Fundamentals

Last updated: 2022/08/27, 23:54:10 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 300, 303, & 394, 2022-2023 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Outline

Data

Measurement

Emergence

Self-Organization

Modeling

Statistical Mechanics

Nutshell

References

Data, Data, Everywhere—the Economist, Feb 25, 2010

Big Data Science:

109TB)

TB/second.

2013: year traffic on

Internet estimate to

reach 2/3 Zettabytes

 $(1ZB = 10^3EB = 10^6PB =$

Large Hadron Collider: 40

2016—Large Synoptic

Survey Telescope:

140 TB every 5 days.

♣ Facebook: ~ 250 billion

photos (mid 2013)

Twitter: ∼ 500 billion

tweets (mid 2013)

1 Overload Global information created and available storage FORECAST 1.750 1 500 1.250 1.000 2005 06 07 08 09 10 11

& Exponential growth: \sim 60% per year.

Statistical

Mechanics

W | |

@pocsvox

Data Measurement Emergence Self-Organization Modeling Nutshell

"Characterizing the Google Books corpus: Strong limits to inferences of socio-cultural and linguistic evolution"

Pechenick, Danforth, and Dodds,

Basic Science \simeq Describe + Explain:

Lord Kelvin (possibly):

"If you cannot measure it,

- "X-rays will prove to be a hoax."
- "There is nothing new to be discovered in physics now, more precise

A brief history of measuring time:

- Megaliths for Big Time
- Sundials, 1500 BC, Egypt (solid for over 2000 years)
- Escapements (200s), Hourglasses (1300s?), Pendulum clocks (Galileo, 1500s)
- & Chronometers, 1700s:

2

PoCS

Data

Fundamentals

Measuremen

Self-Organization

Emergence

Modeling

Statistical

Nutshell

References

UN S

PoCS

Data

少 Q (~ 9 of 74

Fundamentals

Measuremen

Self-Organization

Emergence

Modeling

Statistical

Nutshell

References

"Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time" 3, 2 by Dava Sobel (2007). [16]

Billionths of a second accuracy: Atomic clocks (Lord Kelvin, 1879)

UM O

PoCS

PoCS

Data

Emergence

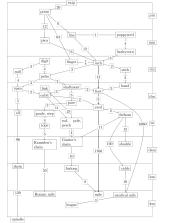
Modeling

Statistical

Mechanics

Nutshell

References


Self-Organization

@pocsvox

Fundamentals

29 € 11 of 74

Our struggle to sensibly measure anything at all:

By 42CrMo4, Christoph Päper – English length units graph (PNG), CC BY-SA 4.0 https://commons.wikimedia.org/w/index.php?curid=61338012 ☐ From https://en.wikipedia.org/wiki/Barleycorn_(unit)

Measuring temperature was thought impossible:

Temperature is a good example. People were aware of variations in temperature long

before there were any objective measurements of temperature. Judgments of temperature

are imperfectly correlated among different persons, or even the same person at different

times, depending on the humidity, the person's activity level and age, surrounding air

currents, and so on. The idea that anything as subtle and complex as all the manifestations

of changes in temperature could be measured and quantified on a single numerical scale

The first thermometer invented by Galileo in 1592 did not go far in dispelling the

was scoffed at as impossible, even by the leading philosophers of the sixteenth century.

notion that temperature was inherently unmeasurable, because the earliest thermometers

for about their first hundred years, were so imperfect as to make it possible for those who

wished to do so to argue that no one could ever succeed in measuring temperature

Temperature was then confounded with all the subtleties of subjective judgment, which

easily seem incompatible with a single numerical scale of measurement. How could the

height of a column of mercury in a glass tube possibly reflect the rich varieties of

temperature-damp cold, dank cold, frosty cold, crisp cold, humid heat, searing heat

The properties measured by our instruments usually begin as subjective judgments.

@pocsvox Fundamentals

Data Measuremen

Emergence Self-Organization Modeling Statistical Nutshell References

8 UIN 少 Q (→ 12 of 74

PoCS

Fundamentals

Data Measurement Emergence

Self-Organization Modeling

Nutshell

UN S

少 Q (~ 13 of 74

No really, that's a lot of data @pocsvox Fundamentals

Data inflation

Size

1 or 0

8 bits

1,000, or 2¹⁰, bytes

1,000KB; 220 bytes

1,000MB; 230 bytes

1,000GB; 240 bytes

1,000TB; 250 bytes

1,000PB; 2⁶⁰ bytes

1,000EB: 2⁷⁰ bytes

1,000ZB; 2⁸⁰ bytes

Big Data—Culturomics:

What it means

Short for "binary digit", after the binary code (1 or 0) computers use to store and process data

in computer code. It is the basic unit of computing

From "monster" in Greek. All the catalogued books

to around 5PB. Google processes around 1PB every hour

in America's Library of Congress total 15TB

Equivalent to 10 billion copies of The Economist

The prefixes are set by an intergovernmental group, the International Bureau of Weights and Measures. Yotta and Zetta were added in 1991; terms for larger amounts have yet to be established.

The total amount of information in existence

this year is forecast to be around 1.2ZB

Currently too big to imagine

A typical pop song is about 4MB

Enough information to create an English letter or number

From "thousand" in Greek. One page of typed text is 2KB

From "large" in Greek. The complete works of Shakespeare total 5MB.

From "giant" in Greek. A two-hour film can be compressed into 1-2GB

All letters delivered by America's postal service this year will amount

Unit

Bit (b)

Byte (B)

Kilobyte (KB)

Megabyte (MB)

Gigabyte (GB)

Terabyte (TB)

Petabyte (PB)

Exabyte (EB)

Zettabyte (ZB)

Yottabyte (YB)

Data Emergence Self-Organization Modeling

PoCS

Nutshell

少 Q (~ 1 of 74

PoCS

Fundamentals

W | |

PoCS

Data

◆) < (→ 2 of 74

Fundamentals

Measurement

Self-Organization

Emergence

Modeling

Nutshell

um |S

•9 a (~ 7 of 74

A http://www.culturomics.org/ and Google Books ngram viewer

"Quantitative analysis of culture using millions of

digitized books" by Michel et al., Science, 2011 [9]

Barney Rubble:

PLoS ONE, **10**, e0137041, 2015. [10]

"To measure is to know."

you cannot improve it."

Bonus:

- All that remains is more and measurement."
- "Beards will always be cool."

少 a (~ 10 of 74

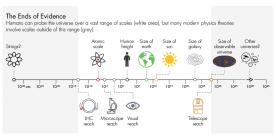
per @SilverVVulpes ☑: Also: Inventing Temperature, Hasok Chang, 2004 [3]

From "Bias in Mental Testing", Arthur Jensen, 1980 [8]

scalding heat, dry heat, feverish heat, prickly heat, and so on?

Measuring temperature was thought impossible:

The early thermometers were inconsistent, both with themselves and with each other. Because they consisted of open-ended glass tubes, they were sensitive to changes in barometric pressure as well as to temperature. And there were problems of calibration. such as where to locate the zero point and how to divide the column of mercury into units. It was believed, incorrectly, that all caves had the same temperature, so thermometers were calibrated in caves. The freezing and boiling points of water were also used in calibration, but, as these vary with impurities in the water and the barometric pressure, the calibration of different thermometers at different times and places resulted in thermometers that failed to correlate perfectly with one another in any given instance. They lacked reliability, as we now would say


All the while, no one knew what temperature is in a theoretical or scientific sense. There was no theory of thermodynamics that could explain temperature phenomena and provide a complete scientific rationale for the construction and calibration of thermometers. Yet quite adequate and accurate thermometers, hardly differing from those we use today, were eventually developed by the middle of the eighteenth century. Thus the objective measurement of temperature considerably preceded the development of an adequate theory of temperature and heat, and necessarily so, as the science of thermodynamics could not possibly have developed without first having been able to quantify or measure the temperatures of liquids, gasses, and other substances independently of

From "Bias in Mental Testing", Arthur Jensen, 1980 [8] per @SilverVVulpes ☑: Also: Inventing Temperature, Hasok Chang, 2004 [3]

Limits of testability and happiness in Science:

From A Fight for the soul of Science **I** in Quanta Magazine (2016/02):

The Newness of being a Scientist (1833 on): Fundamentals Google books Ngram Viewe

between 1810 and 2010 from the corner Cook 0.0012%

Etymology here ...

@pocsvox

Data

Emergence

Statistical

Nutshell

W | |

PoCS

Data

@pocsvox

Fundamentals

Measurement

Self-Organization

Emergence

Modeling

Nutshell

UM | 8

PoCS

Data

@pocsvox

Fundamentals

Measurement

Self-Organization

•9 a (№ 20 of 74

Emergence

Modeling

Nutshell

◆) < (> 15 of 74

•9 q (→ 14 of 74

Self-Organization

Scientists are the people who ask a question about a phenomenon and proceed to systematically go about answering the question themselves. They are by nature curious, creative and well organized."

Please do not measure complex systems with one number:

- ♣ This is real

 —someone having some fun.
- Obtained from this tweet.
- Sadness for Buckingham (if Buckingham has no sense of humor).

The conceptual trapping pit \square of a single scale:

- Lure of simplicity: Comparisons and rankings are easy.
- A single scale measure is very appealing, very hard to resist and hard to push back against when widely adopted.
- Examples:
 - Grade point average (GPA)
 - College rankings, City rankings, Country rankings, Wine scores, Michelin Guide ☑, Yelp scores, Amazon ratings 2, ...
 - Body Mass Index (BMI)
 - Intelligence Quotient (IQ)¹
 - Effective temperature
 - Price for all things: One dimension of belief
 - Salary!
 - stock market valuation for corporations
 - Complexity of civilizations [17]
 - A 1-d axis for political ideologies (a spatial metaphor trap, thanks France! ✓)

PoCS @pocsvox Personality distributions: Fundamentals

Data

Measuremen

Self-Organization

Emergence

Modeling

Statistical

Mechanics

Reference

.... |S

PoCS

Data

少 Q (~ 21 of 74

Fundamentals

Measurement

Self-Organizatio

Emergence

Modeling

Statistical

Nutshell

References

Nutshell

"A Theory of the Emergence, Persistence, and Expression of Geographic Variation in Psychological Characteristics" Rentfrow, Gosling, and Potter, Perspectives on Psychological Science, 3, 339–369, 2008. ^[11]

Five Factor Model (FFM):

- Extraversion [E]
- Agreeableness [A]
- Conscientiousness [C]
- Neuroticism [N]
- Openness [O]

"...a robust and widely accepted framework for conceptualizing the structure of personality... Although the FFM is not universally accepted in the field..." [11]

A concern: self-reported data. Bigger concern: mass manipulation.

PoCS

Data

@pocsvox

Fundamentals

Measurement

Self-Organization

Emergence

Modeling

Statistical

Mechanics

Nutshell

References

少 q (~ 24 of 74

PoCS @pocsvox

Fundamentals

Data Measurement

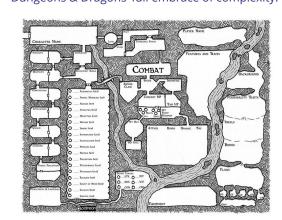
Emergence Self-Organization Modeling

Statistical Nutshell

References

◆) Q (→ 22 of 74

PoCS @pocsvox Fundamentals


Data Measurement Emergence Self-Organization Modeling Statistical Nutshell

References

•9 q (> 23 of 74

Dungeons & Dragons' full embrace of complexity:

From here .

PoCS Fundamentals

W | |

Data

Measurement Emergence Self-Organization

Modeling

Nutshell References

•9 q (~ 26 of 74

character:

Law-Chaos (vertical) and Good-Evil (horizontal).

²From this Reddit thread Z, where, naturally, the choices are enthusiastically debated.

Emergence:

The Wikipedia on Emergence (2006):

"In philosophy, systems theory and the sciences, emergence refers to the way complex systems and patterns arise out of a multiplicity of relatively simple interactions. ... emergence is central to the physics of complex systems and yet very controversial."

Wikipedia, 2016:

In philosophy, systems theory, science, and art, emergence is a process whereby larger entities arise through interactions among smaller or simpler entities such that the larger entities exhibit properties the smaller/simpler entities do not exhibit.

The philosopher G. H. Lewes first used the word explicity in 1875.

Emergence:

Tornadoes, financial collapses, human emotion aren't found in water molecules, dollar bills, or carbon atoms.

Examples:

- Fundamental particles ⇒ Life, the Universe, and Everything
- Genes ⇒ Organisms
- Neurons etc. ⇒ Brain ⇒ Thoughts
- Reople ⇒ Religion, Collective behaviour
- \triangle People \Rightarrow The Web
- People ⇒ Language, and rules of language
- \Re ? \Rightarrow time; ? \Rightarrow gravity; ? \Rightarrow reality.

Data

@pocsvox

Statistical

Nutshell

References

Friedrich Havek Measurement (Economist/Philospher/Nobelist): Emergence

A Markets, legal systems, political systems are Self-Organization emergent and not designed. Modeling

Emergence:

- 'Taxis' = made order (by God, Sovereign, Government, ...)
- & 'Cosmos' = grown order
- Archetypal limits of hierarchical and decentralized structures.

James Coleman I in Foundations of Social Theory:

Coleman

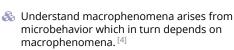
Economic

Behavior

- A Hierarchies arise once problems are solved. [5]
- Decentralized structures help solve problems.
- Dewey Decimal System versus tagging.

.... |S ◆) q (~ 27 of 74

PoCS @pocsvox Fundamentals


Data

Measurement Emergence Self-Organization Modeling

Nutshell

Emergence:

Values

Religious

Doctrine

.... |S

◆) < (> 35 of 74

PoCS @pocsvox Fundamentals

Data Emergence

Self-Organization Modeling Nutshell

Thomas Schelling (Economist/Nobelist):

Emergence:

🖀 "Micromotives and Macrobehavior" [

- Segregation [12, 15]
- Wearing hockey helmets [13]
- Seating choices

@nocsvox Fundamentals

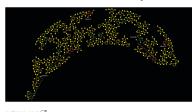
Self-Organization

Modeling

Statistical

Mechanics

Nutshell


References

Data

The emergence of taste:

Measuremen Emergence

the New York Times, January 28, 2007.

nytimes.com ☑

•2 € 38 of 74

PoCS @pocsvox Fundamentals

Data Measurement

Emergence Self-Organization Modeling Statistical

Nutshell References Reductionism

Reductionism and food:

- Pollan: "even the simplest food is a hopelessly complex thing to study, a virtual wilderness of chemical compounds, many of which exist in complex and dynamic relation to one another..."
- 🚵 "So ... break the thing down into its component parts and study those one by one, even if that means ignoring complex interactions and contexts, as well as the fact that the whole may be more than, or just different from, the sum of its parts. This is what we mean by reductionist science."

@nocsvox

Data

Fundamentals

Measuremen

Self-Organization

Emergence

Modeling

Statistical

Mechanics

Nutshell

References

•9 q (→ 41 of 74

PoCS @pocsvox Fundamentals

Data

Measurement Emergence

Self-Organization Modeling

Statistical

Nutshell

References

•9 q (→ 39 of 74

W |S

PoCS

Fundamentals

Data

Measurement Emergence Self-Organization

Modeling Statistical Mechanics Nutshell

References

Reductionism

"people don't eat nutrients, they eat foods, and foods can behave very differently than the nutrients they contain."

- Studies suggest diets high in fruits and vegetables help prevent cancer.
- So... find the nutrients responsible and eat more of them
- & But "in the case of beta carotene ingested as a supplement, scientists have discovered that it actually increases the risk of certain cancers. Oops."

•9 a (№ 42 of 74

PoCS Fundamentals

Data Measurement Emergence

Self-Organization

Modeling Statistical

Nutshell References

2 9 9 43 of 74

"The whole is more than the sum of its parts" -Aristotle

UN S 少 q (~ 37 of 74

Vi Hart and

Polygon-

themed

Nicky Case's

visualization 🗗

Reductionism

Reductionism

bumblebees).

Thyme's known antioxidants:

4-Terpineol, alanine, anethole, apigenin, ascorbic acid, beta carotene, caffeic acid, camphene, carvacrol, chlorogenic acid, chrysoeriol, eriodictyol, eugenol, ferulic acid, gallic acid, gamma-terpinene isochlorogenic acid, isoeugenol, isothymonin, kaempferol, labiatic acid, lauric acid, linalyl acetate, luteolin, methionine, myrcene, myristic acid, naringenin, oleanolic acid, p-coumoric acid, p-hydroxy-benzoic acid, palmitic acid, rosmarinic acid, selenium, tannin, thymol, tryptophan, ursolic acid, vanillic acid.

"It would be great to know how this all works, but in the

meantime we can enjoy thyme in the knowledge that it

probably doesn't do any harm (since people have been

eating it forever) and that it may actually do some

good (since people have been eating it forever) and

Gulf between theory and practice (see baseball and

This is a Collateralized Debt Obligation:

COURCEAGE

that even if it does nothing, we like the way it tastes."

[cnn.com]

PoCS @pocsvox Fundamentals Data

Emergence

"The Universe is made of stories, not of atoms."

- From "The Speed of Darkness" (1968) by Muriel Rukeyser 2
- Quoted by Metatron in Supernatural, Meta Fiction,

II. Strong emergence:

Emergence:

I. Weak emergence:

Emergence:

System-level phenomena fundamentally cannot be deduced from how parts interact.

Roughly speaking, there are two types of emergence:

System-level phenomena is different from that of its

constituent parts yet can be connected theoretically.

Measuremen

Data

@nocsvox

Fundamentals

Emergence Self-Organization

> Modeling Statistical Mechanics

Nutshell References

@pocsvox

Data

Fundamentals

Measuremen

Emergence

Modeling

Statistical

Mechanics

Nutshell

References

Self-Organization

◆2 < 0 47 of 74

PoCS @pocsvox Fundamentals

Data Measuremen

Emergence Self-Organization Modeling

Nutshell References

UN S

PoCS

Data

◆) q (→ 48 of 74

Fundamentals

Measurement

Self-Organization

Emergence

Modeling

Statistical

Nutshell

Reductionist techniques can explain weak emergence.

- Magic explains strong emergence. [2]
- & But: maybe magic should be interpreted as an inscrutable yet real mechanism that cannot ever be simply described.

Limits of Science | Radiolab

Listen to Steve Strogatz, Hod Lipson, and

Dr. Steve Strongtz wonders if we've reached the limits of

Hod Lipson and Michael Schmidt walk us through the

developed--a program that can deduce mathematical relationships in nature, through simple observation. The catch?

workings of a revolutionary computer program that they

As Dr. Gurol Suel explains, the program gives answers to complex biological questions that we humans have yet to ask

human scientific understanding, and should soon turn the reins

of research over to robots, Cold, calculating robots, Then, Dr.

Michael Schmidt (Cornell) in the last

piece (11:16) on Radiolab's show

少 Q (~ 50 of 74

PoCS @pocsvox Fundamentals

Data

Measurement Emergence

Self-Organization

Modeling

Statistical

Nutshell

References

UM O

夕 Q ← 51 of 74

PoCS

Fundamentals

Data

Measurement

Emergence

Self-Organization

Modeling

Statistical

Nutshell References

TAGS: mind bending

or even to understand.

'Limits' 🗗 (April 5, 2010).

Gulp.

Data Measurement Emergence Self-Organization Modeling Nutshell

- that interact with each other.
- Potentially much harder to explain/understand.

Gödel's Theorem ☑ we can't prove every theorem that's true

Suggests a strong form of emergence: Some phenomena cannot be analytically deduced from elementary aspects of a system.

Pair with some slow tv 🗷 Bonus: Mike Schmidt's talk on Eurega dat UVM's 2011 TEDx event "Big Data, Big Stories."

2 9 9 € 53 of 74

Self-Organization Statistical Nutshell References

.... |S

Data

Emergence

Modeling

Statistical

Nutshell

Self-Organization

◆) < ○ 44 of 74

PoCS @pocsvox Fundamentals

(Sir Terry) Pratchett's ☑ Narrativium ☑:

A "The most common element on the disc, although not included in the list of the standard five: earth, fire, air, water and surprise. It ensures that everything runs properly as a story."

"A little narrativium goes a long way: the simpler the story, the better you understand it. Storytelling is the opposite of reductionism: 26 letters and some rules of grammar are no story at all."

.... |S

◆) < (> 45 of 74

PoCS Fundamentals

Higher complexity:

Many system scales (or levels)

Even mathematics: [6]

Definitions

"Self-organization

is a process in which the internal organization of a system, normally an open system, increases in complexity without being guided or managed by an outside source." (also: Self-assembly)

Examples:

- Molecules/Atoms liking each other → Gases, liquids, and solids.
- & Spin alignment \rightarrow Magnetization.
- Protein folding.
- \Longrightarrow Imitation \rightarrow Herding, flocking, mobs, ...

Fundamental question: how likely is 'complexification'?

◆) < ○ 54 of 74

PoCS Tools and techniques: @pocsvox Fundamentals Differential equations, difference equations, linear

- algebra, stochastic models. Statistical techniques for comparisons and descriptions.
- Methods from statistical mechanics and computer science.
- & Machine learning (but beware the black box).
- Computer modeling, everything from
 - Artisanal toy models
 - to kitchen sink models.

Key advance (more soon):

- Representation of complex interaction patterns as complex networks.
- The driver: Massive amounts of Data

Rather silly but great example of real science:

"How Cats Lap: Water Uptake by Felis catus" Reis et al., Science, 2010.

Amusing interview here

PoCS @pocsvox Fundamentals

Another great, great Emergence

Self-Organization

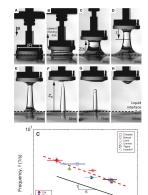
Modeling Statistical Mechanics Nutshell

Data

the lapping frequency of other felines. Assuming isometry within the Felidae family (i.e., that lapping height H scales linearly with tongue width R and animal mass M scales as R^3), the finding that Fr* is of order one translates to the prediction $f \sim R^{-1/2} \sim M^{-1/6}$. Isometry or marginally positive allomety among the Felidae has been demonstrated for skull (20, 21) and limb bones (22). Although variability by function can lead to departures from isometry in intersp scalings (23), reported variations within the Felidae (23, 24) only minimally affect the predicted scaling $f \sim M^{-1/6}$. We tested this -1/6 power-law dependence by measuring the lapping frequency for eight species of felines, from videos equired at the Zoo New England or available on YouTube (16). The lapping frequency was observed to decrease with animal mass as $f = 4.6 M^{-0.181 \pm 0.024}$ (f in s⁻¹, M in kg) (Fig. 4C), close to the predicted M^{-1/6}. This close agreement aggests that the domestic cat's inertia- and gravity-controlled apping mechanism is conserved among felines.

behavior."

Percolation:


Statistical Mechanics is "a science of collective"

Simple rules give rise to collective phenomena.

moment in scaling:

The balance of inertia and gravity yields a prediction for

 $f \sim M^{-1/6}$

.... |S

Data Measurement Emergence

> Self-Organization Modeling

Nutshell References

◆) < (→ 55 of 74

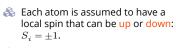
PoCS Fundamentals

Data Measuremen Emergence Self-Organization

Modeling Nutshell

WW |

•9 a (№ 56 of 74



longer online]

The Ising Model ☑ of a ferromagnet:

Snared from Michael Gastner's page on percolation [no

- Spins are assumed to be arranged on a lattice.
- In isolation, spins like to align with each other.
- Increasing temperature breaks these alignments.
- The drosophila of statistical mechanics.
- & Criticality: Power-law distributions at critical points.

@pocsvox Fundamentals

Self-Organization Modeling

Phase diagrams

Data Measuremer Emergence

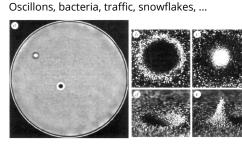
Statistical Mechanics Nutshell References

solid phase supercritical fluid liquid ritical pressure critical point liquid phase triple point superheated vapour gaseous phase critical Ter

Qualitatively distinct macro states.

◆9 Q ← 57 of 74

PoCS @pocsvox Fundamentals


Data Measurement

> Self-Organization Modeling

Statistical Mechanics Nutshell References

Phase diagrams

Emergence

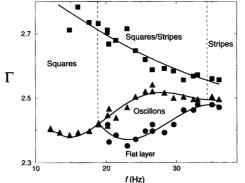
Umbanhowar et al., Nature, 1996 [18]

UM OS

•9 q (→ 60 of 74

PoCS

Data


Measuremen Emergence Self-Organization Modeling

Statistical Mechanics Nutshell

References

Phase diagrams

Fundamentals

Data Measurement

Fundamentals

PoCS

Data

@pocsvox

Emergence

Modeling

Statistical Mechanics

Nutshell

References

UM O

PoCS

Data

@pocsvox

Fundamentals

Measuremen

Self-Organization

Emergence

Modeling

Statistical

Nutshell

References

W | |

夕 Q № 63 of 74 PoCS

•9 q (№ 62 of 74

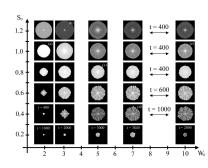
Self-Organization

Fundamentals

Emergence Self-Organization

Modeling Statistical

少 Q (~ 64 of 74


Nutshell References

Example 2-d Ising model simulation: https://mattbierbaum.github.io/ising.js/

Phase diagrams

 W_0 = initial wetness, S_0 = initial nutrient supply http://math.arizona.edu/~lega/HydroBact.html

Ising model

Analytic issues:

- 1-d: simple (Ising & Lenz, 1925)
- & 2-d: hard (Onsager, 1944)
- 3-d: extremely hard...
- & 4-d and up: simple.
- See lower and upper critical dimension ☑ in statistical physics.
- Also: Curse and Blessing of Dimensionality

Statistics

Historical surprise:

- Origins of Statistical Mechanics are in the studies of people... (Maxwell and co.)
- Now physicists are using their techniques to study everything else including people...
- See Philip Ball's "Critical Mass" [1]

Beyond Statistical Mechanics:

- Analytic approaches have their limits, especially in
- Algorithmic methods and simulation techniques will continue to rise in importance.

PoCS @pocsvox Fundamentals

Data

Emergence

Modeling

Statistical Mechanics

Nutshell

References

Self-Organization

Nutshell

- The central concepts Complexity and Emergence are reasonably well defined.
- There is no general theory of Complex Systems.
- But the problems exist...
 - Complex (Adaptive) Systems abound...
- And the observation of Universality of dynamical systems, statistical mechanics, and other quantitative areas means not everything is special and different.
- Reading Framing from the Manifesto: Science's focus is moving to Complex Systems because it finally can.
- We use whatever tools we need.
- Science ≃ Describe + Explain.

PoCS

Data

@pocsvox

Fundamentals

Measurement

Self-Organization

Emergence

Modeling

Statistical

Nutshell

Mechanics

References

◆9 < ℃ 65 of 74

References I

- [1] P. Ball. Critical Mass: How One Thing Leads to Another. Farra, Straus, and Giroux, New York, 2004.
- M. A. Bedau. [2] Weak emergence. In J. Tomberlin, editor, Philosophical Perspectives: Mind, Causation, and World, volume 11, pages 375-399. Blackwell, Malden, MA, 1997. pdf ☑
- H. Chang. Inventing temperature: Measurement and scientific progress. Oxford University Press, 2004.
- [4] I. S. Coleman. Foundations of Social Theory. Belknap Press, Cambridge, MA, 1994.

Fundamentals

Measuremen

Self-Organization

Emergence

Modeling

Statistical Mechanics

Nutshell

References

UH S ◆) q (~ 67 of 74

Data

◆) < (> 66 of 74

PoCS References II

[5] P. S. Dodds, D. J. Watts, and C. F. Sabel. Information exchange and the robustness of organizational networks. Proc. Natl. Acad. Sci., 100(21):12516-12521, 2003.

pdf 🖸 R. Foote. [6] Mathematics and complex systems.

Science, 318:410-412, 2007. pdf ✓

[7] D. R. Hofstadter. Gödel, Escher, Bach. Vintage Books, New York, 1980.

[8] A. R. Jensen. Bias in mental testing. ERIC. 1980.

Data

Measurement

Self-Organization

Emergence

Modeling

Statistical

Mechanics

Nutshell

References

References III

[9] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, The Google Books Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak, and E. A. Lieberman. Quantitative analysis of culture using millions of digitized books. Science Magazine, 331:176–182, 2011. pdf

[10] E. A. Pechenick, C. M. Danforth, and P. S. Dodds. Characterizing the Google Books corpus: Strong limits to inferences of socio-cultural and linguistic evolution. PLoS ONE, 10:e0137041, 2015. pdf

[11] P. J. Rentfrow, S. D. Gosling, and J. Potter.

expression of geographic variation in

psychological characteristics.

Dynamic models of segregation.

Micromotives and Macrobehavior.

Some fun, thirty-five years ago.

1639–1644. Elsevier, 2006. pdf

Norton, New York, 1978.

J. Math. Sociol., 1:143–186, 1971. pdf 🗗

Hockey helmets, concealed weapons, and

2008. pdf 🗷

[12] T. C. Schelling.

[13] T. C. Schelling.

References V

[14] T. C. Schelling.

[15] T. C. Schelling.

externalities.

A theory of the emergence, persistence, and

Perspectives on Psychological Science, 3:339-369,

PoCS

Data

@nocsvox

Fundamentals

Measurement

Self-Organization

Emergence

Modeling

Statistical

Mechanic

References

Nutshell

◆9 q (> 68 of 74

.... |S

PoCS

@pocsvox

References IV Fundamentals

Data Measurement Emergence Self-Organization Modeling Statistical

Nutshell References

UM OS

•9 q (→ 69 of 74

PoCS Fundamentals

Data Measurement Emergence Self-Organization Modeling Statistical

Nutshell References

III |

少 Q (> 70 of 74

[16] D. Sobel

Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time. Bloomsbury Publishing, US, 2007.

In L. Tesfatsion and K. L. Judd, editors, Handbook

of Computational Economics, volume 2, pages

少 Q (~ 71 of 74

PoCS @pocsvox Fundamentals

Data Measuremen Emergence Self-Organization Modeling Statistical

Nutshell

References

daylight saving: A study of binary choices with J. Conflict Resolut., 17:381–428, 1973. pdf 🗗

W |S

夕 Q ← 72 of 74

PoCS Fundamentals

Data Measurement Emergence Self-Organization

Modeling Statistical Nutshell

References

UNN O

2 9 9 9 73 of 74

- evolutionary, algorithm-rich systems.

References VI

[17] P. Turchin, T. E. Currie, H. Whitehouse, P. François, K. Feeney, D. Mullins, D. Hoyer, C. Collins, S. Grohmann, P. Savage, et al. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization. Proceedings of the National Academy of Sciences, 115:E144–E151, 2018. pdf

PoCS @pocsvox Fundamentals

Data Measurement Emergence Self-Organization Modeling Statistical Mechanics Nutshell

References

UM | | | | |

少○<a>○<a>○ 74 of 74