Random walks and diffusion on networks

Principles of Complex Systems, Vols. 1, 2, \& 3D CSYS/MATH 300, 303, \& 394, 2022-2023| @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

These slides are brought to you by:
The PoCSverse Diffusion

Random walks on networks

These slides are also brought to you by:

Special Guest Executive Producer

PoCS
Principles of
Complex Systems
@pocsvox
What's the Story?
O On Instagram at pratchett_the_cat[

Outline

The PoCSverse
Diffusion

Random walks on networks

Random walks on networks-basics:

Imagine a single random walker moving around
on a network.

Principles of
omplex System
@pocsvox
What's the Story?

Random walks on networks-basics:

Imagine a single random walker moving around on a network.
At $t=0$, start walker at node j and take time to be discrete.

Random walks on networks-basics:

R Imagine a single random walker moving around on a network.
At $t=0$, start walker at node j and take time to be discrete.
\& Q What's the long term probability distribution for where the walker will be?

Random walks on networks-basics:

8. Imagine a single random walker moving around on a network.
At $t=0$, start walker at node j and take time to be discrete.
\& Q: What's the long term probability distribution for where the walker will be?
Define $p_{i}(t)$ as the probability that at time step t, our walker is at node i.

Random walks on networks-basics:

Imagine a single random walker moving around on a network.
At $t=0$, start walker at node j and take time to be discrete.
\& Q What's the long term probability distribution for where the walker will be?
Define $p_{i}(t)$ as the probability that at time step t, our walker is at node i.
We want to characterize the evolution of $\vec{p}(t)$.

Random walks on networks-basics:

Imagine a single random walker moving around on a network.
At $t=0$, start walker at node j and take time to be discrete.
\& Q: What's the long term probability distribution for where the walker will be?
Define $p_{i}(t)$ as the probability that at time step t, our walker is at node i.
8
We want to characterize the evolution of $\vec{p}(t)$.
8
First task: connect $\vec{p}(t+1)$ to $\vec{p}(t)$.

Random walks on networks-basics:

Imagine a single random walker moving around on a network.
At $t=0$, start walker at node j and take time to be discrete.
\& Q What's the long term probability distribution for where the walker will be?
Define $p_{i}(t)$ as the probability that at time step t, our walker is at node i.
We want to characterize the evolution of $\vec{p}(t)$.

- First task: connect $\vec{p}(t+1)$ to $\vec{p}(t)$.

Let's call our walker Barry.

Random walks on networks-basics:

Imagine a single random walker moving around on a network.
At $t=0$, start walker at node j and take time to be discrete.
\& Q : What's the long term probability distribution for where the walker will be?
Define $p_{i}(t)$ as the probability that at time step t, our walker is at node i.
We want to characterize the evolution of $\vec{p}(t)$.
First task: connect $\vec{p}(t+1)$ to $\vec{p}(t)$.
R Let's call our walker Barry.

- Unfortunately for Barry, he lives on a high
 dimensional graph and is far from home.

Random walks on networks-basics:

Imagine a single random walker moving around on a network.
At $t=0$, start walker at node j and take time to be discrete.
Q Q: What's the long term probability distribution for where the walker will be?
Define $p_{i}(t)$ as the probability that at time step t, our walker is at node i.
We want to characterize the evolution of $\vec{p}(t)$.
First task: connect $\vec{p}(t+1)$ to $\vec{p}(t)$.

- Let's call our walker Barry.
- Unfortunately for Barry, he lives on a high
 dimensional graph and is far from home.
Worse still: Barry is texting.

Where is Barry?

Consider simple undirected, ergodic (strongly connected) networks.

Where is Barry?

Consider simple undirected, ergodic (strongly connected) networks.
As usual, represent network by adjacency matrix
A where
$a_{i j}=1$ if i has an edge leading to j,
$a_{i j}=0$ otherwise.

Where is Barry?

Consider simple undirected, ergodic (strongly connected) networks.
As usual, represent network by adjacency matrix A where

$$
\begin{aligned}
& a_{i j}=1 \text { if } i \text { has an edge leading to } j, \\
& a_{i j}=0 \text { otherwise. }
\end{aligned}
$$

Barry is at node j at time t with probability $p_{j}(t)$.

Where is Barry?

Consider simple undirected, ergodic (strongly connected) networks.
As usual, represent network by adjacency matrix A where

$$
\begin{aligned}
& a_{i j}=1 \text { if } i \text { has an edge leading to } j, \\
& a_{i j}=0 \text { otherwise. }
\end{aligned}
$$

B Barry is at node j at time t with probability $p_{j}(t)$.
In the next time step, he randomly lurches toward one of j 's neighbors.

Where is Barry?

Consider simple undirected, ergodic (strongly connected) networks.
R As usual, represent network by adjacency matrix A where

$$
\begin{aligned}
& a_{i j}=1 \text { if } i \text { has an edge leading to } j, \\
& a_{i j}=0 \text { otherwise. }
\end{aligned}
$$

8. Barry is at node j at time t with probability $p_{j}(t)$.

In the next time step, he randomly lurches toward one of j 's neighbors.

- Barry arrives at node i from node j with probability $\frac{1}{k_{j}}$ if an edge connects j to i.

Where is Barry?

Consider simple undirected, ergodic (strongly connected) networks.
R As usual, represent network by adjacency matrix A where

$$
\begin{aligned}
& a_{i j}=1 \text { if } i \text { has an edge leading to } j, \\
& a_{i j}=0 \text { otherwise. }
\end{aligned}
$$

8. Barry is at node j at time t with probability $p_{j}(t)$. In the next time step, he randomly lurches toward one of j 's neighbors.

- Barry arrives at node i from node j with probability $\frac{1}{k_{j}}$ if an edge connects j to i.
\& Equation-wise:

$$
p_{i}(t+1)=\sum_{j=1}^{n} \frac{1}{k_{j}} a_{j i} p_{j}(t)
$$

where k_{j} is j 's degree.

Where is Barry?

Consider simple undirected, ergodic (strongly connected) networks.
R As usual, represent network by adjacency matrix A where

$$
\begin{aligned}
& a_{i j}=1 \text { if } i \text { has an edge leading to } j, \\
& a_{i j}=0 \text { otherwise. }
\end{aligned}
$$

8 Barry is at node j at time t with probability $p_{j}(t)$. In the next time step, he randomly lurches toward one of j 's neighbors.
. Barry arrives at node i from node j with probability $\frac{1}{k_{j}}$ if an edge connects j to i.
\& Equation-wise:

$$
p_{i}(t+1)=\sum_{j=1}^{n} \frac{1}{k_{j}} a_{j i} p_{j}(t)
$$

where k_{j} is j 's degree. Note: $k_{i}=\sum_{j=1}^{n} a_{i j}$.

Inebriation and diffusion:

Excellent observation: The same equation applies for stuff moving around a network, such that at each time step all material at node i is sent to its neighbors.

Inebriation and diffusion:

Excellent observation: The same equation applies for stuff moving around a network, such that at each time step all material at node i is sent to its neighbors.
8 $x_{i}(t)=$ amount of stuff at node i at time t.

Inebriation and diffusion:

Excellent observation: The same equation applies for stuff moving around a network, such that at each time step all material at node i is sent to its neighbors.
$x_{i}(t)=$ amount of stuff at node i at time t.

$$
x_{i}(t+1)=\sum_{j=1}^{n} \frac{1}{k_{j}} a_{j i} x_{j}(t)
$$

Inebriation and diffusion:

Excellent observation: The same equation applies for stuff moving around a network, such that at each time step all material at node i is sent to its neighbors.
8 $x_{i}(t)=$ amount of stuff at node i at time t.

$$
x_{i}(t+1)=\sum_{j=1}^{n} \frac{1}{k_{j}} a_{j i} x_{j}(t)
$$

R Random walking is equivalent to diffusion $\sqrt{3}$.

Where is Barry?

(8inear algebra-based excitement:
$p_{i}(t+1)=\sum_{j=1}^{n} a_{j i} \frac{1}{k_{j}} p_{j}(t)$ is more usefully viewed as

$$
\vec{p}(t+1)=A^{\top} K^{-1} \vec{p}(t)
$$

where $\left[K_{i j}\right]=\left[\delta_{i j} k_{i}\right]$ has node degrees on the main diagonal and zeros everywhere else.

Where is Barry?

(8inear algebra-based excitement:
$p_{i}(t+1)=\sum_{j=1}^{n} a_{j i} \frac{1}{k_{j}} p_{j}(t)$ is more usefully viewed as

$$
\vec{p}(t+1)=A^{\top} K^{-1} \vec{p}(t)
$$

where $\left[K_{i j}\right]=\left[\delta_{i j} k_{i}\right]$ has node degrees on the main diagonal and zeros everywhere else.
So... we need to find the dominant eigenvalue of $A^{\top} K^{-1}$.

Where is Barry?

Linear algebra-based excitement:
$p_{i}(t+1)=\sum_{j=1}^{n} a_{j i} \frac{1}{k_{j}} p_{j}(t)$ is more usefully viewed as

$$
\vec{p}(t+1)=A^{\top} K^{-1} \vec{p}(t)
$$

where $\left[K_{i j}\right]=\left[\delta_{i j} k_{i}\right]$ has node degrees on the main diagonal and zeros everywhere else.
So... we need to find the dominant eigenvalue of $A^{\top} K^{-1}$.
Expect this eigenvalue will be 1 (doesn't make sense for total probability to change).

Where is Barry?

Linear algebra-based excitement:
$p_{i}(t+1)=\sum_{j=1}^{n} a_{j i} \frac{1}{k_{j}} p_{j}(t)$ is more usefully viewed as

$$
\vec{p}(t+1)=A^{\top} K^{-1} \vec{p}(t)
$$

where $\left[K_{i j}\right]=\left[\delta_{i j} k_{i}\right]$ has node degrees on the main diagonal and zeros everywhere else.
So... we need to find the dominant eigenvalue of $A^{\top} K^{-1}$.
Expect this eigenvalue will be 1 (doesn't make sense for total probability to change).
R The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

Where is Barry?

8 Linear algebra-based excitement:
$p_{i}(t+1)=\sum_{j=1}^{n} a_{j i} \frac{1}{k_{j}} p_{j}(t)$ is more usefully viewed as

$$
\vec{p}(t+1)=A^{\top} K^{-1} \vec{p}(t)
$$

where $\left[K_{i j}\right]=\left[\delta_{i j} k_{i}\right]$ has node degrees on the main diagonal and zeros everywhere else.
So... we need to find the dominant eigenvalue of $A^{\top} K^{-1}$.
Expect this eigenvalue will be 1 (doesn't make sense for total probability to change).
R The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.

Where is Barry?

By inspection, we see that

$$
\vec{p}(\infty)=\frac{1}{\sum_{i=1}^{n} k_{i}} \vec{k}
$$

satisfies $\vec{p}(\infty)=A^{\top} K^{-1} \vec{p}(\infty)$ with eigenvalue 1 .

Where is Barry?

By inspection, we see that

$$
\vec{p}(\infty)=\frac{1}{\sum_{i=1}^{n} k_{i}} \vec{k}
$$

satisfies $\vec{p}(\infty)=A^{\top} K^{-1} \vec{p}(\infty)$ with eigenvalue 1.
We will find Barry at node i with probability proportional to its degree k_{i}.

Where is Barry?

By inspection, we see that

$$
\vec{p}(\infty)=\frac{1}{\sum_{i=1}^{n} k_{i}} \vec{k}
$$

satisfies $\vec{p}(\infty)=A^{\top} K^{-1} \vec{p}(\infty)$ with eigenvalue 1 .
We will find Barry at node i with probability proportional to its degree k_{i}.
Beautiful implication: probability of finding Barry travelling along any edge is uniform.

Where is Barry?

By inspection, we see that

$$
\vec{p}(\infty)=\frac{1}{\sum_{i=1}^{n} k_{i}} \vec{k}
$$

satisfies $\vec{p}(\infty)=A^{\top} K^{-1} \vec{p}(\infty)$ with eigenvalue 1.
We will find Barry at node i with probability proportional to its degree k_{i}.
. Beautiful implication: probability of finding Barry travelling along any edge is uniform.
Diffusion in real space smooths things out.

Where is Barry?

By inspection, we see that

$$
\vec{p}(\infty)=\frac{1}{\sum_{i=1}^{n} k_{i}} \vec{k}
$$

satisfies $\vec{p}(\infty)=A^{\top} K^{-1} \vec{p}(\infty)$ with eigenvalue 1.
We will find Barry at node i with probability proportional to its degree k_{i}.

- Beautiful implication: probability of finding Barry travelling along any edge is uniform.
R Diffusion in real space smooths things out.
On Onetworks, uniformity occurs on edges.

Where is Barry?

By inspection, we see that

$$
\vec{p}(\infty)=\frac{1}{\sum_{i=1}^{n} k_{i}} \vec{k}
$$

satisfies $\vec{p}(\infty)=A^{\top} K^{-1} \vec{p}(\infty)$ with eigenvalue 1 .

We will find Barry at node i with probability proportional to its degree k_{i}.
Beautiful implication: probability of finding Barry travelling along any edge is uniform.
Diffusion in real space smooths things out.
On networks, uniformity occurs on edges.
So in fact, diffusion in real space is about the
 edges too but we just don't see that.

Other pieces:

Goodness: $A^{\top} K^{-1}$ is similar to a real symmetric matrix if $A=A^{\top}$.

Other pieces:

Goodness: $A^{\top} K^{-1}$ is similar to a real symmetric matrix if $A=A^{\top}$.
Consider the transformation $M=K^{-1 / 2}$:

$$
K^{-1 / 2} A^{\top} K^{-1} K^{1 / 2}=K^{-1 / 2} A^{\top} K^{-1 / 2}
$$

Other pieces:

Goodness: $A^{\top} K^{-1}$ is similar to a real symmetric matrix if $A=A^{\top}$.
\& 8 Consider the transformation $M=K^{-1 / 2}$:

$$
K^{-1 / 2} A^{\top} K^{-1} K^{1 / 2}=K^{-1 / 2} A^{\top} K^{-1 / 2}
$$

. Since $A^{\top}=A$, we have

$$
\left(K^{-1 / 2} A K^{-1 / 2}\right)^{\top}=K^{-1 / 2} A K^{-1 / 2}
$$

Other pieces:

Goodness: $A^{\top} K^{-1}$ is similar to a real symmetric matrix if $A=A^{\top}$.

- Consider the transformation $M=K^{-1 / 2}$:

$$
K^{-1 / 2} A^{\top} K^{-1} K^{1 / 2}=K^{-1 / 2} A^{\top} K^{-1 / 2}
$$

R Since $A^{\top}=A$, we have

$$
\left(K^{-1 / 2} A K^{-1 / 2}\right)^{\top}=K^{-1 / 2} A K^{-1 / 2}
$$

8. Upshot: $A^{\top} K^{-1}=A K^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.

Other pieces:

Goodness: $A^{\top} K^{-1}$ is similar to a real symmetric matrix if $A=A^{\top}$.
Consider the transformation $M=K^{-1 / 2}$:

$$
K^{-1 / 2} A^{\top} K^{-1} K^{1 / 2}=K^{-1 / 2} A^{\top} K^{-1 / 2}
$$

R Since $A^{\top}=A$, we have

$$
\left(K^{-1 / 2} A K^{-1 / 2}\right)^{\top}=K^{-1 / 2} A K^{-1 / 2}
$$

8. Upshot: $A^{\top} K^{-1}=A K^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.
Can also show that maximum eigenvalue magnitude is indeed 1.
