
PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
1 of 31

Measures of centrality
Last updated: 2022/08/29, 00:04:32 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D
CSYS/MATH 300, 303, & 394, 2022–2023| @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center
Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
2 of 31

Outline

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

Nutshell

References

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
4 of 31

How big is my node?

 Basic question: how ‘important’ are specific nodes
and edges in a network?

 An important node or edge might:
1. handle a relatively large amount of the network’s

traffic (e.g., cars, information);
2. bridge two or more distinct groups (e.g., liason,

interpreter);
3. be a source of important ideas, knowledge, or

judgments (e.g., supreme court decisions, an
employee who ‘knows where everything is’).

 So how do we quantify such a slippery concept as
importance?

 We generate ad hoc, reasonable measures, and
examine their utility …

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
5 of 31

Centrality

 One possible reflection of importance is centrality.
 Presumption is that nodes or edges that are (in

some sense) in the middle of a network are
important for the network’s function.

 Idea of centrality comes from social networks
literature [7].

 Many flavors of centrality …
1. Many are topological and quasi-dynamical;
2. Some are based on dynamics (e.g., traffic).

 We will define and examine a few …
 (Later: see centrality useful in identifying

communities in networks.)

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
7 of 31

Centrality

Degree centrality
 Naively estimate importance by node degree. [7]

 Doh: assumes linearity
(If node 𝑖 has twice as many friends as node 𝑗, it’s
twice as important.)

 Doh: doesn’t take in any non-local information.

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
9 of 31

Closeness centrality
 Idea: Nodes are more central if they can reach

other nodes ‘easily.’
 Measure average shortest path from a node to all

other nodes.
 Define Closeness Centrality for node 𝑖 as

𝑁 − 1
∑𝑗,𝑗≠𝑖(shortest distance from 𝑖 to 𝑗).

 Range is 0 (no friends) to 1 (single hub).
 Unclear what the exact values of this measure tells

us because of its ad-hocness.
 General problem with simple centrality measures:

what do they exactly mean?
 Perhaps, at least, we obtain an ordering of nodes

in terms of ‘importance.’

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
11 of 31

Betweenness centrality

 Betweenness centrality is based on coherence of
shortest paths in a network.

 Idea: If the quickest way between any two nodes
on a network disproportionately involves certain
nodes, then they are ‘important’ in terms of global
cohesion.

 For each node 𝑖, count how many shortest paths
pass through 𝑖.

 In the case of ties, divide counts between paths.
 Call frequency of shortest paths passing through

node 𝑖 the betweenness of 𝑖, 𝐵𝑖.
 Note: Exclude shortest paths between 𝑖 and other

nodes.
 Note: works for weighted and unweighted

networks.

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
12 of 31

 Consider a network with 𝑁 nodes and 𝑚 edges
(possibly weighted).

 Computational goal: Find (𝑁
2) shortest paths

between all pairs of nodes.
 Traditionally use Floyd-Warshall algorithm.
 Computation time grows as 𝑂(𝑁3).
 See also:

1. Dijkstra’s algorithm for finding shortest path
between two specific nodes,

2. and Johnson’s algorithm which outperforms
Floyd-Warshall for sparse networks:
𝑂(𝑚𝑁 + 𝑁2log𝑁).

 Newman (2001) [4, 5] and Brandes (2001) [1]
independently derive equally fast algorithms that
also compute betweenness.

 Computation times grow as:
1. 𝑂(𝑚𝑁) for unweighted graphs;
2. and 𝑂(𝑚𝑁 + 𝑁2log𝑁) for weighted graphs.

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
13 of 31

Shortest path between node 𝑖 and all others:

 Consider unweighted networks.

 Use breadth-first search:

1. Start at node 𝑖, giving it a distance 𝑑 = 0 from
itself.

2. Create a list of all of 𝑖’s neighbors and label them
being at a distance 𝑑 = 1.

3. Go through list of most recently visited nodes and
find all of their neighbors.

4. Exclude any nodes already assigned a distance.
5. Increment distance 𝑑 by 1.
6. Label newly reached nodes as being at distance 𝑑.
7. Repeat steps 3 through 6 until all nodes are

visited.

 Record which nodes link to which nodes moving out
from 𝑖 (former are ‘predecessors’ with respect to 𝑖’s
shortest path structure).

 Runs in 𝑂(𝑚) time and gives 𝑁 − 1 shortest paths.

 Find all shortest paths in 𝑂(𝑚𝑁) time

 Much, much better than naive estimate of 𝑂(𝑚𝑁2).

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
14 of 31

Newman’s Betweenness algorithm: [4]

pears not to influence the results highly. The recalculation

step, on the other hand, is absolutely crucial to the operation

of our methods. This step was missing from previous at-

tempts at solving the clustering problem using divisive algo-

rithms, and yet without it the results are very poor indeed,

failing to find known community structure even in the sim-

plest of cases. In Sec. VB we give an example comparing

the performance of the algorithm on a particular network

with and without the recalculation step.

In the following sections, we discuss implementation and

give examples of our algorithms for finding community

structure. For the reader who merely wants to know what

algorithm they should use for their own problem, let us give

an immediate answer: for most problems, we recommend the

algorithm with betweenness scores calculated using the

shortest-path betweenness measure !i" above. This measure
appears to work well and is the quickest to calculate—as

described in Sec. III A, it can be calculated for all edges in

time O(mn), where m is the number of edges in the graph

and n is the number of vertices #48$. This is the only version
of the algorithm that we discussed in Ref. #25$. The other
versions we discuss, while being of some pedagogical inter-

est, make greater computational demands, and in practice

seem to give results no better than the shortest-path method.

III. IMPLEMENTATION

In theory, the descriptions of the preceding section com-

pletely define the methods we consider in this paper, but in

practice there are a number of subtleties to their implemen-

tation that are important for turning the description into a

workable computer algorithm.

Essentially all of the work in the algorithm is in the cal-

culation of the betweenness scores for the edges; the job of

finding and removing the highest-scoring edge is trivial and

not computationally demanding. Let us tackle our three sug-

gested betweenness measures in turn.

A. Shortest-path betweenness

At first sight, it appears that calculating the edge between-

ness measure based on geodesic paths for all edges will take

O(mn2) operations on a graph with m edges and n vertices:

calculating the shortest path between a particular pair of ver-

tices can be done using breadth-first search in time O(m)

#28,29$, and there are O(n2) vertex pairs. Recently, however,
new algorithms have been proposed by Newman #30$ and
independently by Brandes #31$ that can perform the calcula-

tion faster than this, finding all betweennesses in O(mn)

time. Both Newman and Brandes gave algorithms for the

standard Freeman vertex betweenness, but it is trivial to

adapt their algorithms for edge betweenness. We describe the

resulting method here for the algorithm of Newman.

Breadth-first search can find shortest paths from a single

vertex s to all others in time O(m). In the simplest case,

when there is only a single shortest path from the source

vertex to any other !we will consider other cases in a mo-
ment", the resulting set of paths forms a shortest-path tree—
see Fig. 4!a". We can use this tree to calculate the contribu-

tion to betweenness for each edge from this set of paths as

follows. We find first the ‘‘leaves’’ of the tree, i.e., those

nodes such that no shortest paths to other nodes pass through

them, and we assign a score of 1 to the single edge that

connects each to the rest of the tree, as shown in the figure.

Then, starting with those edges that are farthest from the

source vertex on the tree, i.e., lowest in Fig. 4!a", we work
upwards, assigning a score to each edge that is 1 plus the

sum of the scores on the neighboring edges immediately be-

low it !i.e., those edges with which it shares a common ver-
tex". When we have gone though all edges in the tree, the
resulting scores are the betweenness counts for the paths

from vertex s. Repeating the process for all possible vertices

s and summing the scores, we arrive at the full betweenness

scores for shortest paths between all pairs. The breadth-first

search and the process of working up through the tree both

take worst-case time O(m) and there are n vertices total, so

the entire calculation takes time O(mn) as claimed.

This simple case serves to illustrate the basic principle

behind the algorithm. In general, however, it is not the case

that there is only a single shortest path between any pair of

vertices. Most networks have at least some vertex pairs be-

tween which there are two or more geodesic paths of equal

length. Figure 4!b" shows a simple example of a shortest
path ‘‘tree’’ for a network with this property. The resulting

structure is in fact no longer a tree, and in such cases an extra

step is required in the algorithm to calculate the betweenness

correctly.

In the traditional definition of vertex betweenness #27$,
multiple shortest paths between a pair of vertices are given

equal weights summing to 1. For example, if there are three

shortest paths, each will be given weight 1
3. We adopt the

same definition for our edge betweenness !as did Anthonisse
in his original work #26$, although other definitions are pos-

FIG. 4. Calculation of shortest-path betweenness: !a" When
there is only a single shortest path from a source vertex s !top" to all
other reachable vertices, those paths necessarily form a tree, which

makes the calculation of the contribution to betweenness from this

set of paths particularly simple, as described in the text. !b" For
cases in which there is more than one shortest path to some vertices,

the calculation is more complex. First we must calculate the number

of distinct paths from the source s to each vertex !numbers on
vertices", and then these are used to weight the path counts as
described in the text. In either case, we can check the results by

confirming that the sum of the betweennesses of the edges con-

nected to the source vertex is equal to the total number of reachable

vertices—six in each of the cases illustrated here.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 !2004"

026113-4

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
15 of 31

Newman’s Betweenness algorithm: [4]

1. Set all nodes to have a value 𝑐𝑖𝑗 = 0, 𝑗 = 1, …
(𝑐 for count).

2. Select one node 𝑖 and find shortest paths to all other
𝑁 − 1 nodes using breadth-first search.

3. Record # equal shortest paths reaching each node.

4. Move through nodes according to their distance from 𝑖,
starting with the furthest.

5. Travel back towards 𝑖 from each starting node 𝑗, along
shortest path(s), adding 1 to every value of 𝑐𝑖ℓ at each
node ℓ along the way.

6. Whenever more than one possibility exists, apportion
according to total number of short paths coming
through predecessors.

7. Exclude starting node 𝑗 and 𝑖 from increment.

8. Repeat steps 2–8 for every node 𝑖 and obtain
betweenness as 𝐵𝑗 = ∑𝑁

𝑖=1 𝑐𝑖𝑗.

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
16 of 31

Newman’s Betweenness algorithm: [4]

 For a pure tree network, 𝑐𝑖𝑗 is the number of
nodes beyond 𝑗 from 𝑖’s vantage point.

 Same algorithm for computing drainage area in
river networks (with 1 added across the board).

 For edge betweenness, use exact same algorithm
but now
1. 𝑗 indexes edges,
2. and we add one to each edge as we traverse it.

 For both algorithms, computation time grows as

𝑂(𝑚𝑁).

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
17 of 31

Newman’s Betweenness algorithm: [4]

pears not to influence the results highly. The recalculation

step, on the other hand, is absolutely crucial to the operation

of our methods. This step was missing from previous at-

tempts at solving the clustering problem using divisive algo-

rithms, and yet without it the results are very poor indeed,

failing to find known community structure even in the sim-

plest of cases. In Sec. VB we give an example comparing

the performance of the algorithm on a particular network

with and without the recalculation step.

In the following sections, we discuss implementation and

give examples of our algorithms for finding community

structure. For the reader who merely wants to know what

algorithm they should use for their own problem, let us give

an immediate answer: for most problems, we recommend the

algorithm with betweenness scores calculated using the

shortest-path betweenness measure !i" above. This measure
appears to work well and is the quickest to calculate—as

described in Sec. III A, it can be calculated for all edges in

time O(mn), where m is the number of edges in the graph

and n is the number of vertices #48$. This is the only version
of the algorithm that we discussed in Ref. #25$. The other
versions we discuss, while being of some pedagogical inter-

est, make greater computational demands, and in practice

seem to give results no better than the shortest-path method.

III. IMPLEMENTATION

In theory, the descriptions of the preceding section com-

pletely define the methods we consider in this paper, but in

practice there are a number of subtleties to their implemen-

tation that are important for turning the description into a

workable computer algorithm.

Essentially all of the work in the algorithm is in the cal-

culation of the betweenness scores for the edges; the job of

finding and removing the highest-scoring edge is trivial and

not computationally demanding. Let us tackle our three sug-

gested betweenness measures in turn.

A. Shortest-path betweenness

At first sight, it appears that calculating the edge between-

ness measure based on geodesic paths for all edges will take

O(mn2) operations on a graph with m edges and n vertices:

calculating the shortest path between a particular pair of ver-

tices can be done using breadth-first search in time O(m)

#28,29$, and there are O(n2) vertex pairs. Recently, however,
new algorithms have been proposed by Newman #30$ and
independently by Brandes #31$ that can perform the calcula-

tion faster than this, finding all betweennesses in O(mn)

time. Both Newman and Brandes gave algorithms for the

standard Freeman vertex betweenness, but it is trivial to

adapt their algorithms for edge betweenness. We describe the

resulting method here for the algorithm of Newman.

Breadth-first search can find shortest paths from a single

vertex s to all others in time O(m). In the simplest case,

when there is only a single shortest path from the source

vertex to any other !we will consider other cases in a mo-
ment", the resulting set of paths forms a shortest-path tree—
see Fig. 4!a". We can use this tree to calculate the contribu-

tion to betweenness for each edge from this set of paths as

follows. We find first the ‘‘leaves’’ of the tree, i.e., those

nodes such that no shortest paths to other nodes pass through

them, and we assign a score of 1 to the single edge that

connects each to the rest of the tree, as shown in the figure.

Then, starting with those edges that are farthest from the

source vertex on the tree, i.e., lowest in Fig. 4!a", we work
upwards, assigning a score to each edge that is 1 plus the

sum of the scores on the neighboring edges immediately be-

low it !i.e., those edges with which it shares a common ver-
tex". When we have gone though all edges in the tree, the
resulting scores are the betweenness counts for the paths

from vertex s. Repeating the process for all possible vertices

s and summing the scores, we arrive at the full betweenness

scores for shortest paths between all pairs. The breadth-first

search and the process of working up through the tree both

take worst-case time O(m) and there are n vertices total, so

the entire calculation takes time O(mn) as claimed.

This simple case serves to illustrate the basic principle

behind the algorithm. In general, however, it is not the case

that there is only a single shortest path between any pair of

vertices. Most networks have at least some vertex pairs be-

tween which there are two or more geodesic paths of equal

length. Figure 4!b" shows a simple example of a shortest
path ‘‘tree’’ for a network with this property. The resulting

structure is in fact no longer a tree, and in such cases an extra

step is required in the algorithm to calculate the betweenness

correctly.

In the traditional definition of vertex betweenness #27$,
multiple shortest paths between a pair of vertices are given

equal weights summing to 1. For example, if there are three

shortest paths, each will be given weight 1
3. We adopt the

same definition for our edge betweenness !as did Anthonisse
in his original work #26$, although other definitions are pos-

FIG. 4. Calculation of shortest-path betweenness: !a" When
there is only a single shortest path from a source vertex s !top" to all
other reachable vertices, those paths necessarily form a tree, which

makes the calculation of the contribution to betweenness from this

set of paths particularly simple, as described in the text. !b" For
cases in which there is more than one shortest path to some vertices,

the calculation is more complex. First we must calculate the number

of distinct paths from the source s to each vertex !numbers on
vertices", and then these are used to weight the path counts as
described in the text. In either case, we can check the results by

confirming that the sum of the betweennesses of the edges con-

nected to the source vertex is equal to the total number of reachable

vertices—six in each of the cases illustrated here.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 !2004"

026113-4

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
19 of 31

Important nodes have important friends:
 Define 𝑥𝑖 as the ‘importance’ of node 𝑖.
 Idea: 𝑥𝑖 depends (somehow) on 𝑥𝑗

if 𝑗 is a neighbor of 𝑖.
 Recursive: importance is transmitted through a

network.
 Simplest possibility is a linear combination:

𝑥𝑖 ∝ ∑
𝑗

𝑎𝑗𝑖𝑥𝑗

 Assume further that constant of proportionality, 𝑐,
is independent of 𝑖.

 Above gives ⃗𝑥 = 𝑐AT ⃗𝑥 or AT ⃗𝑥 = 𝑐−1 ⃗𝑥= 𝜆 ⃗𝑥 .
 Eigenvalue equation based on adjacency matrix …
 Note: Lots of despair over size of the largest

eigenvalue. [7] Lose sight of original assumption’s
non-physicality.

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
20 of 31

Important nodes have important friends:
 So: solve AT ⃗𝑥 = 𝜆 ⃗𝑥.
 But which eigenvalue and eigenvector?
 We, the people, would like:

1. A unique solution. 
2. 𝜆 to be real. 
3. Entries of 𝑥⃗ to be real. 
4. Entries of 𝑥⃗ to be non-negative. 
5. 𝜆 to actually mean something … (maybe too much)
6. Values of 𝑥𝑖 to mean something

(what does an observation that 𝑥3 = 5𝑥7 mean?)
(maybe only ordering is informative …)
(maybe too much)

7. 𝜆 to equal 1 would be nice … (maybe too much)
8. Ordering of 𝑥⃗ entries to be robust to reasonable

modifications of linear assumption (maybe too
much)

 We rummage around in bag of tricks and pull out
the Perron-Frobenius theorem …

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
21 of 31

Perron-Frobenius theorem: If an 𝑁×𝑁 matrix
𝐴 has non-negative entries then:

1. 𝐴 has a real eigenvalue 𝜆1 ≥ |𝜆𝑖| for 𝑖 = 2, … , 𝑁 .

2. 𝜆1 corresponds to left and right 1-d eigenspaces for
which we can choose a basis vector that has
non-negative entries.

3. The dominant real eigenvalue 𝜆1 is bounded by the
minimum and maximum row sums of 𝐴:

min𝑖
𝑁

∑
𝑗=1

𝑎𝑖𝑗 ≤ 𝜆1 ≤ max𝑖
𝑁

∑
𝑗=1

𝑎𝑖𝑗

4. All other eigenvectors have one or more negative
entries.

5. The matrix 𝐴 can make toast.

6. Note: Proof is relatively short for symmetric matrices
that are strictly positive [6] and just non-negative [3].

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
22 of 31

Other Perron-Frobenius aspects:

 Assuming our network is irreducible, meaning
there is only one component, is reasonable: just
consider one component at a time if more than
one exists.

 Irreducibility means largest eigenvalue’s
eigenvector has strictly non-negative entries.

 Analogous to notion of ergodicity: every state is
reachable.

 (Another term: Primitive graphs and matrices.)

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
24 of 31

Hubs and Authorities
 Generalize eigenvalue centrality to allow nodes to

have two attributes:
1. Authority: how much knowledge, information,

etc., held by a node on a topic.
2. Hubness (or Hubosity or Hubbishness or

Hubtasticness): how well a node ‘knows’ where to
find information on a given topic.

 Original work due to the legendary Jon
Kleinberg. [2]

 Best hubs point to best authorities.
 Recursive: Hubs authoritatively link to hubs,

authorities hubbishly link to other authorities.
 More: look for dense links between sets of ‘good’

hubs pointing to sets of ‘good’ authorities.
 Known as the HITS algorithm

(Hyperlink-Induced Topics Search).

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
25 of 31

Hubs and Authorities
 Give each node two scores:

1. 𝑥𝑖 = authority score for node 𝑖
2. 𝑦𝑖 = hubtasticness score for node 𝑖

 As for eigenvector centrality, we connect the
scores of neighboring nodes.

 New story I: a good authority is linked to by good
hubs.

 Means 𝑥𝑖 should increase as ∑𝑁
𝑗=1 𝑎𝑗𝑖𝑦𝑗 increases.

 Note: indices are 𝑗𝑖 meaning 𝑗 has a directed link
to 𝑖.

 New story II: good hubs point to good authorities.
 Means 𝑦𝑖 should increase as ∑𝑁

𝑗=1 𝑎𝑖𝑗𝑥𝑗 increases.

 Linearity assumption:

⃗𝑥 ∝ 𝐴𝑇 ⃗𝑦 and ⃗𝑦 ∝ 𝐴 ⃗𝑥

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
26 of 31

Hubs and Authorities

 So let’s say we have

⃗𝑥 = 𝑐1𝐴𝑇 ⃗𝑦 and ⃗𝑦 = 𝑐2𝐴 ⃗𝑥

where 𝑐1 and 𝑐2 must be positive.
 Above equations combine to give

⃗𝑥 = 𝑐1𝐴𝑇 𝑐2𝐴 ⃗𝑥 = 𝜆𝐴𝑇 𝐴 ⃗𝑥.

where 𝜆 = 𝑐1𝑐2 > 0.
 It’s all good: we have the heart of singular value

decomposition before us …

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
27 of 31

We can do this:

 𝐴𝑇 𝐴 is symmetric.
 𝐴𝑇 𝐴 is semi-positive definite so its eigenvalues

are all ≥ 0.
 𝐴𝑇 𝐴’s eigenvalues are the square of 𝐴’s singular

values.
 𝐴𝑇 𝐴’s eigenvectors form a joyful orthogonal basis.
 Perron-Frobenius tells us that only the dominant

eigenvalue’s eigenvector can be chosen to have
non-negative entries.

 So: linear assumption leads to a solvable system.
 What would be very good: find networks where we

have independent measures of node ‘importance’
and see how importance is actually distributed.

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
28 of 31

Nutshell:
 Measuring centrality is well motivated if hard to

carry out well.
 We’ve only looked at a few major ones.
 Methods are often taken to be more sophisticated

than they really are.
 Centrality can be used pragmatically to perform

diagnostics on networks (see structure detection).
 Focus on nodes rather than groups or modules is

a homo narrativus constraint.
 Possible that better approaches will be developed.

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
29 of 31

References I

[1] U. Brandes.
A faster algorithm for betweenness centrality.
J. Math. Sociol., 25:163–177, 2001. pdf

[2] J. M. Kleinberg.
Authoritative sources in a hyperlinked
environment.
Proc. 9th ACM-SIAM Symposium on Discrete
Algorithms, 1998. pdf

[3] K. Y. Lin.
An elementary proof of the perron-frobenius
theorem for non-negative symmetric matrices.
Chinese Journal of Physics, 15:283–285, 1977.
pdf

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
30 of 31

References II

[4] M. E. J. Newman.
Scientific collaboration networks. II. Shortest paths,
weighted networks, and centrality.
Phys. Rev. E, 64(1):016132, 2001. pdf

[5] M. E. J. Newman and M. Girvan.
Finding and evaluating community structure in
networks.
Phys. Rev. E, 69(2):026113, 2004. pdf

[6] F. Ninio.
A simple proof of the Perron-Frobenius theorem
for positive symmetric matrices.
J. Phys. A.: Math. Gen., 9:1281–1282, 1976. pdf

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
31 of 31

References III

[7] S. Wasserman and K. Faust.
Social Network Analysis: Methods and
Applications.
Cambridge University Press, Cambridge, UK, 1994.

