Generalized Contagion

Last updated: 2022/08/29, 00:04:32 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 300, 303, & 394, 2022-2023 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

"Universal Behavior in a Generalized Model

Phys. Rev. Lett., 92, 218701, 2004. [5]

"A generalized model of social and

I. Theor. Biol., 232, 587-604, 2005. [6]

PoCS @pocsvox Generalized Contagion

Introduction

Independent

Interdependent

interaction

Generalized

Model

Nutshell

Appendix

Generalized contagion model

Basic questions about contagion

- How many types of contagion are there?
- How can we categorize real-world contagions?
- & Can we connect models of disease-like and social contagion?
- Focus: mean field models.

Independent Interaction Models

Introduction

Independent models

@pocsvox

Contagion

Interdependent interaction models Generalized

Model Nutshell

Appendix References

.... |S

PoCS

@pocsvox

Contagion

Introduction

Independent

Interdependent

Interaction models

interaction

Generalized

models

Model

Nutshell

Appendix

References

PoCS

@pocsvox

Contagion

Generalized

Introduction

Independent

Interdependent

Interaction models

interaction

Generalized

models

Model

Nutshell

Appendix

References

•9 < ○ 5 of 63

Generalized

少 Q (→ 4 of 63

Original models attributed to

- 🙈 1920's: Reed and Frost
- 3 1920's/1930's: Kermack and McKendrick [8, 10, 9]
- Coupled differential equations with a mass-action principle

@pocsvox Generalized

Introduction Independent models

Interdependent interaction

models Generalized

Model

Nutshell

Appendix References

Outline

Introduction

Independent Interaction models

Interdependent interaction models

of Contagion"

Dodds and Watts.

Dodds and Watts,

biological contagion"

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

PoCS @pocsvox Generalized Contagion

Independent

Interdependent

interaction

Generalized

models

Model

Nutshell

Appendix

References

Mathematical Epidemiology (recap)

The standard SIR model [11]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action) principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

少 Q (~ 7 of 63

@pocsvox Generalized Contagion

Introduction

Independent Interaction models

Interdependen interaction models

Generalized Model

Nutshell

Appendix

Reference

Reproduction Number R_0

population of Susceptibles

 $\ensuremath{\mathfrak{S}}$ Probability of transmission = β

Discrete version:

a Susceptible

probability 1 - r

 β , r, and ρ are now rates.

Reproduction Number R_0 :

Independent Interaction models

Differential equations for continuous model

 $\frac{\mathsf{d}}{\mathsf{d}t}S = -\beta \underline{IS} + \rho R$

 $\frac{\mathsf{d}}{\mathsf{d}t}I = \beta \underline{IS} - rI$

 $\frac{\mathsf{d}}{\mathsf{d}t}R = rI - \rho R$

- $\Re R_0$ = expected number of infected individuals resulting from a single initial infective
- \clubsuit Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.

Set up: One Infective in a randomly mixing

 \clubsuit At time t = 0, single infective randomly bumps into

 \clubsuit At time t = 1, single Infective remains infected with

少∢~ 8 of 63

PoCS

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized

Model

Homogeneous version

Nutshell

 \clubsuit At time t = k, single Infective remains infected with probability $(1-r)^k$

Independent Interaction Models

PoCS @pocsvox Generalized Contagion

少 Q ← 2 of 63

W | |

Introduction

models

models Generalized

Nutshell

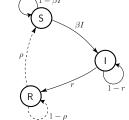
Interdependent

Model

Appendix

III |

Discrete time automata example:



Transition Probabilities:

 β for being infected given contact with infected r for recovery ρ for loss of immunity

•9 q (~ 3 of 63

少 < ℃ 6 of 63

UNN O 夕 Q ← 9 of 63

models

Appendix

References

Reproduction Number R_0

Discrete version:

& Expected number infected by original Infective:

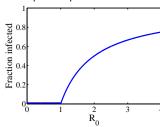
$$R_0=\beta+(1-r)\beta+(1-r)^2\beta+(1-r)^3\beta+\dots$$

$$=\beta \left(1+(1-r)+(1-r)^2+(1-r)^3+\ldots \right)$$

$$=\beta \frac{1}{1-(1-r)} = \beta/r$$

Similar story for continuous model.

Independent Interaction models



- Continuous phase transition.
- Fine idea from a simple model.

Simple disease spreading models

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)^[7]
- Spread of rumors (Daley & Kendall, 1964,
- A Diffusion of innovations (Bass, 1969) [1]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003) [2]

@pocsvox Generalized Contagion

Introduction

Independent

Interaction models

interaction

Generalized

Model

Nutshell

Appendix

UM O

PoCS

@pocsvox

Generalized

Independent

Interdependent

Interaction models

interaction

Generalized

models

Nutshell

Appendix

UM | 8

PoCS

@pocsvox

Generalized

Independent

Interaction models

models

Model

Nutshell

Appendix

Generalized

Interdependent

Contagion

少 q (→ 11 of 63

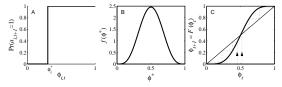
Contagion

•೧९ № 10 of 63

Interdependent

Action based on perceived behavior of others.

Granovetter's model (recap of recap)



- Two states: S and I.
- Recovery now possible (SIS).
- $\Leftrightarrow \phi$ = fraction of contacts 'on' (e.g., rioting).
- Discrete time, synchronous update.
- This is a Critical mass model.
- Interdependent interaction model.

Some (of many) issues

- infectious events.
- Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

- Disease models assume independence of

Generalized model—ingredients

Individuals 'remember' last T contacts:

Infection occurs if individual i's 'threshold' is

 $D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$

 $D_{t,i} \geq d_i^*$

 \clubsuit Threshold d_i^* drawn from arbitrary distribution q

Independen Interaction models

Interdependent interaction models

@pocsvox

Generalized Contagion

Introduction

Independent

Interdependent

models

models

Model

Nutshell

Appendix

References

UM OS

@pocsvox

Contagion

Introduction

Generalized

少 q (№ 13 of 63

Generalized

Generalized Model

Nutshell Appendix References

um |S

PoCS

@pocsvox

Contagion

Generalized

Introduction

Independent

Interdependent

interaction

Generalized

models

Model

Nutshell

Appendix

References

•9 q (→ 14 of 63

Generalized model—ingredients

 $S \Rightarrow I$

exceeded:

at t = 0.

When $D_{t,i} < d_i^*$, individual i recovers to state R with probability r.

 $R \Rightarrow S$

Once in state R, individuals become susceptible again with probability ρ .

W | |

@pocsvox Generalized

Introduction

models

Interdependent

interaction

Generalized

Nutshell

Appendix

Reference

UM O

@pocsvox

Contagion

Introduction

Independent

Interdependent

interaction

models Generalized Model

Nutshell

Appendix

Reference

models

Generalized

•9 q (~ 16 of 63

夕 Q № 17 of 63

PoCS

Generalized Contagion

Introduction

models

Interdependent interaction

Generalized

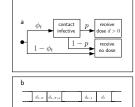
Nutshell

Appendix References

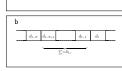
Generalized model

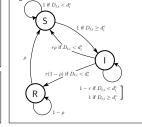
Basic ingredients:

- A Incorporate memory of a contagious element [5, 6]
- \aleph Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- ϕ_t = fraction infected at time t = probability of contact with infected individual
- \aleph With probability p, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size ddrawn from distribution f. Otherwise d = 0.



A visual explanation





III | •9 q (→ 15 of 63 UNN O

夕 Q № 18 of 63

Generalized mean-field model

Study SIS-type contagion first:

Recovered individuals are immediately susceptible again:

$$\rho = 1$$
.

- & Look for steady-state behavior as a function of exposure probability p.
- & Denote fixed points by ϕ^* .

Homogeneous version:

- & All individuals have threshold d^*
- All dose sizes are equal: d = 1

Homogeneous, one hit models:

Fixed points for r < 1, $d^* = 1$, and T = 1:

- r < 1 means recovery is probabilistic.
- Rack T = 1 means individuals forget past interactions.
- $d^* = 1$ means one positive interaction will infect an individual.
- & Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathsf{a}} + \underbrace{\phi_t(1-p\phi_t)}_{\mathsf{b}} \underbrace{(1-r)}_{\mathsf{C}}.$$

- a: Fraction infected between t and t+1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.
- c: Probability of not recovering.

Homogeneous, one hit models:

Fixed points for r < 1, $d^* = 1$, and T = 1:

$$\Re$$
 Set $\phi_t = \phi^*$:

$$\phi^*=p\phi^*+(1-p\phi^*)\phi^*(1-r)$$

$$\Rightarrow 1=p+(1-p\phi^*)(1-r), \quad \phi^*\neq 0,$$

$$\Rightarrow \phi^* = \frac{1 - r/p}{1 - r} \quad \text{and} \quad \phi^* = 0.$$

- \$ Spreading takes off if p/r > 1
- Find continuous phase transition as for SIR model.
- \Re Goodness: Matches $R_{o} = \beta/\gamma > 1$ condition.

Simple homogeneous examples @pocsvox Generalized

Contagion

Introduction

Independent

Interdependent

interaction

Generalized

Nutshell

Appendix

References

UM O

PoCS

@pocsvox

Generalized

Introduction

Independent

Interdependent

interaction

Generalized

Appendix

UM O

PoCS

@pocsvox

Generalized

Interdependent

models

Nutshell

Appendix

UN S

•9 q (→ 22 of 63

Generalized

Homogeneous version

Contagion

•9 q (→ 21 of 63

Homogeneous version

models

Contagion

•೧ q (~ 19 of 63

Fixed points for r = 1, $d^* = 1$, and T > 1

- r = 1 means recovery is immediate.
- Rrightarrow T > 1 means individuals remember at least 2 interactions.
- $d^* = 1$ means only one positive interaction in past T interactions will infect individual.
- & Effect of individual interactions is independent from effect of others.
- Pr(infected) = 1 Pr(uninfected):

$$\phi^*=1-(1-p\phi^*)^T.$$

Homogeneous, one hit models:

Fixed points for r = 1, $d^* = 1$, and T > 1

& Closed form expression for ϕ^* :

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

- & Look for critical infection probability p_a .
- $As \phi^* \to 0$, we see

$$\phi^* \simeq pT\phi^* \Rightarrow p_c = 1/T.$$

- Again find continuous phase transition ...
- \mathbb{A} Note: we can solve for p but not ϕ^* :

$$p = (\phi^*)^{-1}[1 - (1 - \phi^*)^{1/T}].$$

Homogeneous, one hit models:

Fixed points for r < 1, $d^* = 1$, and T > 1

 \clubsuit Start with r=1, $d^*=1$, and $T\geq 1$ case we have iust examined:

$$\phi^*=1-(1-p\phi^*)^T.$$

- \clubsuit For r < 1, add to right hand side fraction who:
 - 1. Did not receive any infections in last T time steps,
 - 2. And did not recover from a previous infection.
- Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{t-T-2}, d_{t-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\},$$

 \mathbb{R} With history H_1 , probability of being infected (not recovering in one time step) is 1-r.

Homogeneous, one hit models:

@pocsvox

Generalized

Introduction

Independent

Interdependent

Homogeneous version

models

interaction

Generalized

Nutshell

Appendix

References

UM OS

@pocsvox

Generalized

Contagion

Introduction

Independent

Interdependen

interaction

Generalized

Homogeneous version

models

Nutshell

Appendix

References

III | | | |

PoCS

@pocsvox

Generalized

Introduction

Independent

Interdependent

Homogeneous version

models

models

Model

Nutshell

Appendix

References

III |

少 Q (№ 25 of 63

Generalized

Contagion

•> q (→ 24 of 63

•23 of 63

Contagion

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \text{ 0's}}, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\}.$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p \phi^* (1 - p \phi^*)^T (1 - r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1-p\phi^*)^{T+m}}_{b} \underbrace{(1-r)^{m+1}}_{c}.$$

- a: Pr(infection T + m + 1 time steps ago)
- b: Pr(no doses received in T+m time steps since)
- c: $Pr(no\ recovery\ in\ m\ chances)$

Homogeneous, one hit models:

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

 \Re Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$= \frac{r}{r} \sum_{m=0}^{\infty} P(H_{T+m}) = \frac{r}{r} \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m$$

$$= \frac{r}{1-(1-p\phi^*)(1-r)}^T.$$

Using the probability of not recovering, we end up with a fixed point equation:

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

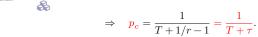
Homogeneous, one hit models:

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

Fixed point equation (again):

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Find critical exposure probability by examining above as $\phi^* \to 0$.



where τ = mean recovery time for simple relaxation process.

 Decreasing r keeps individuals infected for longer and decreases p_c .

@pocsvox Generalized

Introduction Independent

Interaction Interdependent interaction

Generalized

Homogeneous version

Nutshell

Appendix References

UM | 8

•9 q (→ 26 of 63

@pocsvox Generalized Contagion

Introduction

Independent models

Interdependen interaction models

> Generalized Homogeneous versio

Nutshell Appendix

Reference

PoCS Generalized Contagion

Introduction

models Interdependent

interaction Generalized

Model Homogeneous version

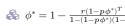
Nutshell

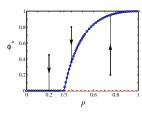
Appendix References

少 Q (№ 28 of 63

Epidemic threshold:

Fixed points for $d^*=1$, $r\leq 1$, and $T\geq 1$





- \clubsuit Example details: $T = 2 \& r = 1/2 \Rightarrow p_c = 1/3$.
- & Blue = stable, red = unstable, fixed points.
- $\approx \tau = 1/r 1$ = characteristic recovery time = 1.
- $Rrac{1}{8}$ $T + \tau \simeq$ average memory in system = 3.
- A Phase transition can be seen as a transcritical bifurcation. [12]

Homogeneous, multi-hit models:

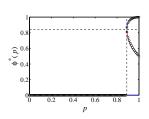
- All right: $d^* = 1$ models correspond to simple disease spreading models.
- \clubsuit What if we allow $d^* > 2$?
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$
- & To be infected, must have at least d^* exposures in last T time steps.
- Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

Homogeneous, multi-hit models:

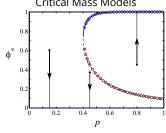
Fixed points for r=1, $d^*>1$, and $T\geq 1$

- & Exactly solvable for small T.
- & e.g., for $d^* = 2$, T = 3:



- Fixed point equation: $3p^2{\phi^*}^2(1-p\phi^*)+p^3{\phi^*}^3$
- See new structure: a saddle node bifurcation [12] appears as p increases.
- $(p_h, \phi^*) = (8/9, 27/32).$
- Behavior akin to output of Granovetter's threshold model.

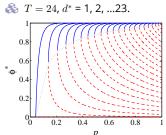
Homogeneous, multi-hit models: @pocsvox Generalized



 $r = 1, d^* = 3, T = 12$

Saddle-node bifurcation.

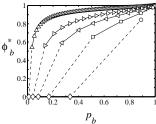
Fixed points for r = 1, $d^* > 1$, and $T \ge 1$



- jump between continuous phase transition and pure critical mass model.
- Unstable curve for $d^* = 2$ does not hit $\phi^* = 0$.
- See either simple phase transition or saddle-node bifurcation, nothing in between.

Fixed points for r = 1, $d^* > 1$, and T > 1

\clubsuit Bifurcation points for example fixed T, varying d^* :



Arr = 96 ().

Rrightarrow T = 12 (<),

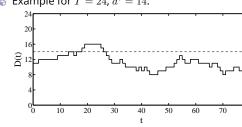
A = 3 (0),

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- $rac{1}{4}$ For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.
- Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^t d_i(t')$$

& Example for T = 24, $d^* = 14$:



Fixed points for r < 1, $d^* > 1$, and T > 1

- $\ \ \,$ Define γ_m as fraction of individuals for whom D(t)last equaled, and has since been below, their threshold m time steps ago,
- Reaction of individuals below threshold but not recovered:

$$\Gamma(p,\phi^*;r) = \sum_{m=1}^{\infty} (1-r)^m \gamma_m(p,\phi^*).$$

Fixed point equation:

$$\phi^* = \Gamma(p,\phi^*;r) + \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

Fixed points for r < 1, $d^* > 1$, and T > 1

Example: $T = 3, d^* = 2$

Want to examine how dose load can drop below threshold of $d^* = 2$:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

- Two subsequences do this: $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}\} = \{1, 1, 0, 0\}$ and $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}\} = \{1, 0, 1, 0, 0\}.$
- Note: second sequence includes an extra 0 since this is necessary to stay below $d^* = 2$.
- To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

$a = \{0\}$ and $b = \{1, 0, 0\}$

Introduction Interaction

models Interdependent interaction

Generalized

Homogeneous version

Nutshell Appendix

Reference

少 Q (> 35 of 63

PoCS @pocsvox Generalized Contagion

Introduction

Independent

Interdependent interaction models

Generalized

Homogeneous versio Nutshell

Appendix

Reference

UM O 夕 Q ← 36 of 63

PoCS @pocsvox Generalized

Contagion

Introduction Independent models

Interdependent interaction Generalized

Model

Homogeneous version Nutshell

Appendix References

•9 q (→ 31 of 63

Contagion

Introduction

Independen

Interdependent

Homogeneous version

interaction

Generalized

Nutshell Appendix

.... |S

PoCS

@pocsvox

Generalized

Introduction

Independent

Interdependen

Homogeneous version

interaction

models

Nutshell

Appendix

UM | 8

PoCS

@pocsvox

Generalized

Interdependen

models

Nutshell

Appendix

Generalized

Homogeneous version

Contagion

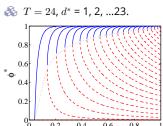
少 q (~ 30 of 63

Contagion

•⊃ q (~ 29 of 63

Another example:

Critical Mass Models



 $A^* = 1 \rightarrow d^* > 1$:

.... |S

@pocsvox

Generalized

Introduction

Independent

Interdependent

Homogeneous version Nutshell

Interaction

interaction

Generalized

Appendix

References

.... |S

@pocsvox

Contagion

Generalized

Introduction

Independen

Interdependen

interaction

Generalized

Homogeneous version

models

Nutshell

Appendix

References

◆9 q (> 32 of 63

models

models

Contagion

•7 q (→ 33 of 63

PoCS @pocsvox Generalized Contagion

Introduction Independent

Interdependent models Generalized

Model Homogeneous version Nutshell

Appendix References

A = 24 (>),

 $\Re T = 6 \; (\square),$

III |

少 Q (~ 34 of 63

•9 q (~ 37 of 63

Fixed points for r < 1, $d^* > 1$, and T > 1

- Determine number of sequences of length m that keep dose load below $d^* = 2$.
- N_a = number of $a = \{0\}$ subsequences.
- \mathbb{A} N_b = number of $b = \{1, 0, 0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b :

$$0, 1, 2, \ldots, \left\lfloor \frac{m}{3} \right\rfloor$$
.

where | | means floor.

& Corresponding possible values for N_a :

$$m, m-3, m-6, \ldots, m-3 \left\lfloor \frac{m}{3} \right\rfloor$$
.

Fixed points for r < 1, $d^* > 1$, and T > 1

- \clubsuit How many ways to arrange N_a a's and N_b b's?
- Think of overall sequence in terms of subsequences:

$$\{Z_1,Z_2,\dots,Z_{N_a+N_b}\}$$

- $N_a + N_b$ slots for subsequences.
- & Choose positions of either a's or b's:

$$\binom{N_a+N_b}{N_a}=\binom{N_a+N_b}{N_b}.$$

Fixed points for r < 1, $d^* > 1$, and T > 1

 \clubsuit Total number of allowable sequences of length m:

$$\sum_{N_b=0}^{\lfloor m/3\rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3\rfloor} \binom{m-2k}{k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$.

- $P(a) = (1 p\phi^*) \text{ and } P(b) = p\phi^*(1 p\phi^*)^2$
- Total probability of allowable sequences of length

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$

Notation: Write a randomly chosen sequence of a's and b's of length m as $D_m^{a,b}$.

Fixed points for r < 1, $d^* > 1$, and T > 1@pocsvox Generalized

Contagion

Introduction

Interdependent

interaction

Generalized

Nutshell

Appendix

W | 8

PoCS

@pocsvox

Generalized

Independent

Interdependen

interaction

Generalized

Homogeneous version

models

Nutshell

Appendix

W | |

PoCS

@pocsvox

Generalized

Independen

Interdependent

Homogeneous version

models Generalized

Nutshell

Appendix

Contagion

◆) < (~ 39 of 63

Contagion

•9 q (~ 38 of 63

Homogeneous version

- Nearly there ...must account for details of sequence endings.
- \$ Three endings \Rightarrow Six possible sequences:

$$\begin{array}{ll} D_1 = \{1,1,0,0,D_{m-1}^{a,b}\} & & \text{Interdependent interaction} \\ D_2 = \{1,1,0,0,D_{m-2}^{a,b},1\} & P_1 = (p\phi)^2(1-p\phi)^2\chi_{m-1}(p,\phi) \\ D_3 = \{1,1,0,0,D_{m-3}^{a,b},1,0\} & P_2 = (p\phi)^3(1-p\phi)^2\chi_{m-2}(p,\phi) \\ D_4 = \{1,0,1,0,0,D_{m-2}^{a,b}\} & P_3 = (p\phi)^3(1-p\phi)^3\chi_{m-3}(p,\phi) & \text{Appendix} \\ D_4 = \{1,0,1,0,0,D_{m-2}^{a,b}\} & P_4 = (p\phi)^2(1-p\phi)^3\chi_{m-3}(p,\phi) & P_4 = (p\phi)^2(1-p\phi)^3\chi_{m-3}(p,\phi) \end{array}$$

$$\begin{array}{c} D_4 = \{1,0,1,0,0,D_{m-2}^{n}\} & \text{Reference} \\ P_4 = (p\phi)^2(1-p\phi)^3\chi_{m-2}(p,\phi) & \\ D_5 = \{1,0,1,0,0,D_{m-3}^{a,b},1\} & \\ P_5 = (p\phi)^3(1-p\phi)^3\chi_{m-3}(p,\phi) & \\ D_6 = \{1,0,1,0,0,D_{m-4}^{a,b},1,0\} & \\ P_6 = (p\phi)^3(1-p\phi)^4\chi_{m-4}(p,\phi) & \\ \end{array}$$

Fixed points for r < 1, $d^* = 2$, and T = 3

$$\text{F.P. Eq: } \phi^* = \Gamma(p,\phi^*;r) + \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

where $\Gamma(p, \phi^*; r) =$

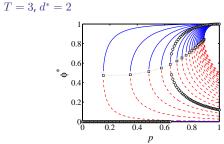
$$(1-r)(p\phi)^2(1-p\phi)^2 + \sum_{m=1}^{\infty} (1-r)^m(p\phi)^2(1-p\phi)^2 \times$$

$$\left[\chi_{m-1} + \chi_{m-2} + 2p\phi(1-p\phi)\chi_{m-3} + p\phi(1-p\phi)^2\chi_{m-4}\right]$$
 and

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$

Note: $(1-r)(p\phi)^2(1-p\phi)^2$ accounts for $\{1,0,1,0\}$ sequence.

Fixed points for r < 1, $d^* > 1$, and T > 1



 $r = 0.01, 0.05, 0.10, 0.15, 0.20, \dots, 1.00$

@pocsvox Generalized

@pocsvox

Generalized

Introduction

Independen

models

Contagion

Introduction Independen

> Interdependent interaction models

Generalized Homogeneous version

Nutshell Appendix

References

WW | 8

•2 € 42 of 63

PoCS @pocsvox Generalized Contagion

Introduction Independen Interdependent

interaction models Generalized Model

Homogeneous version Nutshell

Appendix Reference

III |

少 Q (~ 43 of 63

 P_1 = Probability that <u>one dose</u> will exceed the threshold of a random individual = Fraction of most vulnerable individuals.

a randomly selected individual

will be exceeded by k doses.

Now allow for general dose distributions (f) and

 $P_k = \int_0^\infty \mathrm{d}d^* \, g(d^*) P\left(\sum_{i=1}^k d_i \geq d^*\right) \text{ where } 1 \leq k \leq T.$

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- $r = 0.01, 0.05, 0.10, \dots, 0.3820 \pm 0.0001.$
- $\red{\$}$ No spreading for $r \gtrsim 0.382$.

What we have now:

 $T=2, d^*=2$

- Two kinds of contagion processes:
 - 1. Continuous phase transition: SIR-like.
 - 2. Saddle-node bifurcation: threshold model-like.
- $d^* = 1$: spreading from small seeds possible.
- $d^* > 1$: critical mass model.

Generalized model

Key quantities:

Are other behaviors possible?

threshold distributions (a).

 $\Re P_k$ = Probability that the threshold of

@pocsvox

Generalized

Introduction

Interdependent

Homogeneous version

interaction

Generalized

Nutshell

Appendix

Reference

UM O

@pocsvox

Contagion

Generalized

Introduction

Independent

Interdependent

interaction

Generalized

Homogeneous version

models

Nutshell

Appendix

Reference

夕 Q ← 44 of 63

◆) Q (> 45 of 63

PoCS Generalized Contagion

Introduction

Independent Interdependent

Generalized Model

Nutshell Appendix

References

◆2 Q Q 47 of 63

UN S 少 < ○ 40 of 63

Generalized model—heterogeneity, r = 1

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1-p\phi^*)^{T-k} \underline{P_k}$$

& Expand around $\phi^* = 0$ to find when spread from single seed is possible:

$$pP_1T\geq 1$$

$$\Rightarrow p_c = 1/(TP_1)$$

- Very good:
 - 1. P_1T is the expected number of vulnerables the initial infected individual meets before recovering.
 - 2. pP_1T is : the expected number of successful infections (equivalent to R_0).
- & Observe: p_a may exceed 1 meaning no spreading from a small seed.

Heterogeneous case

- Next: Determine slope of fixed point curve at critical point p_c .
- Expand fixed point equation around $(p, \phi^*) = (p_c, 0).$
- \Re Find slope depends on $(P_1 P_2/2)^{[6]}$ (see Appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- Now find three basic universal classes of contagion models ...

Heterogeneous case

Example configuration:

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- \clubsuit Memory span: T=10.
- Thresholds are uniformly set at
 - 1. $d_* = 0.5$
 - 2. $d_* = 1.6$
 - 3. $d_* = 3$
- Spread of dose sizes matters, details are not important.

@pocsvox Generalized Contagion

Introduction

Independent

Interdependent

Heterogeneous version

interaction

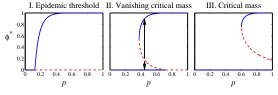
Generalized

Model

Nutshell

Appendix

Three universal classes



Epidemic threshold:

Heterogeneous case

Now allow r < 1:

 $P_1 > P_2/2$, $p_c = 1/(TP_1) < 1$

 $P_1 < P_2/2$

- Vanishing critical mass: $p_c = 1/(TP_1) < 1$
- Pure critical mass: $P_1 < P_2/2$, $p_c = 1/(TP_1) > 1$

UM O

•9 q (> 48 of 63

PoCS @pocsvox Generalized

Contagion Introduction

Independent models Interdependent

interaction models Generalized

Nutshell

Appendix

W | |

PoCS

@pocsvox

Generalized

Contagion

models

models

Model

Nutshell

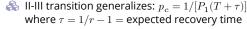
Appendix

III | •9 q (> 50 of 63

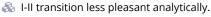
Generalized

Interdependent

◆) < (→ 49 of 63



0.6



0.2 0.4

More complicated models

- Due to heterogeneity in individual thresholds.
- Three classes based on behavior for small seeds.
- Same model classification holds: I, II, and III.

PoCS @pocsvox Generalized Contagion

Introduction

.... |S

@pocsvox

Contagion

Introduction

Independent

Interdependent

models

models

Model

Nutshell

Appendix

References

.... |S

PoCS

@pocsvox

Contagion

Generalized

Introduction

Independent

Interdependent

models

interaction

models

Nutshell

Appendix

Reference

•> q (→ 52 of 63

interaction

Generalized

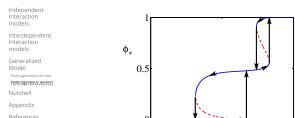
Heterogeneous version

Generalized

少 q (> 51 of 63

Hysteresis in vanishing critical mass models

0.5



Nutshell (one half)

Memory is a natural ingredient.

I. Epidemic Threshold

III. Critical Mass

II. Vanishing Critical Mass

Dramatic changes in behavior possible.

To change kind of model: 'adjust' memory,

To change behavior given model: 'adjust'

recovery, fraction of vulnerable individuals (T, r, ρ ,

probability of exposure (p) and/or initial number

Three universal classes of contagion processes:

@pocsvox Generalized

Introduction

Interaction models

Interdependent interaction

Generalized Model

Heterogeneous version Nutshell

> Appendix Reference

UM O

少 Q (~ 54 of 63

PoCS @pocsvox Generalized Contagion

Introduction

Independent Interaction

Interdependent interaction models

> Generalized Model

Nutshell Appendix

Reference

W | |

夕 Q ← 55 of 63

PoCS Generalized Contagion

Introduction

Independent

models Interdependent

interaction

Generalized Model

Homogeneous versi

Nutshell Appendix

References

少 q (~ 56 of 63

少 Q (~ 53 of 63

Nutshell (other half)

 P_1 , and/or P_2).

infected (ϕ_0).

\Re Single seed infects others if $pP_1(T+\tau) \geq 1$.

- \Re Key quantity: $p_c = 1/[P_1(T+\tau)]$
- \Re If $p_c < 1 \Rightarrow$ contagion can spread from single seed.
 - Depends only on:
- 1. System Memory ($T + \tau$). Generalized
- 2. Fraction of highly vulnerable individuals (P_1) . Model
 - Details unimportant: Many threshold and dose distributions give same P_{ν} .
 - Another example of a model where vulnerable/gullible population may be more important than a small group of super-spreaders or influentials.

Appendix: Details for Class I-II transition:

$$\begin{split} \phi^* &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k (1-p\phi^*)^{T-k}, \\ &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k \sum_{j=0}^{T-k} \binom{T-k}{j} (-p\phi^*)^j, \\ &= \sum_{k=1}^T \sum_{j=0}^{T-k} \binom{T}{k} \binom{T-k}{j} P_k (-1)^j (p\phi^*)^{k+j}, \\ &= \sum_{m=1}^T \sum_{k=1}^m \binom{T}{k} \binom{T-k}{m-k} P_k (-1)^{m-k} (p\phi^*)^m, \\ &= \sum_{m=1}^T C_m (p\phi^*)^m \end{split}$$

Appendix: Details for Class I-II transition:

$$C_m = (-1)^m \binom{T}{m} \sum_{k=1}^m (-1)^k \binom{m}{k} P_k,$$

since

$$\begin{pmatrix} T \\ k \end{pmatrix} \begin{pmatrix} T-k \\ m-k \end{pmatrix} &=& \frac{T!}{k!(T-k)!} \frac{(T-k)!}{(m-k)!(T-m)!} \\ &=& \frac{T!}{m!(T-m)!} \frac{m!}{k!(m-k)!} \\ &=& \begin{pmatrix} T \\ m \end{pmatrix} \begin{pmatrix} m \\ k \end{pmatrix}.$$

Appendix: Details for Class I-II transition:

Linearization gives

$$\phi^* \simeq C_1 p \phi^* + C_2 p_c^2 {\phi^*}^2$$
.

where $C_1 = TP_1 (= 1/p_c)$ and $C_2 = \binom{T}{2}(-2P_1 + P_2).$

& Using $p_c = 1/(TP_1)$:

$$\phi^* \simeq \frac{C_1}{C_2 p_c^2} (p-p_c) = \frac{T^2 P_1^3}{(T-1)(P_1-P_2/2)} (p-p_c).$$

Sign of derivative governed by $P_1 - P_2/2$.

@pocsvox

Introduction

References

UM O

少 Q ← 57 of 63

PoCS @pocsvox Generalized Contagion

Introduction

Interdependent interaction

Nutshell

Appendix

◆) < (~ 58 of 63

PoCS @pocsvox Generalized

Contagior

models

Generalized Model

Nutshell Appendix

References I

[1] F. Bass. A new product growth model for consumer Manage. Sci., 15:215–227, 1969. pdf ☑

- C. Castillo-Chavez and B. Song. Models for the Transmission Dynamics of Fanatic Behaviors, volume 28, chapter 7, pages 155–172. SIAM, 2003.
- [3] D. J. Daley and D. G. Kendall. Epidemics and rumours. Nature, 204:1118, 1964. pdf
- [4] D. J. Daley and D. G. Kendall. Stochastic rumours. J. Inst. Math. Appl., 1:42-55, 1965.

References II

- [5] P. S. Dodds and D. J. Watts. Universal behavior in a generalized model of Phys. Rev. Lett., 92:218701, 2004. pdf
- P. S. Dodds and D. J. Watts. A generalized model of social and biological contagion. J. Theor. Biol., 232:587-604, 2005. pdf
- W. Goffman and V. A. Newill. Generalization of epidemic theory: An application to the transmission of ideas. Nature, 204:225–228, 1964. pdf

References III

@pocsvox

Contagion

Introduction

Independent

Interdependent

models

interaction

Generalized

models

Model

Nutshell

Appendix

References

UM OS

@pocsvox

Contagion

Generalized

Introduction

Independen models

少 q (№ 60 of 63

[8] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A, 115:700-721, 1927. pdf

W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. III. Further studies of the problem of Proc. R. Soc. Lond. A, 141(843):94-122, 1927.

[10] W. O. Kermack and A. G. McKendrick. Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. Lond. A, 138(834):55–83, 1927. pdf ☑

少 Q (~ 62 of 63

References IV

pdf 🖸

[11] J. D. Murray.

Interdependen interaction models

Generalized

Nutshell Appendix

References

.... |S

•9 q (→ 61 of 63

[12] S. H. Strogatz. Nonlinear Dynamics and Chaos.

Mathematical Biology.

Addison Wesley, Reading, Massachusetts, 1994.

Springer, New York, Third edition, 2002.

@pocsvox Generalized

Introduction

Interaction

interaction

Generalized

Nutshell

Appendix

References

Interdependent

models

@pocsvox Generalized

Introduction

Interdependent interaction models

Generalized Model

Nutshell Appendix

References

UM O

夕 Q № 63 of 63

•9 q (~ 59 of 63