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Contagion models

Some large questions concerning network
contagion:

1. For a given spreading mechanism on a given
network, what’s the probability that there will be
global spreading?

2. If spreading does take off, how far will it go?
3. How do the details of the network affect the

outcome?
4. How do the details of the spreading mechanism

affect the outcome?
5. What if the seed is one or many nodes?

 Next up: We’ll look at some fundamental kinds of
spreading on generalized random networks.
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Spreading mechanisms

uninfected
infected

 General spreading
mechanism:
State of node 𝑖
depends on history of
𝑖 and 𝑖’s neighbors’
states.

 Doses of entity may be
stochastic and
history-dependent.

 May have multiple,
interacting entities
spreading at once.
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Spreading on Random Networks

 For random networks, we know local structure is
pure branching.

 Successful spreading is ∴ contingent on single
edges infecting nodes.

 Focus on binary case with edges and nodes either
infected or not.

 First big question: for a given network and
contagion process, can global spreading from a
single seed occur?
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Global spreading condition
 We need to find: [5]

R = the average # of infected edges that one
random infected edge brings about.

 Call R the gain ratio.

 Define 𝐵𝑘1 as the probability that a node of
degree 𝑘 is infected by a single infected edge.



R =
∞
∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩⏟

prob. of
connecting to
a degree 𝑘 node

• (𝑘 − 1)⏟
# outgoing
infected
edges

• 𝐵𝑘1⏟
Prob. of
infection

+
∞
∑
𝑘=0

⏞𝑘𝑃𝑘
⟨𝑘⟩ • 0⏟

# outgoing
infected
edges

• (1 − 𝐵𝑘1)⏟⏟⏟⏟⏟
Prob. of
no infection
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Global spreading condition

 Our global spreading condition is then:

R =
∞
∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩ • (𝑘 − 1) • 𝐵𝑘1 > 1.

 Case 1:

If 𝐵𝑘1 = 1 then

R =
∞
∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩ • (𝑘 − 1) = ⟨𝑘(𝑘 − 1)⟩

⟨𝑘⟩ > 1.

 Good: This is just our giant component condition
again.
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⟨𝑘⟩ • (𝑘 − 1) • 𝛽 > 1.

 A fraction (1-𝛽) of edges do not transmit infection.
 Analogous phase transition to giant component

case but critical value of ⟨𝑘⟩ is increased.
 Aka bond percolation.
 Resulting degree distribution ̃𝑃𝑘:

̃𝑃𝑘 = 𝛽𝑘
∞
∑
𝑖=𝑘

(𝑖
𝑘)(1 − 𝛽)𝑖−𝑘𝑃𝑖.

Insert question from assignment 9
 We can show 𝐹�̃� (𝑥) = 𝐹𝑃 (𝛽𝑥 + 1 − 𝛽).

http://en.wikipedia.org/wiki/Percolation_theory
https://pdodds.w3.uvm.edu/teaching/courses/2022-2023principles-of-complex-systems//assignments/09/
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Global spreading condition

 Cases 3, 4, 5, ...:

Now allow 𝐵𝑘1 to depend on 𝑘
 Asymmetry: Transmission along an edge depends

on node’s degree at other end.
 Possibility: 𝐵𝑘1 increases with 𝑘...

unlikely

.
 Possibility: 𝐵𝑘1 is not monotonic in 𝑘...

unlikely

.
 Possibility: 𝐵𝑘1 decreases with 𝑘...

hmmm

.
 𝐵𝑘1 ↘ is a plausible representation of a simple

kind of social contagion.
 The story:

More well connected people are harder to
influence.
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= active at t=4

Global spreading condition

 The uniform threshold model global spreading
condition:

R =
⌊ 1

𝜙 ⌋

∑
𝑘=1

(𝑘 − 1) • 𝑘𝑃𝑘
⟨𝑘⟩ > 1.

 As 𝜙 → 1, all nodes become resilient and 𝑟 → 0.
 As 𝜙 → 0, all nodes become vulnerable and the

contagion condition matches up with the giant
component condition.

 Key: If we fix 𝜙 and then vary ⟨𝑘⟩, we may see two
phase transitions.

 Added to our standard giant component
transition, we will see a cut off in spreading as
nodes become more connected.
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Virtual contagion: Corrupted Blood, a 2005 virtual
plague in World of Warcraft:

http://en.wikipedia.org/wiki/Corrupted_Blood_incident
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Original work:

A simple model of global cascades on
random networks
Duncan J. Watts*

Department of Sociology, Columbia University New York, NY 10027

Communicated by Murray Gell-Mann, Santa Fe Institute, Santa Fe, NM, February 14, 2002 (received for review May 29, 2001)

The origin of large but rare cascades that are triggered by small initial
shocks is a phenomenon that manifests itself as diversely as cultural
fads, collective action, the diffusion of norms and innovations, and
cascading failures in infrastructure and organizational networks. This
paper presents a possible explanation of this phenomenon in terms
of a sparse, random network of interacting agents whose decisions
are determined by the actions of their neighbors according to a simple
threshold rule. Two regimes are identified in which the network is
susceptible to very large cascades—herein called global cascades—
that occur very rarely. When cascade propagation is limited by the
connectivity of the network, a power law distribution of cascade sizes
is observed, analogous to the cluster size distribution in standard
percolation theory and avalanches in self-organized criticality. But
when the network is highly connected, cascade propagation is limited
instead by the local stability of the nodes themselves, and the size
distribution of cascades is bimodal, implying a more extreme kind of
instability that is correspondingly harder to anticipate. In the first
regime, where the distribution of network neighbors is highly
skewed, it is found that the most connected nodes are far more
likely than average nodes to trigger cascades, but not in the second
regime. Finally, it is shown that heterogeneity plays an ambiguous
role in determining a system’s stability: increasingly heteroge-
neous thresholds make the system more vulnerable to global
cascades; but an increasingly heterogeneous degree distribution
makes it less vulnerable.

How is it that small initial shocks can cascade to affect or disrupt
large systems that have proven stable with respect to similar

disturbances in the past? Why do some books, movies, and albums
emerge out of obscurity, and with small marketing budgets, to
become popular hits (1), when many a priori indistinguishable
efforts fail to rise above the noise? Why does the stock market
exhibit occasional large fluctuations that cannot be traced to the
arrival of any correspondingly significant piece of information (2)?
How do large, grassroots social movements start in the absence of
centralized control or public communication (3)?

These phenomena are all examples of what economists call
information cascades (ref. 4; but which are herein called simply
cascades), during which individuals in a population exhibit
herd-like behavior because they are making decisions based on
the actions of other individuals rather than relying on their own
information about the problem. Although they are generated by
quite different mechanisms, cascades in social and economic
systems (3–6) are similar to cascading failures in physical infra-
structure networks (7, 8) and complex organizations (9) in that
initial failures increase the likelihood of subsequent failures,
leading to eventual outcomes that, like the August 10, 1996
cascading failure in the western United States power transmis-
sion grid (8), are extremely difficult to predict, even when the
properties of the individual components are well understood.
Not as newsworthy, but just as important as the cascades
themselves, is that the very same systems routinely display great
stability in the presence of continual small failures and shocks
that are at least as large as the shocks that ultimately generate
a cascade. Cascades can therefore be regarded as a specific
manifestation of the robust yet fragile nature of many complex
systems (10): a system may appear stable for long periods of time

and withstand many external shocks (robust), then suddenly and
apparently inexplicably exhibit a large cascade (fragile).

Although the social, economic, and physical mechanisms respon-
sible for the occurrence of cascades are complex and may vary
widely across systems and even between particular cascades in the
same system, it is proposed in this paper that some generic features
of cascades can be explained in terms of the connectivity of the
network by which influence is transmitted between individuals.
Specifically, this paper addresses the set of qualitative observations
that (i) global (i.e., very large) cascades can be triggered by
exogenous events (shocks) that are very small relative to the system
size, and (ii) global cascades occur rarely relative to the number of
shocks that the system receives, and may be triggered by shocks that
are a priori indistinguishable from shocks that do not.

Model Motivation: Binary Decisions with Externalities
This model is motivated by considering a population of individuals
each of whom must decide between two alternative actions, and
whose decisions depend explicitly on the actions of other members
of the population. In social and economic systems, decision makers
often pay attention to each other either because they have limited
information about the problem itself or limited ability to process
even the information that is available (6). When deciding which
movie (11) or restaurant (12) to visit, we often have little informa-
tion with which to evaluate the alternatives, so frequently we rely on
the recommendation of friends, or simply pick the movie or
restaurant to which most people are going. Even when we have
access to plentiful information, such as when we evaluate new
technologies, risky financial assets, or job candidates, we often lack
the ability to make sense of it; hence, again we rely on the advice
of trusted friends, colleagues, or advisors. In other decision making
scenarios, such as in collective action problems (3) or social
dilemmas (13), an individual’s payoff is an explicit function of the
actions of others. And in other problems still, involving say the
diffusion of a new technology (14), the utility of a single additional
unit—a fax machine for example—may depend on the number of
units that have already been sold. In all these problems, therefore,
regardless of the details, individual decision makers have an incen-
tive to pay attention to the decisions of others.

In economic terms, this entire class of problems is known
generically as binary decisions with externalities (6). As simplistic as
it appears, a binary decision framework is relevant to surprisingly
complex problems. To take an extreme example, the creation of a
political coalition or an international treaty is unquestionably a
complex, multifaceted process with many potential outcomes. But
once the coalition exists or the treaty has been drafted, the decision
of whether or not to join is essential a binary one. Similar reasoning
applies to a firm’s choice between two technologies, or an individ-
ual’s choice between two neighborhood restaurants—the factors
involved in the decision may be many, but the decision itself can be
regarded as binary.

Both the detailed mechanisms involved in binary decision prob-
lems, and also the origins of the externalities can vary widely across
specific problems. Nevertheless, in many applications that have
been examined in the economics and sociology literature—for

*E-mail: djw24@columbia.edu.
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“A simple model of global cascades on
random networks”
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Proc. Natl. Acad. Sci., 99, 5766–5771,
2002. [15]

 Mean field Granovetter model → network model
 Individuals now have a limited view of the world
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The most gullible

Vulnerables:

 Recall definition: individuals who can be activated
by just one contact being active are vulnerables.

 The vulnerability condition for node 𝑖: 1/𝑘𝑖 ≥ 𝜙𝑖.
 Means # contacts 𝑘𝑖 ≤ ⌊1/𝜙𝑖⌋.
 Key: For global spreading events (cascades) on

random networks, must have a global component
of vulnerables [15]

 For a uniform threshold 𝜙, our global spreading
condition tells us when such a component exists:

R =
⌊ 1

𝜙 ⌋

∑
𝑘=1

𝑘𝑃𝑘
⟨𝑘⟩ • (𝑘 − 1) > 1.
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Example random network structure:

 Ωcrit = critical
mass = global
vulnerable
component

 Ωtrig =
triggering
component

 Ωfinal =
potential
extent of
spread

 Ω = entire
network

Ωcrit ⊂ Ωtrig; Ωcrit ⊂ Ωfinal; and Ωtrig, Ωfinal ⊂ Ω.
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Global spreading events on random
networks [15]

explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).

Watts PNAS ! April 30, 2002 ! vol. 99 ! no. 9 ! 5769
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 Top curve: final fraction
infected if successful.

 Middle curve: chance of
starting a global
spreading event
(cascade).

 Bottom curve: fractional
size of vulnerable
subcomponent. [15]

 Global spreading events occur only if size of vulnerable
subcomponent > 0.

 System is robust-yet-fragile just below upper
boundary [3, 4, 14]

 ‘Ignorance’ facilitates spreading.
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network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).

Watts PNAS ! April 30, 2002 ! vol. 99 ! no. 9 ! 5769

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

𝑧 = ⟨𝑘⟩

 Top curve: final fraction
infected if successful.

 Middle curve: chance of
starting a global
spreading event
(cascade).

 Bottom curve: fractional
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 Global spreading events occur only if size of vulnerable
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 System is robust-yet-fragile just below upper
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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 Global spreading events occur only if size of vulnerable
subcomponent > 0.

 System is robust-yet-fragile just below upper
boundary [3, 4, 14]

 ‘Ignorance’ facilitates spreading.
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
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with the exact solution for the largest connected component (solid line).

Watts PNAS ! April 30, 2002 ! vol. 99 ! no. 9 ! 5769

A
PP

LI
ED

M
A

TH
EM

A
TI

CS
( n.b., 𝑧 = ⟨𝑘⟩)

 Time taken for cascade
to spread through
network. [15]

 Two phase transitions.

 Largest vulnerable component = critical mass.

 Now have endogenous mechanism for spreading
from an individual to the critical mass and then
beyond.



The PoCSverse
Contagion
31 of 88

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

i

ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Cascades on random networks

explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
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true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
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by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
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of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
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Social Sciences—Threshold models

Implications for collective action theory:

1. Collective uniformity ⇏ individual uniformity
2. Small individual changes ⇒ large global changes

Next:

 Connect mean-field model to network model.
 Single seed for network model: 1/𝑁 → 0.
 Comparison between network and mean-field

model sensible for vanishing seed size for the
latter.
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Spreadworthiness: Cat videos
Bowling with Ragdolls:

https://www.youtube.com/watch?v=XX-g2nmqL9Q?rel=0

 Organic extreme outlier?
 Success did not spread to other videos.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=XX-g2nmqL9Q?rel=0
https://www.youtube.com/channel/UCp0zIG-Ni6lm-G2sZKtz2zQ/videos?sort=p&flow=grid&view=0
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Threshold contagion on random networks

Three key pieces to describe analytically:

1. The fractional size of the largest subcomponent of
vulnerable nodes, 𝑆vuln.

2. The chance of starting a global spreading event,
𝑃trig = 𝑆trig.

3. The expected final size of any successful spread,
𝑆.

 n.b., the distribution of 𝑆 is almost always
bimodal.
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Example random network structure:
 Ωcrit = Ωvuln =

critical mass =
global
vulnerable
component

 Ωtrig =
triggering
component

 Ωfinal =
potential
extent of
spread

 Ω = entire
network

Ωcrit ⊂ Ωtrig; Ωcrit ⊂ Ωfinal; and Ωtrig, Ωfinal ⊂ Ω.



The PoCSverse
Contagion
44 of 88

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

i

ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Outline

Basic Contagion Models

Global spreading condition

Social Contagion Models
Network version
All-to-all networks

Theory
Spreading possibility
Spreading probability
Physical explanation
Final size

References



The PoCSverse
Contagion
45 of 88

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

i

ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Threshold contagion on random networks

 First goal: Find the largest component of
vulnerable nodes.

 Recall that for finding the giant component’s size,
we had to solve:

𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜌(𝑥)) and 𝐹𝜌(𝑥) = 𝑥𝐹𝑅 (𝐹𝜌(𝑥))

 We’ll find a similar result for the subset of nodes
that are vulnerable.

 This is a node-based percolation problem.
 For a general monotonic threshold distribution

𝑓(𝜙), a degree 𝑘 node is vulnerable with probability

𝐵𝑘1 = ∫
1/𝑘

0
𝑓(𝜙)d𝜙 .
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Threshold contagion on random networks

 We now have a generating function for the probability
that a randomly chosen node is vulnerable and has
degree 𝑘:

𝐹 (vuln)
𝑃 (𝑥) =

∞
∑
𝑘=0

𝑃𝑘𝐵𝑘1𝑥𝑘.

 The generating function for friends-of-friends
distribution is similar to before:

𝐹 (vuln)
𝑅 (𝑥) =

∞
∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩ 𝐵𝑘1𝑥𝑘−1

=
d
d𝑥 𝐹 (vuln)

𝑃 (𝑥)
d
d𝑥 𝐹𝑃 (𝑥)|𝑥=1

=
d
d𝑥 𝐹 (vuln)

𝑃 (𝑥)
𝐹𝑅(1)

 Detail: We still have the underlying degree distribution
involved in the denominator.
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Threshold contagion on random networks
 Functional relations for component size g.f.’s are

almost the same …

𝐹 (vuln)
𝜋 (𝑥) = 1 − 𝐹 (vuln)

𝑃 (1)⏟⏟⏟⏟⏟
central node
is not
vulnerable

+𝑥𝐹 (vuln)
𝑃 (𝐹 (vuln)

𝜌 (𝑥))

𝐹 (vuln)
𝜌 (𝑥) = 1 − 𝐹 (vuln)

𝑅 (1)⏟⏟⏟⏟⏟
first node
is not
vulnerable

+𝑥𝐹 (vuln)
𝑅 (𝐹 (vuln)

𝜌 (𝑥))

 Can now solve as before to find

𝑆vuln = 1 − 𝐹 (vuln)
𝜋 (1).
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Threshold contagion on random networks

 Second goal: Find probability of triggering largest
vulnerable component.

 Assumption is first node is randomly chosen.
 Same set up as for vulnerable component except

now we don’t care if the initial node is vulnerable
or not:

𝐹 (trig)
𝜋 (𝑥) = 𝑥𝐹𝑃 (𝐹 (vuln)

𝜌 (𝑥))

𝐹 (vuln)
𝜌 (𝑥) = 1 − 𝐹 (vuln)

𝑅 (1) + 𝑥𝐹 (vuln)
𝑅 (𝐹 (vuln)

𝜌 (𝑥))

 Solve as before to find 𝑃trig = 𝑆trig = 1 − 𝐹 (trig)
𝜋 (1).
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 Second goal: Find probability of triggering largest
vulnerable component.

 Assumption is first node is randomly chosen.
 Same set up as for vulnerable component except
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or not:
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Physical derivation of possibility and probability
of global spreading:

 Possibility: binary indicator of phase. Global spreading
events are either possible or can never happen.

 For random networks, global spreading possibility is
understood as meaning a giant component of
vulnerable nodes exists.

 Next: what’s the probability that a randomly infected
node will cause a global spreading event?

 Call this 𝑃trig.

 As usual, it’s all about edges and we need to first
determine the probability that an infected edge leads
to a global spreading event.

 Call this 𝑄trig.

 Later: Generalize to more complex networks involving
assortativity of all kinds.
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events are either possible or can never happen.

 For random networks, global spreading possibility is
understood as meaning a giant component of
vulnerable nodes exists.

 Next: what’s the probability that a randomly infected
node will cause a global spreading event?

 Call this 𝑃trig.

 As usual, it’s all about edges and we need to first
determine the probability that an infected edge leads
to a global spreading event.

 Call this 𝑄trig.

 Later: Generalize to more complex networks involving
assortativity of all kinds.
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Physical derivation of possibility and probability
of global spreading:

 Possibility: binary indicator of phase. Global spreading
events are either possible or can never happen.

 For random networks, global spreading possibility is
understood as meaning a giant component of
vulnerable nodes exists.

 Next: what’s the probability that a randomly infected
node will cause a global spreading event?

 Call this 𝑃trig.

 As usual, it’s all about edges and we need to first
determine the probability that an infected edge leads
to a global spreading event.

 Call this 𝑄trig.

 Later: Generalize to more complex networks involving
assortativity of all kinds.



The PoCSverse
Contagion
51 of 88

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

i

ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Physical derivation of possibility and probability
of global spreading:

 Possibility: binary indicator of phase. Global spreading
events are either possible or can never happen.

 For random networks, global spreading possibility is
understood as meaning a giant component of
vulnerable nodes exists.

 Next: what’s the probability that a randomly infected
node will cause a global spreading event?

 Call this 𝑃trig.

 As usual, it’s all about edges and we need to first
determine the probability that an infected edge leads
to a global spreading event.

 Call this 𝑄trig.

 Later: Generalize to more complex networks involving
assortativity of all kinds.
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Probability an infected edge leads to a global
spreading event:
 𝑄trig must satisfying a one-step recursion relation.

 Follow an infected edge and use three pieces:

1. Probability of reaching a degree 𝑘 node is
𝑄𝑘 = 𝑘𝑃𝑘

⟨𝑘⟩ .
2. The node reached is vulnerable with probability

𝐵𝑘1.
3. At least one of the node’s outgoing edges leads to

a global spreading event = 1 - probability no edges
do so = 1 − (1 − 𝑄trig)𝑘−1.

 Put everything together and solve for 𝑄trig:

𝑄trig = ∑
𝑘

𝑘𝑃𝑘
⟨𝑘⟩ • 𝐵𝑘1 • [1 − (1 − 𝑄trig)𝑘−1] .
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2. The node reached is vulnerable with probability
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Probability an infected edge leads to a global
spreading event:
 𝑄trig must satisfying a one-step recursion relation.
 Follow an infected edge and use three pieces:

1. Probability of reaching a degree 𝑘 node is
𝑄𝑘 = 𝑘𝑃𝑘

⟨𝑘⟩ .
2. The node reached is vulnerable with probability

𝐵𝑘1.

3. At least one of the node’s outgoing edges leads to
a global spreading event = 1 - probability no edges
do so = 1 − (1 − 𝑄trig)𝑘−1.

 Put everything together and solve for 𝑄trig:

𝑄trig = ∑
𝑘

𝑘𝑃𝑘
⟨𝑘⟩ • 𝐵𝑘1 • [1 − (1 − 𝑄trig)𝑘−1] .
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Good things about our equation for 𝑄trig:

𝑄trig = ∑
𝑘

𝑘𝑃𝑘
⟨𝑘⟩ •𝐵𝑘1•[1 − (1 − 𝑄trig)𝑘−1] = 𝑓(𝑄trig; 𝑃𝑘, 𝐵𝑘1)

 𝑄trig = 0 is always a solution.

 Spreading occurs if a second solution exists for which
0 < 𝑄trig ≤ 1.

 Given 𝑃𝑘 and 𝐵𝑘1, we can use any kind of root finder
to solve for 𝑄trig, but …

 The function 𝑓 increases monotonically with 𝑄trig.

 We can therefore use an iterative cobwebbing
approach to find the solution:
𝑄(𝑛+1)

trig = 𝑓(𝑄(𝑛)
trig ; 𝑃𝑘, 𝐵𝑘1).

 Start with a suitably small seed 𝑄(1)
trig > 0 and iterate

while rubbing hands together.
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 Global spreading is possible if the fractional size 𝑆vuln
of the largest component of vulnerables is “giant”.

 Interpret 𝑆vuln as the probability a randomly chosen
node is vulnerable and that infecting it leads to a global
spreading event:

𝑆vuln = ∑
𝑘

𝑃𝑘 • 𝐵𝑘1 • [1 − (1 − 𝑄trig)𝑘] > 0.

 Amounts to having 𝑄trig > 0.
 Probability of global spreading differs only in that we

don’t care if the initial seed is vulnerable or not:

𝑃trig = 𝑆trig = ∑
𝑘

𝑃𝑘 • [1 − (1 − 𝑄trig)𝑘]

 As for 𝑆vuln, 𝑃trig is non-zero when 𝑄trig > 0.
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ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Connection to generating function results:

 We found that 𝐹 (vuln)
𝜌 (1)—the probability that a random

edge leads to a finite vulnerable component—satisfies

𝐹 (vuln)
𝜌 (1) = 1 − 𝐹 (vuln)

𝑅 (1) + 1 ⋅ 𝐹 (vuln)
𝑅 (𝐹 (vuln)

𝜌 (1)) .

 We set 𝐹 (vuln)
𝜌 (1) = 1 − 𝑄trig and deploy

𝐹 (vuln)
𝑅 (𝑥) = ∑∞

𝑘=0
𝑘𝑃𝑘
⟨𝑘⟩ 𝐵𝑘1𝑥𝑘−1 to find

1−𝑄trig = 1−
∞
∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩ 𝐵𝑘1+

∞
∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩ 𝐵𝑘1 (1 − 𝑄trig)

𝑘−1 .

 Some breathless algebra it all matches:

𝑄trig =
∞
∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩ • 𝐵𝑘1 • [1 − (1 − 𝑄trig)

𝑘−1] .
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ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Fractional size of the largest vulnerable
component:

 The generating function approach gave
𝑆vuln = 1 − 𝐹 (vuln)

𝜋 (1) where

𝐹 (vuln)
𝜋 (1) = 1 − 𝐹 (vuln)

𝑃 (1) + 1 ⋅ 𝐹 (vuln)
𝑃 (𝐹 (vuln)

𝜌 (1)) .

 Again using 𝐹 (vuln)
𝜌 (1) = 1 − 𝑄trig along with

𝐹 (vuln)
𝑃 (𝑥) = ∑∞

𝑘=0 𝑃𝑘𝐵𝑘1𝑥𝑘, we have:

1 − 𝑆vuln = 1 −
∞
∑
𝑘=0

𝑃𝑘𝐵𝑘1 +
∞
∑
𝑘=0

𝑃𝑘𝐵𝑘1 (1 − 𝑄trig)
𝑘 .

 Excited scrabbling about gives us, as before:

𝑆vuln =
∞
∑
𝑘=0

𝑃𝑘𝐵𝑘1 [1 − (1 − 𝑄trig)
𝑘] .
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ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Triggering probability for single-seed global
spreading events:

 Slight adjustment to the vulnerable component
calculation.

 𝑆trig = 1 − 𝐹 (trig)
𝜋 (1) where

𝐹 (trig)
𝜋 (1) = 1 ⋅ 𝐹𝑃 (𝐹 (vuln)

𝜌 (1)) .

 We play these cards: 𝐹 (vuln)
𝜌 (1) = 1 − 𝑄trig and

𝐹𝑃 (𝑥) = ∑∞
𝑘=0 𝑃𝑘𝑥𝑘 to arrive at

1 − 𝑆trig = 1 +
∞
∑
𝑘=0

𝑃𝑘 (1 − 𝑄trig)
𝑘 .

 More scruffing around brings happiness:

𝑆trig =
∞
∑
𝑘=0

𝑃𝑘 [1 − (1 − 𝑄trig)
𝑘] .
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ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Connection to simple gain ratio argument:

 Earlier, we showed the global spreading condition
follows from the gain ratio R > 1:

R =
∞
∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩ • (𝑘 − 1) • 𝐵𝑘1 > 1.

 We would very much like to see that R > 1 matches up
with 𝑄trig > 0.

 It really would be just so totally awesome.

 Must come from our basic edge triggering probability
equation:

𝑄trig = ∑
𝑘

𝑘𝑃𝑘
⟨𝑘⟩ • 𝐵𝑘1 • [1 − (1 − 𝑄trig)𝑘−1] .

 When does this equation have a solution 0 < 𝑄trig ≤ 1?

 We need to find out what happens as 𝑄trig → 0. [9]
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ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

 For 𝑄trig → 0+, equation tends towards

𝑄trig = ∑
𝑘

𝑘𝑃𝑘
⟨𝑘⟩ • 𝐵𝑘1 • [1 − (1 − (𝑘 − 1)𝑄trig + …)]

⇒ 𝑄trig = ∑
𝑘

𝑘𝑃𝑘
⟨𝑘⟩ • 𝐵𝑘1 • (𝑘 − 1)𝑄trig

⇒ 1 = ∑
𝑘

𝑘𝑃𝑘
⟨𝑘⟩ • (𝑘 − 1) • 𝐵𝑘1

 Only defines the phase transition points (i.e., R = 1).
 Inequality?
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Threshold contagion on random networks

 Third goal: Find expected fractional size of spread.

 Not obvious even for uniform threshold problem.
 Difficulty is in figuring out if and when nodes that

need ≥ 2 hits switch on.
 Problem solved for infinite seed case by Gleeson

and Cahalane:
“Seed size strongly affects cascades on random
networks,” Phys. Rev. E, 2007. [7]

 Developed further by Gleeson in “Cascades on
correlated and modular random networks,” Phys.
Rev. E, 2008. [6]
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Meme species:

 More here at http://knowyourmeme.com

http://knowyourmeme.com/blog/white-papers/visual-analysis-advice-animals
http://knowyourmeme.com
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Expected size of spread
Idea:
 Randomly turn on a fraction 𝜙0 of nodes at time 𝑡 = 0

 Capitalize on local branching network structure of
random networks (again)

 Now think about what must happen for a specific node
𝑖 to become active at time 𝑡:

• 𝑡 = 0: 𝑖 is one of the seeds (prob = 𝜙0)

• 𝑡 = 1: 𝑖 was not a seed but enough of 𝑖’s friends
switched on at time 𝑡 = 0 so that 𝑖’s threshold is now
exceeded.

• 𝑡 = 2: enough of 𝑖’s friends and friends-of-friends
switched on at time 𝑡 = 0 so that 𝑖’s threshold is now
exceeded.

• 𝑡 = 𝑛: enough nodes within 𝑛 hops of 𝑖 switched on at
𝑡 = 0 and their effects have propagated to reach 𝑖.
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Notes:
 Calculations presume nodes do not become

inactive (strong restriction, liftable)

 Not just for threshold model—works for a wide
range of contagion processes.

 We can analytically determine the entire time
evolution, not just the final size.

 We can in fact determine
Pr(node of degree 𝑘 switches on at time 𝑡).

 Even more, we can compute: Pr(specific node 𝑖
switches on at time 𝑡).

 Asynchronous updating can be handled too.



The PoCSverse
Contagion
68 of 88

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

i

ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Expected size of spread

Notes:
 Calculations presume nodes do not become

inactive (strong restriction, liftable)
 Not just for threshold model—works for a wide

range of contagion processes.

 We can analytically determine the entire time
evolution, not just the final size.

 We can in fact determine
Pr(node of degree 𝑘 switches on at time 𝑡).

 Even more, we can compute: Pr(specific node 𝑖
switches on at time 𝑡).

 Asynchronous updating can be handled too.



The PoCSverse
Contagion
68 of 88

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

i

ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Expected size of spread

Notes:
 Calculations presume nodes do not become

inactive (strong restriction, liftable)
 Not just for threshold model—works for a wide

range of contagion processes.
 We can analytically determine the entire time

evolution, not just the final size.

 We can in fact determine
Pr(node of degree 𝑘 switches on at time 𝑡).

 Even more, we can compute: Pr(specific node 𝑖
switches on at time 𝑡).

 Asynchronous updating can be handled too.



The PoCSverse
Contagion
68 of 88

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

i

ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Expected size of spread

Notes:
 Calculations presume nodes do not become

inactive (strong restriction, liftable)
 Not just for threshold model—works for a wide

range of contagion processes.
 We can analytically determine the entire time

evolution, not just the final size.
 We can in fact determine

Pr(node of degree 𝑘 switches on at time 𝑡).

 Even more, we can compute: Pr(specific node 𝑖
switches on at time 𝑡).

 Asynchronous updating can be handled too.



The PoCSverse
Contagion
68 of 88

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

i

ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Expected size of spread

Notes:
 Calculations presume nodes do not become

inactive (strong restriction, liftable)
 Not just for threshold model—works for a wide

range of contagion processes.
 We can analytically determine the entire time

evolution, not just the final size.
 We can in fact determine

Pr(node of degree 𝑘 switches on at time 𝑡).
 Even more, we can compute: Pr(specific node 𝑖

switches on at time 𝑡).

 Asynchronous updating can be handled too.



The PoCSverse
Contagion
68 of 88

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

i

ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Expected size of spread

Notes:
 Calculations presume nodes do not become

inactive (strong restriction, liftable)
 Not just for threshold model—works for a wide

range of contagion processes.
 We can analytically determine the entire time

evolution, not just the final size.
 We can in fact determine

Pr(node of degree 𝑘 switches on at time 𝑡).
 Even more, we can compute: Pr(specific node 𝑖

switches on at time 𝑡).
 Asynchronous updating can be handled too.



The PoCSverse
Contagion
69 of 88

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

i

ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Expected size of spread

Pleasantness:
 Taking off from a single seed story is about

expansion away from a node.

 Extent of spreading story is about contraction at a
node.



The PoCSverse
Contagion
69 of 88

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

i

ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Expected size of spread

Pleasantness:
 Taking off from a single seed story is about

expansion away from a node.
 Extent of spreading story is about contraction at a

node.



The PoCSverse
Contagion
70 of 88

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

i

ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Expected size of spread
 Notation:

𝜙𝑘,𝑡 = Pr(a degree 𝑘 node is active at time 𝑡).

 Notation: 𝐵𝑘𝑗 = Pr (a degree 𝑘 node becomes
active if 𝑗 neighbors are active).

 Our starting point: 𝜙𝑘,0 = 𝜙0.
 (𝑘

𝑗 )𝜙 𝑗
0(1 − 𝜙0)𝑘−𝑗 = Pr (𝑗 of a degree 𝑘 node’s

neighbors were seeded at time 𝑡 = 0).
 Probability a degree 𝑘 node was a seed at 𝑡 = 0 is

𝜙0 (as above).
 Probability a degree 𝑘 node was not a seed at 𝑡 = 0

is (1 − 𝜙0).
 Combining everything, we have:

𝜙𝑘,1 = 𝜙0 + (1 − 𝜙0)
𝑘

∑
𝑗=0

(𝑘
𝑗 )𝜙 𝑗

0(1 − 𝜙0)𝑘−𝑗𝐵𝑘𝑗.
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Expected size of spread
 For general 𝑡, we need to know the probability an

edge coming into a degree 𝑘 node at time 𝑡 is
active.

 Notation: call this probability 𝜃𝑡.
 We already know 𝜃0 = 𝜙0.
 Story analogous to 𝑡 = 1 case. For specific node 𝑖:

𝜙𝑖,𝑡+1 = 𝜙0 + (1 − 𝜙0)
𝑘𝑖

∑
𝑗=0

(𝑘𝑖
𝑗 )𝜃 𝑗

𝑡 (1 − 𝜃𝑡)𝑘𝑖−𝑗𝐵𝑘𝑖𝑗.

 Average over all nodes with degree 𝑘 to obtain
expression for 𝜙𝑡+1:

𝜙𝑡+1 = 𝜙0+(1−𝜙0)
∞
∑
𝑘=0

𝑃𝑘
𝑘

∑
𝑗=0

(𝑘
𝑗 )𝜃 𝑗

𝑡 (1 − 𝜃𝑡)𝑘−𝑗𝐵𝑘𝑗.

 So we need to compute 𝜃𝑡...

massive excitement...
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massive excitement...
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ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Expected size of spread

First connect 𝜃0 to 𝜃1:
 𝜃1 = 𝜙0+

(1 − 𝜙0)
∞
∑
𝑘=1

𝑘𝑃𝑘
⟨𝑘⟩

𝑘−1
∑
𝑗=0

(𝑘 − 1
𝑗 )𝜃 𝑗

0 (1 − 𝜃0)𝑘−1−𝑗𝐵𝑘𝑗

 𝑘𝑃𝑘
⟨𝑘⟩ = 𝑄𝑘 = Pr (edge connects to a degree 𝑘 node).

 ∑𝑘−1
𝑗=0 piece gives Pr (degree node 𝑘 activates if 𝑗

of its 𝑘 − 1 incoming neighbors are active).
 𝜙0 and (1 − 𝜙0) terms account for state of node at

time 𝑡 = 0.

 See this all generalizes to give 𝜃𝑡+1 in terms of 𝜃𝑡...
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 𝜙0 and (1 − 𝜙0) terms account for state of node at

time 𝑡 = 0.
 See this all generalizes to give 𝜃𝑡+1 in terms of 𝜃𝑡...
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ϕ = 1/3

t=4 = active at t=0

= active at t=1
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Expected size of spread
Two pieces: edges first, and then nodes
1. 𝜃𝑡+1 = 𝜙0⏟

exogenous

+(1 − 𝜙0)
∞
∑
𝑘=1

𝑘𝑃𝑘
⟨𝑘⟩

𝑘−1
∑
𝑗=0

(𝑘 − 1
𝑗 )𝜃 𝑗

𝑡 (1 − 𝜃𝑡)𝑘−1−𝑗𝐵𝑘𝑗
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

social effects

with 𝜃0 = 𝜙0.
2. 𝜙𝑡+1 =

𝜙0⏟
exogenous

+(1−𝜙0)
∞
∑
𝑘=0

𝑃𝑘
𝑘

∑
𝑗=0

(𝑘
𝑗 )𝜃 𝑗

𝑡 (1 − 𝜃𝑡)𝑘−𝑗𝐵𝑘𝑗
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

social effects

.
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Comparison between theory and
simulations

z. The theory shows excellent agreement with simulations.
Note the smooth transition from !!0 to !!1 near z=1, and
the discontinuous transition back to !!0 at larger z values.
The z location of the upper transition clearly depends sensi-
tively on the initial activated fraction !0.

A global cascade occurs with high probability when a
small seed !0 results in a large value of !. Writing G"q# as
$!=0

" C!q! with coefficients

C! = $
k=!+1

"

$
n=0

! %k − 1

!
&%!

n
&"− 1#!+nk

z
pkF%n

k
& , "4#

and linearizing Eq. "2# near q=0 gives a "first-order# condi-
tion for global cascades to occur: "1−!0#C1#1, since this
guarantees that qn increases with n, at least initially. This
cascade condition may also be written as

$
k=1

"
k"k − 1#

z
pk'F%1

k
& − F"0#( #

1
1 − !0

. "5#

In the limit !0→0 and with F"0#=0, this reduces to the
condition derived by Watts using percolation arguments )13*.
On the R ,z plane of Fig. 1"a# the condition "5# is satisfied
inside the solid line; for R=0.18 in Fig. 1"b#, "5# predicts
cascade transitions at z values between 5.7 and 5.8 for both

!0=10−3 and 10−2 "close to the z value marked by the arrow#,
but the simulations and full theory show that the respective
transitions are actually near z!6.4 and 9.2. Condition "5#
clearly does not accurately represent the effects of finite seed
size )nor of nonzero F"0#; see below*, because the function
G is not well approximated by a straight line near the critical
parameters for cascade transitions.

We seek an improved cascade condition by extending the
series for G"q# to order q2. This approximation results in a
quadratic equation for the fixed point q" which we represent
as aq"

2 +bq"+c=0. Under the approximation of small q val-
ues, we interpret the existence of a positive root of this qua-
dratic equation to imply q"$1, and hence the impossibility
of global cascades. Note that the first-order approximation
"5# requires b#0 for global cascades. However, when the
nonlinear behavior of G is important, it is still possible for
global cascades to occur when b is negative, provided that
the full solution of the quadratic equation precludes positive
real roots. We therefore extend the cascade boundary to in-
clude regions where either b#0 "as in "5## or b2−4ac%0,
the latter giving "to first order in !0#

"C1 − 1#2 − 4C0C2 + 2!0"C1 − C1
2 − 2C2 + 4C0C2# % 0.

"6#

It is straightforward to plot this extended cascade condition:
the dashed lines in Figs. 1"a# and 2"a# clearly give much
improved approximations to the actual boundaries for global
cascades.
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FIG. 1. "Color online# Average density ! of active nodes in a
Poisson random graph of mean degree z and uniform threshold
value R. "a# Color-coded values of ! from Eq. "1# on the R ,z plane
with seed fraction !0=10−2. Lines show approximations to the glo-
bal cascade boundaries: the solid line encloses the region where "5#
is satisfied; the dashed line represents the extended cascade bound-
ary from Eq. "6#. "b# Values of ! at R=0.18 from Eq. "1# "lines# and
numerical simulations "symbols#, averaged over 100 realizations
with N=105. Seed fractions are !0=10−3 "solid#, 5&10−3 "dashed#,
and 10−2 "dot-dashed#. The arrow marks the cascade boundary
given by Eq. "5# in the limit of zero seed fraction.
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FIG. 2. "Color online# As Fig. 1, but threshold distribution is
Gaussian with mean R and standard deviation 0.2, and seed fraction
!0=0. "a# Cascade boundaries as in Fig. 1; the arrow marks the
critical point "Rc ,zc# described in the text; "b# theory and numerical
simulation results "N=105, average over 100 realizations# at R
=0.2 "solid#, 0.362 "dashed#, and 0.38 "dash-dotted#.

JAMES P. GLEESON AND DIARMUID J. CAHALANE PHYSICAL REVIEW E 75, 056103 "2007#

056103-2

From Gleeson and
Cahalane [7]

 Pure random networks
with simple threshold
responses

 𝑅 = uniform threshold
(our 𝜙∗); 𝑧 = average
degree; 𝜌 = 𝜙; 𝑞 = 𝜃;
𝑁 = 105.

 𝜙0 = 10−3, 0.5 × 10−2,
and 10−2.

 Cascade window is for
𝜙0 = 10−2 case.

 Sensible expansion of
cascade window as 𝜙0
increases.
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ϕ = 1/3

t=4 = active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4

Notes:
 Retrieve cascade condition for spreading from a

single seed in limit 𝜙0 → 0.

 Depends on map 𝜃𝑡+1 = 𝐺(𝜃𝑡; 𝜙0).
 First: if self-starters are present, some activation is

assured:

𝐺(0; 𝜙0) =
∞
∑
𝑘=1

𝑘𝑃𝑘
⟨𝑘⟩ • 𝐵𝑘0 > 0.

meaning 𝐵𝑘0 > 0 for at least one value of 𝑘 ≥ 1.
 If 𝜃 = 0 is a fixed point of 𝐺 (i.e., 𝐺(0; 𝜙0) = 0) then

spreading occurs for a small seed if

𝐺′(0; 𝜙0) =
∞
∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩ • (𝑘 − 1) • 𝐵𝑘1 > 1.

Insert question from assignment 10

https://pdodds.w3.uvm.edu/teaching/courses/2022-2023principles-of-complex-systems//assignments/10/
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ϕ = 1/3

t=4 = active at t=0
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= active at t=4

Notes:

In words:
 If 𝐺(0; 𝜙0) > 0, spreading must occur because

some nodes turn on for free.

 If 𝐺 has an unstable fixed point at 𝜃 = 0, then
cascades are also always possible.

Non-vanishing seed case:

 Cascade condition is more complicated for 𝜙0 > 0.
 If 𝐺 has a stable fixed point at 𝜃 = 0, and an

unstable fixed point for some 0 < 𝜃∗ < 1, then for
𝜃0 > 𝜃∗, spreading takes off.

 Tricky point: 𝐺 depends on 𝜙0, so as we change
𝜙0, we also change 𝐺.
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 Given 𝜃0(= 𝜙0), 𝜃∞ will be the nearest stable fixed
point, either above or below.

 n.b., adjacent fixed points must have opposite stability
types.

 Important: Actual form of 𝐺 depends on 𝜙0.

 Important: 𝜙𝑡 can only increase monotonically so 𝜙0
must shape 𝐺 so that 𝜙0 is at or above an unstable
fixed point.

 First reason: 𝜙1 ≥ 𝜙0.

 Second: 𝐺′(𝜃; 𝜙0) ≥ 0, 0 ≤ 𝜃 ≤ 1.
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Interesting behavior:

z. The theory shows excellent agreement with simulations.
Note the smooth transition from !!0 to !!1 near z=1, and
the discontinuous transition back to !!0 at larger z values.
The z location of the upper transition clearly depends sensi-
tively on the initial activated fraction !0.

A global cascade occurs with high probability when a
small seed !0 results in a large value of !. Writing G"q# as
$!=0

" C!q! with coefficients

C! = $
k=!+1

"

$
n=0

! %k − 1

!
&%!

n
&"− 1#!+nk

z
pkF%n

k
& , "4#

and linearizing Eq. "2# near q=0 gives a "first-order# condi-
tion for global cascades to occur: "1−!0#C1#1, since this
guarantees that qn increases with n, at least initially. This
cascade condition may also be written as

$
k=1

"
k"k − 1#

z
pk'F%1

k
& − F"0#( #

1
1 − !0

. "5#

In the limit !0→0 and with F"0#=0, this reduces to the
condition derived by Watts using percolation arguments )13*.
On the R ,z plane of Fig. 1"a# the condition "5# is satisfied
inside the solid line; for R=0.18 in Fig. 1"b#, "5# predicts
cascade transitions at z values between 5.7 and 5.8 for both

!0=10−3 and 10−2 "close to the z value marked by the arrow#,
but the simulations and full theory show that the respective
transitions are actually near z!6.4 and 9.2. Condition "5#
clearly does not accurately represent the effects of finite seed
size )nor of nonzero F"0#; see below*, because the function
G is not well approximated by a straight line near the critical
parameters for cascade transitions.

We seek an improved cascade condition by extending the
series for G"q# to order q2. This approximation results in a
quadratic equation for the fixed point q" which we represent
as aq"

2 +bq"+c=0. Under the approximation of small q val-
ues, we interpret the existence of a positive root of this qua-
dratic equation to imply q"$1, and hence the impossibility
of global cascades. Note that the first-order approximation
"5# requires b#0 for global cascades. However, when the
nonlinear behavior of G is important, it is still possible for
global cascades to occur when b is negative, provided that
the full solution of the quadratic equation precludes positive
real roots. We therefore extend the cascade boundary to in-
clude regions where either b#0 "as in "5## or b2−4ac%0,
the latter giving "to first order in !0#

"C1 − 1#2 − 4C0C2 + 2!0"C1 − C1
2 − 2C2 + 4C0C2# % 0.

"6#

It is straightforward to plot this extended cascade condition:
the dashed lines in Figs. 1"a# and 2"a# clearly give much
improved approximations to the actual boundaries for global
cascades.
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FIG. 1. "Color online# Average density ! of active nodes in a
Poisson random graph of mean degree z and uniform threshold
value R. "a# Color-coded values of ! from Eq. "1# on the R ,z plane
with seed fraction !0=10−2. Lines show approximations to the glo-
bal cascade boundaries: the solid line encloses the region where "5#
is satisfied; the dashed line represents the extended cascade bound-
ary from Eq. "6#. "b# Values of ! at R=0.18 from Eq. "1# "lines# and
numerical simulations "symbols#, averaged over 100 realizations
with N=105. Seed fractions are !0=10−3 "solid#, 5&10−3 "dashed#,
and 10−2 "dot-dashed#. The arrow marks the cascade boundary
given by Eq. "5# in the limit of zero seed fraction.
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FIG. 2. "Color online# As Fig. 1, but threshold distribution is
Gaussian with mean R and standard deviation 0.2, and seed fraction
!0=0. "a# Cascade boundaries as in Fig. 1; the arrow marks the
critical point "Rc ,zc# described in the text; "b# theory and numerical
simulation results "N=105, average over 100 realizations# at R
=0.2 "solid#, 0.362 "dashed#, and 0.38 "dash-dotted#.
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From Gleeson and
Cahalane [7]

 Now allow thresholds
to be distributed
according to a
Gaussian with mean 𝑅.

 𝑅 = 0.2, 0.362, and
0.38; 𝜎 = 0.2.

 𝜙0 = 0 but some nodes
have thresholds ≤ 0 so
effectively 𝜙0 > 0.

 Now see a (nasty)
discontinuous phase
transition for low ⟨𝑘⟩.
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inside the solid line; for R=0.18 in Fig. 1"b#, "5# predicts
cascade transitions at z values between 5.7 and 5.8 for both

!0=10−3 and 10−2 "close to the z value marked by the arrow#,
but the simulations and full theory show that the respective
transitions are actually near z!6.4 and 9.2. Condition "5#
clearly does not accurately represent the effects of finite seed
size )nor of nonzero F"0#; see below*, because the function
G is not well approximated by a straight line near the critical
parameters for cascade transitions.
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It is straightforward to plot this extended cascade condition:
the dashed lines in Figs. 1"a# and 2"a# clearly give much
improved approximations to the actual boundaries for global
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FIG. 1. "Color online# Average density ! of active nodes in a
Poisson random graph of mean degree z and uniform threshold
value R. "a# Color-coded values of ! from Eq. "1# on the R ,z plane
with seed fraction !0=10−2. Lines show approximations to the glo-
bal cascade boundaries: the solid line encloses the region where "5#
is satisfied; the dashed line represents the extended cascade bound-
ary from Eq. "6#. "b# Values of ! at R=0.18 from Eq. "1# "lines# and
numerical simulations "symbols#, averaged over 100 realizations
with N=105. Seed fractions are !0=10−3 "solid#, 5&10−3 "dashed#,
and 10−2 "dot-dashed#. The arrow marks the cascade boundary
given by Eq. "5# in the limit of zero seed fraction.
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FIG. 2. "Color online# As Fig. 1, but threshold distribution is
Gaussian with mean R and standard deviation 0.2, and seed fraction
!0=0. "a# Cascade boundaries as in Fig. 1; the arrow marks the
critical point "Rc ,zc# described in the text; "b# theory and numerical
simulation results "N=105, average over 100 realizations# at R
=0.2 "solid#, 0.362 "dashed#, and 0.38 "dash-dotted#.
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In the limit !0→0 and with F"0#=0, this reduces to the
condition derived by Watts using percolation arguments )13*.
On the R ,z plane of Fig. 1"a# the condition "5# is satisfied
inside the solid line; for R=0.18 in Fig. 1"b#, "5# predicts
cascade transitions at z values between 5.7 and 5.8 for both

!0=10−3 and 10−2 "close to the z value marked by the arrow#,
but the simulations and full theory show that the respective
transitions are actually near z!6.4 and 9.2. Condition "5#
clearly does not accurately represent the effects of finite seed
size )nor of nonzero F"0#; see below*, because the function
G is not well approximated by a straight line near the critical
parameters for cascade transitions.

We seek an improved cascade condition by extending the
series for G"q# to order q2. This approximation results in a
quadratic equation for the fixed point q" which we represent
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2 +bq"+c=0. Under the approximation of small q val-
ues, we interpret the existence of a positive root of this qua-
dratic equation to imply q"$1, and hence the impossibility
of global cascades. Note that the first-order approximation
"5# requires b#0 for global cascades. However, when the
nonlinear behavior of G is important, it is still possible for
global cascades to occur when b is negative, provided that
the full solution of the quadratic equation precludes positive
real roots. We therefore extend the cascade boundary to in-
clude regions where either b#0 "as in "5## or b2−4ac%0,
the latter giving "to first order in !0#

"C1 − 1#2 − 4C0C2 + 2!0"C1 − C1
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It is straightforward to plot this extended cascade condition:
the dashed lines in Figs. 1"a# and 2"a# clearly give much
improved approximations to the actual boundaries for global
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FIG. 1. "Color online# Average density ! of active nodes in a
Poisson random graph of mean degree z and uniform threshold
value R. "a# Color-coded values of ! from Eq. "1# on the R ,z plane
with seed fraction !0=10−2. Lines show approximations to the glo-
bal cascade boundaries: the solid line encloses the region where "5#
is satisfied; the dashed line represents the extended cascade bound-
ary from Eq. "6#. "b# Values of ! at R=0.18 from Eq. "1# "lines# and
numerical simulations "symbols#, averaged over 100 realizations
with N=105. Seed fractions are !0=10−3 "solid#, 5&10−3 "dashed#,
and 10−2 "dot-dashed#. The arrow marks the cascade boundary
given by Eq. "5# in the limit of zero seed fraction.
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FIG. 2. "Color online# As Fig. 1, but threshold distribution is
Gaussian with mean R and standard deviation 0.2, and seed fraction
!0=0. "a# Cascade boundaries as in Fig. 1; the arrow marks the
critical point "Rc ,zc# described in the text; "b# theory and numerical
simulation results "N=105, average over 100 realizations# at R
=0.2 "solid#, 0.362 "dashed#, and 0.38 "dash-dotted#.
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Cahalane [7]

 Now allow thresholds
to be distributed
according to a
Gaussian with mean 𝑅.

 𝑅 = 0.2, 0.362, and
0.38; 𝜎 = 0.2.

 𝜙0 = 0 but some nodes
have thresholds ≤ 0 so
effectively 𝜙0 > 0.

 Now see a (nasty)
discontinuous phase
transition for low ⟨𝑘⟩.
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Interesting behavior:

Figure 2!a" shows ! on Poisson random graphs with
thresholds drawn from a Gaussian distribution of mean R and
standard deviation "=0.2. Unlike the assumption in #13$ that
F!0"=0, a Gaussian distribution necessarily implies the pres-
ence of negative-valued thresholds among the population, so
F!0"#0. Negative-threshold agents act as a natural seed,
since they activate regardless of the states of their neighbors.
The presence of these innovators #13$ allows us to set !0
=0 in this case. The extended cascade condition !6" again
gives a good approximation to the discontinuous ! transition
at high z values. Figure 2!b" focuses on the low-z transition
and highlights the existence of a discontinuous transition in z
for certain threshold distributions. This is qualitatively dif-
ferent from the previously-studied case #13$ where only con-
tinuous low-z transitions were found.

Bifurcation analysis of Eq. !2" elucidates this result. In
Fig. 3 we plot the roots of the fixed-point equations G!q"
−q=0 !recall that !0=0 here; extension to nonzero !0 is
straightforward" as functions of z, for different values of the
mean threshold R. Thick solid and dashed lines denote stable
and unstable fixed points respectively #24$. The PAP means
the value of q$ achieved at a given z is that of the lowest
stable branch above q=!0. The occurrence of triple roots as
R is increased causes the smooth low-z transition seen in Fig.
3!a" to become discontinuous #as shown by the thin solid line
in Fig. 3!b"$, as previously seen in the numerical simulations
of Fig. 2!b". The discontinuous low-z transition occurs for
R#Rc, where the critical coordinates !Rc ,zc" and the value
q=qc where the triple root appears are found by numerical

root finding for the system of three equations q=!0
+ !1−!0"G!q", !1−!0"G!!q"=1, and G"!q"=0. For "=0.2
this yields !Rc ,zc"= !0.3543,3.136"; this point is marked with
an arrow in Fig. 2!a". We remark that the discontinuous tran-
sition from q$%1 to q$%0 #which induces a similar transi-
tion in ! through Eq. !1"$ occurs due to a saddle-node bifur-
cation #24$. This behavior is quite generic, occurring for a
wide variety of parameters, with the exception of the special
case studied by Watts. For !0=0 and F!0"=0 as in #13$, the
coefficient C0 is zero and the fixed-point equation always has
a root at q=0, with transcritical bifurcations on the q=0 line
giving rise to the observed transitions. However, any nonzero
seed size replaces the transcritical bifurcations with saddle-
node bifurcations as described above. We have confirmed the
accuracy of these results #and Eq. !1"$ against numerical
simulations on other configuration model network topologies
#1$, including power-law degree distributions !with exponen-
tial cutoff": pk%k−& exp!−k /'" #17$.

We turn now to the derivation of Eqs. !1"–!3". Our ana-
lytical approach is based on methods introduced by Dhar et
al. to study the zero-temperature random-field Ising model
on Bethe lattices #22$. The RFIM is a spin-based model of
magnetic materials, and its zero-temperature limit has been
extensively studied as a model for systems exhibiting hyster-
esis and Barkhausen noise #21$. A Bethe lattice of coordina-
tion number z !for integer z" is an infinite tree where every
node has exactly z neighbors. Dhar et al. derive analytical
results valid on Bethe lattices, but their numerical simula-
tions show that the theory also applies very accurately to
random graphs where every node has exactly z neighbors,
provided that short-distance loops are rare. To analyze Watts’
model we extend the approach of #22$ in two ways. First, we
consider treelike random graphs with arbitrary degree distri-
butions, rather than the Bethe lattices of #22$. Second, we
account for the PAP, which is the essential difference be-
tween Watts’ update rule and standard RFIM dynamics. This
difference between the update rules is crucial to our deriva-
tion of the !0 dependence of the activated fraction !.

We begin by replacing the given random graph !with de-
gree distribution pk" by a tree structure. The top level of the
tree is a single node with degree k, and this is connected to
its k neighbors at the next lower level of the tree. Each of
these nodes is in turn connected to ki−1 neighbors at the next
lower level, where ki is the degree of node i. The degree
distribution of the nodes in the tree is given by p̃k= !k /z"pk,
which is the distribution for the number of nearest neighbors
in a connected graph #1,25$. To find the final density ! of
active nodes, we label the levels of the tree from n=0 at the
bottom, with the top node at an infinitely high level !n
→$". Define qn as the conditional probability that a node on
level n is active, conditioned on its parent !on level n+1"
being inactive. Consider updating a node on level n+1, as-
suming that the nodes on all lower levels have already been
updated. With probability p̃k the chosen node has k neigh-
bors: one of these is its parent !on level n+2", and the re-
maining k−1 are its children !on level n". Since a fraction !0
of nodes were initially set to be active, there is a probability
!0 that we have chosen one of these nodes. In this case the
state of the node remains unchanged. On the other hand, with
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FIG. 3. !Color online" Bifurcation diagrams as described in text
for dependence of q$ on z for "=0.2 and !0=0 at R= !a" 0.35, !b"
0.371, and !c" 0.375.
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 Plots of stability points
for 𝜃𝑡+1 = 𝐺(𝜃𝑡; 𝜙0).

 n.b.: 0 is not a fixed
point here: 𝜃0 = 0
always takes off.

 Top to bottom: 𝑅 =
0.35, 0.371, and 0.375.

 Saddle node
bifurcations appear
and merge (b and c).
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Time-dependent solutions

Synchronous update

 Done: Evolution of 𝜙𝑡 and 𝜃𝑡 given exactly by the
maps we have derived.

Asynchronous updates

 Update nodes with probability 𝛼.
 As 𝛼 → 0, updates become effectively

independent.
 Now can talk about 𝜙(𝑡) and 𝜃(𝑡).
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Nutshell:
 Solid dive into understanding contagion on generalized

random networks.

 Threshold model leads to idea of vulnerables and a
critical mass. [16, 8]

 Generating function approaches provided first
breakthroughs and gave possibility and probability of
spreading. [10, 16]

 Later: A probabilistic, physical method solved the
whole story for a fractional seed—final size, dynamics,
… [7, 6]

 Much can be generalized for more realistic kinds of
networks: degree-correlated, modular, bipartite, …

 The single seed contagion condition and triggering
probability can be fully developed using a physical
story. [5, 9]

 Many connections to other kinds of models: Voter
models, Ising models, …
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Neural reboot (NR):

Pangolin happiness:

https://www.youtube.com/watch?v=LMiYjkG4onM?rel=0


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=LMiYjkG4onM?rel=0
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