe acceptable
following sequences may be composed of any
combination of two subsequences:

𝑎 = {0} and 𝑏 = {1, 0, 0}.

https://pdodds.w3.uvm.edu
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Fixed points for 𝑟 < 1, 𝑑∗ > 1, and 𝑇 ≥ 1
 Determine number of sequences of length 𝑚 that

keep dose load below 𝑑∗ = 2.
 𝑁𝑎 = number of 𝑎 = {0} subsequences.
 𝑁𝑏 = number of 𝑏 = {1, 0, 0} subsequences.

𝑚 = 𝑁𝑎 ⋅ 1 + 𝑁𝑏 ⋅ 3

Possible values for 𝑁𝑏:

0, 1, 2, … , ⌊𝑚
3 ⌋ .

where ⌊⋅⌋ means floor.
 Corresponding possible values for 𝑁𝑎:

𝑚, 𝑚 − 3, 𝑚 − 6, … , 𝑚 − 3 ⌊𝑚
3 ⌋ .
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Fixed points for 𝑟 < 1, 𝑑∗ > 1, and 𝑇 ≥ 1

 How many ways to arrange 𝑁𝑎 𝑎’s and 𝑁𝑏 𝑏’s?
 Think of overall sequence in terms of

subsequences:

{𝑍1, 𝑍2, … , 𝑍𝑁𝑎+𝑁𝑏
}

 𝑁𝑎 + 𝑁𝑏 slots for subsequences.
 Choose positions of either 𝑎’s or 𝑏’s:

(𝑁𝑎 + 𝑁𝑏
𝑁𝑎

) = (𝑁𝑎 + 𝑁𝑏
𝑁𝑏

).
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Fixed points for 𝑟 < 1, 𝑑∗ > 1, and 𝑇 ≥ 1
 Total number of allowable sequences of length 𝑚:

⌊𝑚/3⌋
∑

𝑁𝑏=0
(𝑁𝑏 + 𝑁𝑎

𝑁𝑏
) =

⌊𝑚/3⌋
∑
𝑘=0

(𝑚 − 2𝑘
𝑘 )

where 𝑘 = 𝑁𝑏 and we have used 𝑚 = 𝑁𝑎 + 3𝑁𝑏.
 𝑃(𝑎) = (1 − 𝑝𝜙∗) and 𝑃(𝑏) = 𝑝𝜙∗(1 − 𝑝𝜙∗)2

 Total probability of allowable sequences of length
𝑚:

𝜒𝑚(𝑝, 𝜙∗) =
⌊𝑚/3⌋
∑
𝑘=0

(𝑚 − 2𝑘
𝑘 )(1 − 𝑝𝜙∗)𝑚−𝑘(𝑝𝜙∗)𝑘.

 Notation: Write a randomly chosen sequence of
𝑎’s and 𝑏’s of length 𝑚 as 𝐷𝑎,𝑏

𝑚 .
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Fixed points for 𝑟 < 1, 𝑑∗ > 1, and 𝑇 ≥ 1

 Nearly there …must account for details of
sequence endings.

 Three endings ⇒ Six possible sequences:

𝐷1 = {1, 1, 0, 0, 𝐷𝑎,𝑏
𝑚−1}

𝑃1 = (𝑝𝜙)2(1 − 𝑝𝜙)2𝜒𝑚−1(𝑝, 𝜙)
𝐷2 = {1, 1, 0, 0, 𝐷𝑎,𝑏

𝑚−2, 1}
𝑃2 = (𝑝𝜙)3(1 − 𝑝𝜙)2𝜒𝑚−2(𝑝, 𝜙)

𝐷3 = {1, 1, 0, 0, 𝐷𝑎,𝑏
𝑚−3, 1, 0}

𝑃3 = (𝑝𝜙)3(1 − 𝑝𝜙)3𝜒𝑚−3(𝑝, 𝜙)
𝐷4 = {1, 0, 1, 0, 0, 𝐷𝑎,𝑏

𝑚−2}
𝑃4 = (𝑝𝜙)2(1 − 𝑝𝜙)3𝜒𝑚−2(𝑝, 𝜙)

𝐷5 = {1, 0, 1, 0, 0, 𝐷𝑎,𝑏
𝑚−3, 1}

𝑃5 = (𝑝𝜙)3(1 − 𝑝𝜙)3𝜒𝑚−3(𝑝, 𝜙)
𝐷6 = {1, 0, 1, 0, 0, 𝐷𝑎,𝑏

𝑚−4, 1, 0}
𝑃6 = (𝑝𝜙)3(1 − 𝑝𝜙)4𝜒𝑚−4(𝑝, 𝜙)

https://pdodds.w3.uvm.edu
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Fixed points for 𝑟 < 1, 𝑑∗ = 2, and 𝑇 = 3

F.P. Eq: 𝜙∗ = Γ(𝑝, 𝜙∗; 𝑟) +
𝑇

∑
𝑖=𝑑∗

(𝑇
𝑖 )(𝑝𝜙∗)𝑖(1 − 𝑝𝜙∗)𝑇−𝑖.

where Γ(𝑝, 𝜙∗; 𝑟) =

(1 − 𝑟)(𝑝𝜙)2(1 − 𝑝𝜙)2 +
∞
∑

𝑚=1
(1 − 𝑟)𝑚(𝑝𝜙)2(1 − 𝑝𝜙)2×

[𝜒𝑚−1 + 𝜒𝑚−2 + 2𝑝𝜙(1 − 𝑝𝜙)𝜒𝑚−3 + 𝑝𝜙(1 − 𝑝𝜙)2𝜒𝑚−4]
and

𝜒𝑚(𝑝, 𝜙∗) =
⌊𝑚/3⌋
∑
𝑘=0

(𝑚 − 2𝑘
𝑘 )(1 − 𝑝𝜙∗)𝑚−𝑘(𝑝𝜙∗)𝑘.

Note: (1 − 𝑟)(𝑝𝜙)2(1 − 𝑝𝜙)2 accounts for {1, 0, 1, 0}
sequence.
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Fixed points for 𝑟 < 1, 𝑑∗ > 1, and 𝑇 ≥ 1

𝑇 = 3, 𝑑∗ = 2
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 𝑟 = 0.01, 0.05, 0.10, 0.15, 0.20, … , 1.00.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/


PoCS
@pocsvox

Generalized
Contagion

Introduction

Independent
Interaction
models

Interdependent
interaction
models

Generalized
Model
Homogeneous version

Heterogeneous version

Nutshell

Appendix

References

.
.
.
.
.

.
46 of 65

Fixed points for 𝑟 < 1, 𝑑∗ > 1, and 𝑇 ≥ 1

𝑇 = 2, 𝑑∗ = 2
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 𝑟 = 0.01, 0.05, 0.10, … , 0.3820 ± 0.0001.
 No spreading for 𝑟 ≳ 0.382.
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What we have now:

 Two kinds of contagion processes:
1. Continuous phase transition: SIR-like.
2. Saddle-node bifurcation: threshold model-like.

 𝑑∗ = 1: spreading from small seeds possible.
 𝑑∗ > 1: critical mass model.
 Are other behaviors possible?
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Generalized model

 Now allow for general dose distributions (𝑓 ) and
threshold distributions (𝑔).

 Key quantities:

𝑃𝑘 = ∫
∞

0
d𝑑∗ 𝑔(𝑑∗)𝑃 (

𝑘
∑
𝑗=1

𝑑𝑗 ≥ 𝑑∗) where 1 ≤ 𝑘 ≤ 𝑇 .

 𝑃𝑘 = Probability that the threshold of
a randomly selected individual
will be exceeded by 𝑘 doses.

 e.g.,
𝑃1 = Probability that one dose will exceed

the threshold of a random individual
= Fraction of most vulnerable individuals.
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Generalized model—heterogeneity, 𝑟 = 1
 Fixed point equation:

𝜙∗ =
𝑇

∑
𝑘=1

(𝑇
𝑘 )(𝑝𝜙∗)𝑘(1 − 𝑝𝜙∗)𝑇−𝑘𝑃𝑘

 Expand around 𝜙∗ = 0 to find when spread from
single seed is possible:

𝑝𝑃1𝑇 ≥ 1 or ⇒ 𝑝𝑐 = 1/(𝑇 𝑃1)

 Very good:
1. 𝑃1𝑇 is the expected number of vulnerables the

initial infected individual meets before recovering.
2. 𝑝𝑃1𝑇 is ∴ the expected number of successful

infections (equivalent to 𝑅0).

 Observe: 𝑝𝑐 may exceed 1 meaning no spreading
from a small seed.
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Heterogeneous case

 Next: Determine slope of fixed point curve at
critical point 𝑝𝑐.

 Expand fixed point equation around
(𝑝, 𝜙∗) = (𝑝𝑐, 0).

 Find slope depends on (𝑃1 − 𝑃2/2) [6]
(see Appendix).

 Behavior near fixed point depends on whether
this slope is
1. positive: 𝑃1 > 𝑃2/2 (continuous phase transition)
2. negative: 𝑃1 < 𝑃2/2 (discontinuous phase

transition)

 Now find three basic universal classes of
contagion models …
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Heterogeneous case

Example configuration:
 Dose sizes are lognormally distributed with mean

1 and variance 0.433.
 Memory span: 𝑇 = 10.
 Thresholds are uniformly set at

1. 𝑑∗ = 0.5
2. 𝑑∗ = 1.6
3. 𝑑∗ = 3

 Spread of dose sizes matters, details are not
important.
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Three universal classes
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I. Epidemic threshold
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III. Critical mass

0 0.2 0.4 0.6 0.8 1

p

II. Vanishing critical mass

 Epidemic threshold: 𝑃1 > 𝑃2/2, 𝑝𝑐 = 1/(𝑇 𝑃1) < 1
 Vanishing critical mass: 𝑃1 < 𝑃2/2,

𝑝𝑐 = 1/(𝑇 𝑃1) < 1
 Pure critical mass: 𝑃1 < 𝑃2/2, 𝑝𝑐 = 1/(𝑇 𝑃1) > 1
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Heterogeneous case

Now allow 𝑟 < 1:
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 II-III transition generalizes: 𝑝𝑐 = 1/[𝑃1(𝑇 + 𝜏)]
where 𝜏 = 1/𝑟 − 1 = expected recovery time

 I-II transition less pleasant analytically.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/


PoCS
@pocsvox

Generalized
Contagion

Introduction

Independent
Interaction
models

Interdependent
interaction
models

Generalized
Model
Homogeneous version

Heterogeneous version

Nutshell

Appendix

References

.
.
.
.
.

.
55 of 65

More complicated models
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 Due to heterogeneity in individual thresholds.
 Three classes based on behavior for small seeds.
 Same model classification holds: I, II, and III.
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Hysteresis in vanishing critical mass
models
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Nutshell (one half)

 Memory is a natural ingredient.
 Three universal classes of contagion processes:

I. Epidemic Threshold
II. Vanishing Critical Mass
III. Critical Mass

 Dramatic changes in behavior possible.
 To change kind of model: ‘adjust’ memory,

recovery, fraction of vulnerable individuals (𝑇 , 𝑟, 𝜌,
𝑃1, and/or 𝑃2).

 To change behavior given model: ‘adjust’
probability of exposure (𝑝) and/or initial number
infected (𝜙0).
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Nutshell (other half)

 Single seed infects others if 𝑝𝑃1(𝑇 + 𝜏) ≥ 1.
 Key quantity: 𝑝𝑐 = 1/[𝑃1(𝑇 + 𝜏)]
 If 𝑝𝑐 < 1 ⇒ contagion can spread from single seed.
 Depends only on:

1. System Memory (𝑇 + 𝜏).
2. Fraction of highly vulnerable individuals (𝑃1).

 Details unimportant: Many threshold and dose
distributions give same 𝑃𝑘.

 Another example of a model where
vulnerable/gullible population may be more
important than a small group of super-spreaders
or influentials.
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Appendix: Details for Class I-II transition:

𝜙∗ =
𝑇

∑
𝑘=1

(𝑇
𝑘 )𝑃𝑘(𝑝𝜙∗)𝑘(1 − 𝑝𝜙∗)𝑇−𝑘,

=
𝑇

∑
𝑘=1

(𝑇
𝑘 )𝑃𝑘(𝑝𝜙∗)𝑘

𝑇−𝑘
∑
𝑗=0

(𝑇 − 𝑘
𝑗 )(−𝑝𝜙∗)𝑗,

=
𝑇

∑
𝑘=1

𝑇−𝑘
∑
𝑗=0

(𝑇
𝑘 )(𝑇 − 𝑘

𝑗 )𝑃𝑘(−1)𝑗(𝑝𝜙∗)𝑘+𝑗,

=
𝑇

∑
𝑚=1

𝑚
∑
𝑘=1

(𝑇
𝑘 )(𝑇 − 𝑘

𝑚 − 𝑘)𝑃𝑘(−1)𝑚−𝑘(𝑝𝜙∗)𝑚,

=
𝑇

∑
𝑚=1

𝐶𝑚(𝑝𝜙∗)𝑚

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/


PoCS
@pocsvox

Generalized
Contagion

Introduction

Independent
Interaction
models

Interdependent
interaction
models

Generalized
Model
Homogeneous version

Heterogeneous version

Nutshell

Appendix

References

.
.
.
.
.

.
60 of 65

Appendix: Details for Class I-II transition:

𝐶𝑚 = (−1)𝑚(𝑇
𝑚)

𝑚
∑
𝑘=1

(−1)𝑘(𝑚
𝑘 )𝑃𝑘,

since

(𝑇
𝑘 )(𝑇 − 𝑘

𝑚 − 𝑘) = 𝑇 !
𝑘!(𝑇 − 𝑘)!

(𝑇 − 𝑘)!
(𝑚 − 𝑘)!(𝑇 − 𝑚)!

= 𝑇 !
𝑚!(𝑇 − 𝑚)!

𝑚!
𝑘!(𝑚 − 𝑘)!

= (𝑇
𝑚)(𝑚

𝑘 ).

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/


PoCS
@pocsvox

Generalized
Contagion

Introduction

Independent
Interaction
models

Interdependent
interaction
models

Generalized
Model
Homogeneous version

Heterogeneous version

Nutshell

Appendix

References

.
.
.
.
.

.
61 of 65

Appendix: Details for Class I-II transition:

 Linearization gives

𝜙∗ ≃ 𝐶1𝑝𝜙∗ + 𝐶2𝑝2
𝑐𝜙∗2.

where 𝐶1 = 𝑇 𝑃1(= 1/𝑝𝑐) and
𝐶2 = (𝑇

2 )(−2𝑃1 + 𝑃2).
 Using 𝑝𝑐 = 1/(𝑇 𝑃1):

𝜙∗ ≃ 𝐶1
𝐶2𝑝2𝑐

(𝑝 − 𝑝𝑐) = 𝑇 2𝑃 3
1

(𝑇 − 1)(𝑃1 − 𝑃2/2)(𝑝 − 𝑝𝑐).

 Sign of derivative governed by 𝑃1 − 𝑃2/2.
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