Branching Networks II

Last updated: 2023/01/26, 11:44:57 EST

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 300, 303, & 394, 2022–2023 @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

These slides are brought to you by:

Sealie & Lambie Productions

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

(IN) |8

20f86

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

200 3 of 86

Outline

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Piracy on the high χ 's:

"Dynamic Reorganization of River Basins" C Willett et al., Science, **343**, 1248765, 2014.^[21]

$$\begin{split} &\frac{\partial z(x,t)}{\partial t} = U - KA^m \left| \frac{\partial z(x,t)}{\partial x} \right|' \\ &z(x) = z_{\rm b} + \left(\frac{U}{KA_0^m} \right)^{1/n} \chi \\ &\chi = \int_{x_{\rm b}}^x \left(\frac{A_0}{A(x')} \right)^{m/n} {\rm d}x\,' \end{split}$$

Piracy on the high χ 's:

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

https://www.youtube.com/watch?v=FnroL1_-l2c?rel=0

More: How river networks move across a landscape (Science Daily)

200 7 of 86

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- $R_n, R_a, R_\ell, \text{ and } R_s \text{ versus } T_1 \text{ and } R_T. \text{ One simple redundancy: } R_\ell = R_s.$ Insert question from assignment 15 🖸
- To make a connection, clearest approach is to start with Tokunaga's law ...
- Sknown result: Tokunaga \rightarrow Horton^[18, 19, 20, 9, 2]

PoCS @pocsvox

Branching Networks II

Horton ↔ Tokuñaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Let us make them happy

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
 Reasonable for river and cardiovascular networks
 For river networks:
 - Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.

🚳 In terms of basin characteristics:

$$\rho_{\rm dd} \simeq \frac{\sum {\rm stream \ segment \ lengths}}{{\rm basin \ area}} = \frac{\sum_{\alpha}^{\rm s}}{{}^{\rm s}}$$

PoCS @pocsvox

Branching Networks II

Horton Reducing Horton Scaling relations Fluctuations Nudels Nutshell References

 $\frac{n_{\omega}\bar{s}_{\omega}}{a_{\Omega}}$

200 11 of 86

More with the happy-making thing

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

ω=3

 $\omega = 4$

 $\omega = 4$

 $(\mathbf{n})=4$

 $\omega = 3$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Settimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Solution Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega + 1$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n_{\omega'}T_{\omega'-\omega}$ streams of order ω do this

PoCS @pocsvox

Branching Networks II

Horton ↔ Tökunägä Reducing Horton Scaling relations Fluctuations Models Nutshell References

More with the happy-making thing

Putting things together:

2

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

- Solution Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_n .
- Insert question from assignment 16 C
 Solution:

$$R_n = \frac{(2+R_T+T_1)\pm \sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

(The larger value is the one we want.)

PoCS @pocsvox

Branching Networks II

Horton Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

20 P3 of 86

Finding other Horton ratios

Connect Tokunaga to R_s

- \aleph Now use uniform drainage density ρ_{dd} .
- Solution Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- So For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

 $\ref{substitute}$ in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{(k-1)} \right) \propto R_T^{(\omega)}$$

PoCS @pocsvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton and Tokunaga are happy

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

2

Recall
$$R_{\ell} = R_s$$
 so

$$R_\ell = R_s = R_T$$

🚳 And from before:

$$R_n = \frac{(2+R_T+T_1) + \sqrt{(2+R_T+T_1)^2 - 8R_T}}{2}$$

PoCS @pocsvox

Branching Networks II

Horton ↔ Tokuñaga Reducing Horton Scaling relations Fluctuations

Models

Nutshell

References

Horton and Tokunaga are happy

Some observations:

- \mathfrak{S}_{R_n} and R_ℓ depend on T_1 and R_T .
- \mathfrak{S} Seems that R_a must as well ...
- Suggests Horton's laws must contain some redundancy
- \bigotimes We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. ^[3, 4]

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

200 16 of 86

Horton and Tokunaga are happy

The other way round

2

2

Note: We can invert the expressions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell,$$

 $T_1=R_n-R_\ell-2+2R_\ell/R_n.$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform) ... PoCS @pocsvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

UVN

DQ @ 17 of 86

Horton and Tokunaga are friends

From Horton to Tokunaga^[2]

Assume Horton's laws hold for number and length

> Start with picture showing an order ω stream and order $\omega - 1$ generating and side streams.

Scale up by a factor of R_{ℓ} , orders increment to $\omega + 1$ and ω .

Maintain drainage density by adding new order $\omega - 1$ streams

PoCS @pocsvox

Branching Networks II

Horton Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

UVN SO

29 CA 18 of 86

Horton and Tokunaga are friends

...and in detail:

- 🚳 Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since by definition, an order $\omega + 1$ stream segment has T_{ω} order 1 side streams, we have:

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i\right)$$

So For large ω , Tokunaga's law is the solution—let's check ...

PoCS @pocsvox

Branching Networks II

Horon Tokunaga Reducing Horton Scaling relations Fluctuations Nudels Nutshell References

Horton and Tokunaga are friends

Just checking:

2

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{\kappa-1} T_i\right)$$

$$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{\ i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{\ k-1} - 1}{R_\ell - 1} \right) \end{split}$$

$$\simeq (R_{\ell}-1)T_1\frac{R_{\ell}^{\ k-1}}{R_{\ell}-1} = T_1R_{\ell}^{k-1} \quad \ \text{...yep}.$$

PoCS @pocsvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

20 of 86

Horton's laws of area and number:

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell References

In bottom plots, stream number graph has been flipped vertically.

 \mathfrak{S} Highly suggestive that $R_n \equiv R_a \dots$

20 Q 21 of 86

Measuring Horton ratios is tricky:

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References

How robust are our estimates of ratios?
 Rule of thumb: discard data for two smallest and two largest orders.

Mississippi:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3, 8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell References

(III) |8|

Amazon:

PoCS @pocsvox

Branching Networks II

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n	Horton ⇔ Tokunaga
[2, 3]	4.78	4.71	2.47	2.08	0.99	Reducing Horton
[2, 5]	4.55	4.58	2.32	2.12	1.01	Scaling relations
[2, 7]	4.42	4.53	2.24	2.10	1.02	Fluctuations
[3, 5]	4.45	4.52	2.26	2.14	1.01	Models
[3, 7]	4.35	4.49	2.20	2.10	1.03	Nutshell
[4, 6]	4.38	4.54	2.22	2.18	1.03	References
[5, 6]	4.38	4.62	2.22	2.21	1.06	
[6, 7]	4.08	4.27	2.05	1.83	1.05	275
mean μ	4.42	4.53	2.25	2.10	1.02	
std dev σ	0.17	0.10	0.10	0.09	0.02	Y.C.
σ/μ	0.038	0.023	0.045	0.042	0.019	
						· .

Reducing Horton's laws:

Rough first effort to show $R_n \equiv R_a$:

& a_Ω ∝ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
 & So:

$$a_\Omega\simeq\sum_{\omega=1}^\Omega n_\omega\bar{s}_\omega/\rho_{\rm dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot \hat{1}}_{n_{\omega}} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\bar{s}_{\omega}}$$

$$= \frac{R_n^{\ \Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell References

na (~ 25 of 86

Reducing Horton's laws:

Continued ...

2

$$\frac{a_{\Omega}}{R_{\Omega}} \propto \frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega} \left(\frac{R_{s}}{R_{n}}\right)^{\omega}$$

$$= \frac{R_n}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^2}{1 - (R_s/R_n)}$$

$$\sim {R_n^{\Omega-1}} ar{s}_1 {1\over 1-(R_s/R_n)}$$
 as $\Omega
earrow$

 \mathfrak{S} So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models

Nutshell

References

26 of 86

WN OO

Reducing Horton's laws:

Not quite:

- ...But this only a rough argument as Horton's laws do not imply a strict hierarchy
- 🗞 Need to account for sidebranching.

lnsert question from assignment 16 🗹

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References

Equipartitioning:

Intriguing division of area:

- Solution Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- 🚳 Story:

$$R_n\equiv R_a\Rightarrow \boxed{n_{\omega}\bar{a}_{\omega}=\mathrm{const}}$$

Reason:

$$\begin{split} n_\omega \propto (R_n)^{-\omega} \\ \bar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1} \end{split}$$

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

الله الح مورد 28 of 86

Equipartitioning: Some examples:

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell References

29 of 86

Neural Reboot: Fwoompf

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

ク へ · 30 of 86

UVN S

https://www.youtube.com/watch?v=5mUs70SqD4o?rel=0

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- 🚳 Hierarchy is mixed
- Solution Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- 🗞 We have connected Tokunaga's and Horton's laws
- $rac{3}{2}$ Only two Horton laws are independent ($R_n = R_a$)

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

A little further ...

- 🚳 Ignore stream ordering for the moment
- \bigotimes Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Solution Q: What is probability that the *p*'s drainage basin has area *a*? $P(a) \propto a^{-\tau}$ for large *a*
- 𝔅 **Q**: What is probability that the longest stream from *p* has length *ℓ*? $P(ℓ) ∝ ℓ^{-γ}$ for large *ℓ*
 - $\ref{solution}$ Roughly observed: $1.3 \lesssim \tau \lesssim 1.5$ and $1.7 \lesssim \gamma \lesssim 2.0$

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Pocs @pocsvox

Branching Networks II

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Solution Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- \clubsuit Let's work on $P(\ell)$...
- Solution of the example of the exam
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ :

2

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_>(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\max}} P(\ell) \mathrm{d}\ell$$

$$P_>(\ell_*) = 1 - P(\ell < \ell_*)$$

🚳 Also known as the exceedance probability.

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Scaling laws Finding γ :

- The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:
- rightarrow Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_{*}) = \int_{\ell=\ell_{*}}^{\ell_{\max}} P(\ell) \,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{max}} {\ell^{-\gamma}} d\ell$$

$$= \left.\frac{\ell^{-(\gamma-1)}}{-(\gamma-1)}\right|_{\ell=\ell_*}^{\ell_{\max}}$$

$$\propto \ell_*^{-(\gamma-1)}$$
 for $\ell_{\max} \gg \ell_*$

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

الله الح مرد 36 of 86
Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- rightarrow Assume some spatial sampling resolution Δ
- Solution Landscape is broken up into grid of $\Delta \times \Delta$ sites Provimate $P_{>}(\ell_{*})$ as

$$P_{>}(\ell_{*}) = \frac{N_{>}(\ell_{*};\Delta)}{N_{>}(0;\Delta)}$$

where $N_>(\ell_*;\Delta)$ is the number of sites with main stream length $>\ell_*.$

Solution Use Horton's law of stream segments: $\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s \dots$ PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

UVN OS

Finding γ :

Set
$$\ell_* = \overline{\ell}_{\omega}$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}$$

Δ's cancel
 Denominator is
$$a_{\Omega} \rho_{dd}$$
, a constant.
 So ...using Horton's laws ...

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1}) (\bar$$

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

20 38 of 86

Finding γ :

🚳 We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1\cdot R_n^{\Omega-\omega'})(\bar{s}_1\cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

Sum is now from $\omega'' = 0$ to $\omega'' = \Omega - \omega - 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

PoCS @pocsvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ :

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

 \clubsuit Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$

again using $\sum_{i=0}^{n-1}a^i=(a^n-1)/(a-1)$

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

2 C 40 of 86

UVN OS

Finding γ :

2

🗞 Nearly there:

$$P_>(\bar{\ell}_\omega) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

$$\bar{\ell}_\omega \propto R_\ell^{\,\omega} = R_s^{\,\omega} = e^{\,\omega \ln R_s}$$

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

الله الح مرد 14 of 86

Scaling laws Finding γ :

2

2

2

2

Therefore:

$$P_{>}(\bar{\ell}_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto {ar l}_{\omega}^{-\ln(R_n/R_s)/\ln R_s}$$

 $=\bar{\boldsymbol{\ell}}_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$

$$= \bar{\ell}_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$= \bar{\ell}_{\omega}^{-\gamma+1}$$

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 42 of 86

Finding γ :

 $\gamma = \ln R_n / \ln R_s$

Proceeding in a similar fashion, we can show

 $\tau=2-{\rm ln}R_s/{\rm ln}R_n=2-1/\gamma$

Insert question from assignment 16 🖸

Such connections between exponents are called scaling relations

\lambda Let's connect to one last relationship: Hack's law

PoCS @pocsvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Hack's law: ^[6] & $\ell \propto a^h$

Solution Typically observed that $0.5 \leq h \leq 0.7$. Solution Use Horton laws to connect *h* to Horton ratios:

$$ar{\ell}_\omega \propto R_s^{\,\omega}$$
 and $ar{a}_\omega \propto R_n^{\,\omega}$

🚳 Observe:

$$\bar{\ell}_{\omega} \propto e^{\,\omega {\rm ln} R_s} \propto \left(e^{\,\omega {\rm ln} R_n} \right)^{{\rm ln} R_s/{\rm ln} R_n}$$

$$\propto (R_n^{\,\omega})^{\ln R_s/\ln R_n} \propto \bar{a}_{\omega}^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

We mentioned there were a good number of 'laws': ^[2]

Relation: Name or description:

PoCS @pocsvox

Branching Networks II

		Inaga
$T_k = T_1(R_T)^{k-1}$	Tokunaga's law	Jcing Horton
$\ell \sim L^d$	self-affinity of single channels	ng relations
$n_{\omega}/n_{\omega+1}=R_n$	Horton's law of stream numbers	clc
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega}=R_{\ell}$	Horton's law of main stream lengths	hell
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	Horton's law of basin areas	rences
$\bar{s}_{\omega+1}/\bar{s}_{\omega}=R_s$	Horton's law of stream segment lengths	
$L_{\perp} \sim L^H$	scaling of basin widths	$\chi > \zeta$
$P(a) \sim a^{-\tau}$	probability of basin areas	SEE
$P(\ell) \sim \ell^{-\gamma}$	probability of stream lengths	XX
$\ell \sim a^h$	Hack's law	SZ -
$a \sim L^D$	scaling of basin areas	\sim
$\Lambda \sim a^\beta$	Langbein's law	
$\lambda \sim L^{\varphi}$	variation of Langbein's law	000

Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

relation:	scaling relation/parameter: ^[2]
$\ell \sim L^d$	d
$T_k = T_1 (R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = \frac{R_s}{R_s}$
$n_{\omega}/n_{\omega+1}=R_n$	R_n
$\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a$	$R_a = R_n$
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega}=R_{\ell}$	$R_{\ell} = \frac{R_s}{R_s}$
$\ell \sim a^h$	$h = \ln R_s / \ln R_n$
$a \sim L^D$	D = d/h
$L_{\perp} \sim L^H$	H = d/h - 1
$P(a) \sim a^{-\tau}$	$\tau=2-h$
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^\beta$	$\beta = 1 + h$
$\lambda \sim L^{\varphi}$	$\varphi = d$

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

うへで 46 of 86

Scheidegger's model

Directed random networks^[11, 12]

3

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

 $P(\searrow) = P(\swarrow) = 1/2$

Functional form of all scaling laws exhibited but exponents differ from real world ^[15, 16, 14]
 Useful and interesting test case

A toy model—Scheidegger's model

Random walk basins:

Boundaries of basins are random walks

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

20 A 48 of 86

UVN OS

Scheidegger's model

PoCS @pocsvox

Branching Networks II

Scheidegger's model

3

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} \; n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$.

 \clubsuit Typical area for a walk of length n is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}$.

Find
$$\tau = 4/3$$
, $h = 2/3$, $\gamma = 3/2$, $d = 1$.
Note $\tau = 2 - h$ and $\gamma = 1/h$.
 R_n and R_ℓ have not been derived analytically.

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

UVN OS

Equipartitioning reexamined: Recall this story:

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

ି ତା

2 0 0 51 of 86

Equipartitioning

🚳 What about

$$P(a) \sim a^{-\tau}$$

Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

P(a) overcounts basins within basins ...
 while stream ordering separates basins ...

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 52 of 86

Fluctuations

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$

- Natural generalization to consider relationships between probability distributions
- Yields rich and full description of branching network structure
- 🗞 See into the heart of randomness ...

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

2 9 P 53 of 86

A toy model—Scheidegger's model

Directed random networks^[11, 12]

2

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

$$\begin{split} & \widehat{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega}) \\ & \bigotimes \ \bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega}) \end{split}$$

PoCS @pocsvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

References

Scaling collapse works well for intermediate orders

ll moments grow exponentially with order

20 0 55 of 86

PoCS @pocsvox

Branching Networks II

Horton 👄

Tokunaga

How well does overall basin fit internal pattern?

Actual length = 4920km (at 1 km res) 🚳 Predicted Mean length = 11100 km🔗 Predicted Std dev = 5600 km Actual length/Mean length = 44%Okay.

Reducing Horton Scaling relations

Fluctuations Models

Nutshell

References

n a c 56 of 86

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10^3 km):

basin:	ℓ_{Ω}	$\bar{\ell}_{\Omega}$	σ_ℓ	$\ell_\Omega/\bar\ell_\Omega$	$\sigma_\ell/\bar\ell_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	the second s	A REAL AND A			
	a_{Ω}	\bar{a}_{Ω}	σ_a	$a_{\Omega}/\bar{a}_{\Omega}$	σ_a/\bar{a}_Ω
Mississippi	a _Ω 2.74	$ar{a}_{\Omega}$ 7.55	σ _a 5.58	$a_\Omega/ar{a}_\Omega$ 0.36	$\sigma_a/ar{a}_\Omega$ 0.74
Mississippi Amazon	a _Ω 2.74 5.40	$ar{a}_{\Omega}$ 7.55 9.07	σ _a 5.58 8.04	$a_{\Omega}/ar{a}_{\Omega}$ 0.36 0.60	$\sigma_a/ar{a}_\Omega$ 0.74 0.89
Mississippi Amazon Nile	a _Ω 2.74 5.40 3.08	$ar{a}_{\Omega}$ 7.55 9.07 0.96	σ _a 5.58 8.04 0.79	$a_{\Omega}/\bar{a}_{\Omega}$ 0.36 0.60 3.19	$\sigma_a/ar{a}_\Omega$ 0.74 0.89 0.82
Mississippi Amazon Nile Congo	a_{Ω} 2.74 5.40 3.08 3.70	$ar{a}_{\Omega}$ 7.55 9.07 0.96 10.09	σ _a 5.58 8.04 0.79 8.28	$a_{\Omega}/\bar{a}_{\Omega}$ 0.36 0.60 3.19 0.37	σ_a/\bar{a}_Ω 0.74 0.89 0.82 0.82

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Combining stream segments distributions:

PoCS @pocsvox

Branching Networks II

Horton 👄

Stream segments sum to give main stream lengths

9

Tokunaga Reducing Horton Scaling relations Fluctuations

Models

Nutshell

References

Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \dots * N(s|\omega)$$

$$N(s|\omega) = \frac{1}{R_n^{\omega} R_{\ell}^{\omega}} F\left(s/R_{\ell}^{\omega}\right)$$

$$F(x) = e^{-x/\xi}$$

Mississippi: $\xi \simeq 900$ m.

PoCS @pocsvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Next level up: Main stream length distributions must combine to give overall distribution for stream length

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Another round of convolutions^[3]
 Interesting ...

 $\Re P(\ell) \sim \ell^{-\gamma}$

200 60 of 86

Number and area distributions for the Scheidegger model ^[3]
 P(n_{1.6}) versus

 $P(a_6)$ for a randomly selected $\omega = 6$ basin.

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

Nutshell

References

990 61 of 86

Scheidegger:

PoCS @pocsvox

Branching Networks II

Horton 👄 Tokunaga **Reducing Horton** Scaling relations Fluctuations

Models

Nutshell

References

000 20 0 62 of 86

UVN

Observe exponential distributions for $T_{\mu,\nu}$ 1 \mathbb{R} Scaling collapse works using R_{s}

Mississippi:

🚳 Same data collapse for Mississippi ...

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

20 0 63 of 86

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}$$

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

Solution Exponentials arise from randomness. Solution Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$. PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

20 0 64 of 86

Network architecture:

Inter-tributary lengths exponentially distributed

3

Leads to random spatial distribution of stream segments

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell References

μ

 $\mu - 2$

na (€5 of 86

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

2 9 0 66 of 86

Follow streams segments down stream from their beginning

Probability (or rate) of an order μ stream segment terminating is constant:

$$\tilde{p}_{\mu}\simeq 1/(R_s)^{\mu-1}\xi_s$$

Probability decays exponentially with stream order

Inter-tributary lengths exponentially distributed

 $\mathfrak{S} \Rightarrow$ random spatial distribution of stream segments

loint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu} - 1}$$

where

- p_{ν} = probability of absorbing an order ν side stream
- \tilde{p}_{μ} = probability of an order μ stream terminating

Approximation: depends on distance units of s_{μ}

\lambda In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

PoCS @pocsvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Now deal with this thing:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu}}$$

Set $(x,y) = (s_{\mu},T_{\mu,\nu})$ and $q = 1 - p_{\nu} - \tilde{p}_{\mu}$, approximate liberally. 🚳 Obtain

$$P(x,y) = N x^{-1/2} \left[F(y/x)\right]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}$$

PoCS @pocsvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

-1

Nutshell

References

So Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger: (a) (b) 0.8 $\left[F(v)\right]^{l^{(s)}}_{\mu}$ 0.5 0.6 $P(v \,|\, l_{\mu}^{(s)})$ C 0.4 -0.5 0.2 04 0.2 -1.5 0.4 0.6 0.8 0.05 0.15 0.1 $\mathbf{v} = \mathbf{T}_{\mu,\nu} / l_{\mu}^{(s)}$ $v = T_{\mu,\nu} / l_{\mu}^{(s)}$

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References

20 0 69 of 86

 \bigotimes Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger: 1.5 (a) (b) $\log_{10} P(T_{\mu\nu}{\,\,/\,\,}_{\mu}^{(s)})$ 0.5 $\log_{10} P(l_{\mu}^{(s)})$ c -2.5 -0.5 00 coc 0000 to -3.5 0 000 000 0000 000000 2000 -1.5 -40 0.1 0.2 0.3 10 20 30 40 50 1^(s) /1^(s) u.v u.v

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

200 70 of 86

Scheidegger: Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

్ 8

Solution Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Mississippi: 0.8 (a) 000 (b) $\log_{10}(R_{l^{(s)}})^{-v} P(T_{\mu,v}/l_{\mu}^{(s)})$ $\log_{10} \frac{P(T_{\mu,v} / l_{\mu}^{(s)})}{c}$ 0.4 00 000 0 0 00 D 0 ∇ 0V 0 00 0 00 0 ∇ ∇ -0.4 000 0000 0 0 0 $\nabla \nabla \Diamond \Diamond$ m -0.8 0 0.15 0.3 0.45 0.6 -0.25 0.25 0.5 0 $l_{\mu}^{(s)}$ $[T_{\mu,\nu} / l_{\mu}^{(s)}]$ $-\rho_{v}](R_{I}(s))^{v}$ Т µ,v

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

う へ へ 72 of 86

Models

Random subnetworks on a Bethe lattice [13]

- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics^[7]
 - But Bethe lattices unconnected with surfaces.
- In fact, Bethe lattices ≃ infinite dimensional spaces (oops).
- 🚳 So let's move on ...

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell Pafarances

DQ @ 74 of 86

Scheidegger's model

2

Directed random networks^[11, 12]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Functional form of all scaling laws exhibited but exponents differ from real world ^[15, 16, 14]

う a c 75 of 86

UVN SO

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al.^[10]

Solution Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^\gamma$$

Landscapes obtained numerically give exponents near that of real networks.

🚳 But: numerical method used matters.

And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8] PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations

Models Nutshell

References

Theoretical networks

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5-0.7	1.0-1.2

 $h \Rightarrow \ell \propto a^h$ (Hack's law). $d \Rightarrow \ell \propto L^d_{\parallel}$ (stream self-affinity). PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

200 77 of 86

UVN OS

Nutshell

Branching networks II Key Points:

- 🙈 Horton's laws and Tokunaga's law all fit together.
- For 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- So Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- So For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet ...?

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

÷.

References I

 H. de Vries, T. Becker, and B. Eckhardt.
 Power law distribution of discharge in ideal networks.
 Water Resources Research, 30(12):3541–3543, 1994. pdf

P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf C

[3] P. S. Dodds and D. H. Rothman. Geometry of river networks. II. Distributions of component size and number. Physical Review E, 63(1):016116, 2001. pdf PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

2 0 0 79 of 86

UVN SO

References II

- P. S. Dodds and D. H. Rothman.
 Geometry of river networks. III. Characterization of component connectivity.
 Physical Review E, 63(1):016117, 2001. pdf
- [5] N. Goldenfeld.
 Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics.
 Addison-Wesley, Reading, Massachusetts, 1992.

[6] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957. pdf

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

References III

[7] J. W. Kirchner.

Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591–594, 1993. pdf

 [8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar.
 Universality classes of optimal channel networks. Science, 272:984–986, 1996. pdf

 S. D. Peckham. New results for self-similar trees with applications to river networks. <u>Water Resources Research</u>, 31(4):1023–1029, 1995. PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

References IV

[10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997. [11] A. E. Scheidegger. A stochastic model for drainage patterns into an intramontane trench. Bull. Int. Assoc. Sci. Hydrol., 12(1):15-20, 1967. pdf

[12] A. E. Scheidegger. <u>Theoretical Geomorphology</u>. Springer-Verlag, New York, third edition, 1991.

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

References V

[13] R. L. Shreve. Infinite topologically random channel networks. Journal of Geology, 75:178–186, 1967. pdf 7

[14] H. Takayasu.

Steady-state distribution of generalized aggregation system with injection. Physcial Review Letters, 63(23):2563–2565, 1989. pdf

[15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection. Physical Review A, 37(8):3110–3117, 1988. PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References

References VI

[16] M. Takayasu and H. Takayasu. Apparent independency of an aggregation system with injection. Physical Review A, 39(8):4345–4347, 1989. pdf 7

[17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. <u>Water Resources Research</u>, 26(9):2243–4, 1990. pdf

[18] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966. pdf PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

References VII

[19] E. Tokunaga. Consideration on the composition of drainage networks and their evolution. Geographical Reports of Tokyo Metropolitan University, 13:G1-27, 1978. pdf [20] E. Tokunaga. Ordering of divide segments and law of divide segment numbers. Transactions of the Japanese Geomorphological Union, 5(2):71-77, 1984. [21] S. D. Willett, S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen. Dynamic reorganization of river basins. Science, 343(6175):1248765, 2014. pdf

PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

20 C 85 of 86

UVN SO

References VIII

[22] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949. PoCS @pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

(in 18