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Piracy on the high 𝜒’s:

Dynamic Reorganization of River 
Basins
Sean D. Willett,* Scott W. McCoy, J. Taylor Perron, Liran Goren, Chia-Yu Chen

Introduction: River networks, the backbone of most landscapes on Earth, collect and transport 
water, sediment, organic matter, and nutrients from upland mountain regions to the oceans. 
Dynamic aspects of these networks include channels that shift laterally or expand upstream, ridges 
that migrate across Earth’s surface, and river capture events whereby fl ow from one branch of the 
network is rerouted in a new direction. These processes result in a constantly changing map of the 
network with implications for mass transport and the geographic connectivity between species or 
ecosystems. Ultimately, this dynamic system strives to establish equilibrium between tectonic uplift 
and river erosion. Determining whether or not a river network is in equilibrium, and, if not, what 
changes are required to bring it to equilibrium, will help us understand the processes underlying 
landscape evolution and the implications for river ecosystems.

Methods: We developed the use of a proxy, referred to as χ, for steady-state river channel eleva-
tion. This proxy is based on the current geometry of the river network and provides a snapshot of 
the dynamic state of river basins. Geometric equilibrium in planform requires that a network map 
of χ exhibit equal values across all water divides (the ridges separating river basins). Disequilibrium 
river networks adjust their drainage area through divide migration (geometric change) or river 
capture (topologic change) until this condition is met. We constructed a numerical model to demon-
strate that this is a fundamental characteristic of a stable river network. We applied this principle to 
natural landscapes using digital elevation models to calculate χ for three, very different, systems: 
the Loess Plateau in China, the eastern Central Range of Taiwan, and the southeastern United States. 

Results: The Loess Plateau is close to geometric equilibrium, with χ exhibiting nearly equal values 
across water divides. By contrast, the young and tectonically active Taiwan mountain belt is not in 
equilibrium, with numerous examples of actively migrating water divides and river network reor-
ganization. The southeastern United States also appears to be far from equilibrium, with the Blue 
Ridge escarpment migrating to the northwest and the coastal plain rivers reorganizing in response 
to this change in boundary geom-
etry. Major reorganization events, 
such as the capture of the head-
waters of the Apalachicola River 
by the Savannah River, are readily 
identifi able in our maps.

Discussion: Disequilibrium con-
ditions in a river network imply 
greater variation of weathering, 
soil production, and erosion rates. 
Disequilibrium also implies more 
frequent river capture with impli-
cations for exchange of aquatic 
species and genetic diversifica-
tion. Transient conditions in river 
basins are often interpreted in 
terms of tectonic perturbation, but 
our results show that river basin 
reorganization can occur even in 
tectonically quiescent regions such 
as the southeastern United States.

FIGURES IN THE FULL ARTICLE

Fig. 1. River basins and river profi les in 

equilibrium and disequilibrium.

Fig. 2. Effect of drainage area change on χ.

Fig. 3. Numerical model of drainage divide 

migration.

Fig. 4. Map of χ for part of the Loess Plateau, 

China.

Fig. 5. Map and perspective views of χ for 

part of the eastern Central Range, Taiwan.

Fig. 6. Map of χ in river basins of the 

southeastern United States.

Fig. 7. The Savannah and Apalachicola river 

capture.

Fig. 8. Disequilibrium basins of the North 

Carolina coastal plain.

SUPPLEMENTARY MATERIALS

Figs. S1 to S15
Tables S1 and S2
Movie S1
Databases S1 to S9

Maps of χ for two river networks. (A) Part of the 
Loess Plateau, China. The values of χ are nearly equal 
across drainage divides at all scales, indicating that 
the river is in topologic and geometric equilibrium. 
Map is centered on 37°4' N 109°35' E. (B) Part of the 
coastal plain of North Carolina, southeastern United 
States. Large discontinuities in χ across divides indi-
cate that the network is not in geometric equilibrium. 
Water divides generally move in the direction of 
higher χ to achieve equilibrium, so subbasins with 
prominent high values of χ are inferred to be shrink-
ing and will eventually disappear. Map is centered on 
35°10' N 79°8' W.

READ THE FULL ARTICLE ONLINE

http://dx.doi.org/10.1126/science.1248765

Cite this article as S. D. Willett et al., 
Science 343, 1248765 (2014). 
DOI: 10.1126/science.1248765
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“Dynamic Reorganization of River
Basins”
Willett et al.,
Science, 343, 1248765, 2014. [21]

For the simple case of U and K constant in space
and time, the steady-state solution of Eq. 1 is

zðxÞ ¼ zb þ
U
KAm

0

! "1
n

c ð2Þ

where zb is the elevation at the river network’s
base level at x = xb. The quantity c is an integral
function of position in the channel network (29),

c ¼ ∫
x

xb

A0

Aðx′Þ

! "m
n

dx′ ð3Þ

where A0 is an arbitrary scaling area, and the
integration is performed upstream from base lev-
el to location x. c is the characteristic parameter
for transient solutions of the linear (n = 1) version
of Eq. 1 (30), and it remains the fundamental
scaling parameter for the nonlinear case. The in-
clusion of the scaling area, A0, gives c dimen-
sions of length, but the kinematic wave nature of
Eq. 1 implies that c could equally well represent
a time. In particular, if KnA0

m is included in the
denominator of the integrand, c takes on dimen-
sions of time and, for the case of n = 1, it becomes
the characteristic time required for a perturbation
at the river’s base level to reach a point x in the
channel (12).

The term in parentheses in Eq. 2 represents
the relative magnitudes of tectonic forcing and
erosivity, and scales the magnitude of elevation.
The parameter c characterizes the river network
topology and geometry, which determine how
tectonic forcing generates variable topography
throughout a river basin. Given the linear form of
Eq. 2, it is apparent that c serves as a metric for
the steady-state elevation of a channel at location
x. Thus, with constant tectonic forcing and homo-
geneous physical properties, a difference inc across
a divide implies disequilibrium and, presumably,
motion of the divide in the direction of larger c to
achieve equilibrium (Fig. 1). This observation is
the basis for our subsequent analysis: Mapping c
throughout a channel network and comparing c
values across drainage divides yield a snapshot of
the dynamic reshaping of drainage basins.

Elevation-c Scaling with Changing
Drainage Area
As a divide moves, either by continuous mi-
gration or through discrete river capture, drainage
area is removed from one basin and added to the
other. The channel length of each affected tribu-
tary also changes, leading to a change in the steady-
state elevation of each channel head bounding the
moving divide, presumably moving the channels
toward equilibrium as in Fig. 1. However, analy-
sis of a simplified scenario—the effect of a sud-
den change in drainage area on an equilibrium
elevation profile (see Materials and Methods)—
illustrates a feedback between erosion rate and
divide motion that complicates this system. An
instantaneous change in area induces an instan-
taneous change in c, throwing the affected profile
into a state of disequilibrium. Figure 2 shows the

change in the c plot (elevation against c) of the
perturbed channel for a given fractional increase
or decrease of the upstream area. Area gain shifts
the c plot to the left, above the steady-state trend,
and increases its length and thereby its maximum
c value, whereas area loss shifts the profile to the
right, below the steady-state trend, and decreases
its length and maximum c value. A channel that
lies above the steady-state trend on a c plot erodes
faster, on average, than the tectonic uplift rate (29),
so a channel gaining area experiences an increase
in average erosion rate, whereas a channel losing
area experiences a decrease in average erosion rate.
Branches of the channel network that connect to
the affected channels do not necessarily experi-
ence any change in channel length, but they do ex-
perience the indirect effect of the change in erosion
rate that propagates throughout the basin. This de-
fines an important positive feedback in the system:
A transfer of drainage area from one basin to an-
other leads to changes throughout the affected
drainage basins that encourage motion of the en-
tire perimeters of the basins in the same direction
as the original perturbation. The ultimate configu-
ration of drainage divides if andwhen a landscape

reaches equilibrium depends on the nonlinear
interactions of multiple adjacent drainage basins
and cannot easily be predicted. Here, we focus
only on the local direction of dividemotion toward
equilibrium, but we identify some situations in
which the positive feedback appears to dominate.

Spatial Variations in Uplift Rate, Runoff,
or Rock Erodibility
IfU or K varies in space, and these variations are
known, the solution for elevation can still be ob-
tained by integration of Eq. 1. In practice, how-
ever, U and K are seldom known. It is more
common to have information about relative val-
ues or spatial patterns. For example, uplift rate
may vary across a fault; precipitation and runoff,
which are included in K, may have a persistent
spatial pattern; or rock erodibility may vary with
rock type with a spatial distribution known from
geologic mapping. If we express the spatial pat-
tern of uplift and rock erodibility in terms of non-
dimensional functions of space, U* and K*, we
can bring this variability inside the definition of
c without changing its dimensionality. Defining
the uplift and erodibility as U = U0U

*(x) and

Distance
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Fig. 1. River basins and river profiles in equilibrium and disequilibrium. (A andB) Change in size
and shape of two drainage basins that share a common divide as they evolve from (A) a state of dis-
equilibrium to (B) a steady state. The parameter c (Eq. 3) provides a prediction of the steady-state
elevation for a given point on a channel. The basin on the left (aggressor) has lower steady-state elevation
at channel heads and therefore drives the drainage divide toward the basin on the right (victim). (C andD)
The lower panels show the evolution of the elevation of two channels that meet at the shared divide with
respect to (C) c and (D) distance along the channel. The slopes above the channel head attain a symmetric
form at steady state, but do not differ strongly from this form under disequilibrium conditions. The
disequilibrium channel profiles in (C) show that c is discontinuous across the drainage divide, with larger
c values in the “victim” basin. At steady state, all channel points in both basins lie on a single linear trend,
subject to the assumptions described in the text. Note that changes in elevation are subtle, whereas
changes in c are marked.

7 MARCH 2014 VOL 343 SCIENCE www.sciencemag.org1248765-2

RESEARCH ARTICLE

𝜕𝑧(𝑥, 𝑡)
𝜕𝑡 = 𝑈−𝐾𝐴𝑚 ∣𝜕𝑧(𝑥, 𝑡)𝜕𝑥 ∣

𝑛

𝑧(𝑥) = 𝑧b +( 𝑈
𝐾𝐴𝑚

0
)

1/𝑛
𝜒

𝜒 = ∫
𝑥

𝑥b

( 𝐴0
𝐴(𝑥′))

𝑚/𝑛
d𝑥 ′

https://pdodds.w3.uvm.edu//research/papers/others/everything/willett2014a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/willett2014a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/willett2014a.pdf
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Piracy on the high 𝜒’s:

https://www.youtube.com/watch?v=FnroL1_-l2c?rel=0

More: How river networks move across a landscape
(Science Daily)

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



https://www.youtube.com/watch?v=FnroL1_-l2c?rel=0
http://www.sciencedaily.com/releases/2014/03/140306142759.htm






PoCS
@pocsvox

Branching
Networks II

Horton⇔
Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

.
.
.
.
.

.
10 of 86

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:
 In terms of network achitecture, Horton’s laws

appear to contain less detailed information than
Tokunaga’s law.

 Oddly, Horton’s laws have four parameters and
Tokunaga has two parameters.

 𝑅𝑛, 𝑅𝑎, 𝑅ℓ, and 𝑅𝑠 versus 𝑇1 and 𝑅𝑇 . One simple
redundancy: 𝑅ℓ = 𝑅𝑠.
Insert question from assignment 15

 To make a connection, clearest approach is to
start with Tokunaga’s law …

 Known result: Tokunaga→ Horton [18, 19, 20, 9, 2]

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://pdodds.w3.uvm.edu/teaching/courses/2022-2023pocsverse/assignments/15/
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Let us make them happy

We need one more ingredient:

Space-fillingness
 A network is space-filling if the average distance

between adjacent streams is roughly constant.
 Reasonable for river and cardiovascular networks
 For river networks:

Drainage density 𝜌dd = inverse of typical distance
between channels in a landscape.

 In terms of basin characteristics:

𝜌dd ≃ ∑ stream segment lengths
basin area

= ∑Ω
𝜔=1 𝑛𝜔 ̄𝑠𝜔

𝑎Ω

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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More with the happy-making thing

Start with Tokunaga’s law: 𝑇𝑘 = 𝑇1𝑅𝑘−1
𝑇

 Start looking for Horton’s stream number law:
𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛.

 Estimate 𝑛𝜔, the number of streams of order 𝜔 in
terms of other 𝑛𝜔′ , 𝜔′ > 𝜔.

 Observe that each stream of order 𝜔 terminates
by either:

ω=3

ω=4

ω=3

ω=3

ω=4

ω=4

1. Running into another stream of order 𝜔
and generating a stream of order 𝜔+ 1
…

▶ 2𝑛𝜔+1 streams of order 𝜔 do this

2. Running into and being absorbed by a
stream of higher order 𝜔′ > 𝜔 …

▶ 𝑛𝜔′𝑇𝜔′−𝜔 streams of order 𝜔 do this

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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More with the happy-making thing

Putting things together:


𝑛𝜔 = 2𝑛𝜔+1⏟
generation

+
Ω
∑

𝜔′=𝜔+1
𝑇𝜔′−𝜔𝑛𝜔′⏟⏟⏟⏟⏟
absorption

 Use Tokunaga’s law and manipulate expression to
find Horton’s law for stream numbers follows and
hence obtain 𝑅𝑛.

 Insert question from assignment 16
 Solution:

𝑅𝑛 = (2 + 𝑅𝑇 + 𝑇1) ±√(2 + 𝑅𝑇 + 𝑇1)2 − 8𝑅𝑇
2

(The larger value is the one we want.)

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://pdodds.w3.uvm.edu/teaching/courses/2022-2023pocsverse/assignments/16/
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Finding other Horton ratios

Connect Tokunaga to 𝑅𝑠
 Now use uniform drainage density 𝜌dd.
 Assume side streams are roughly separated by

distance 1/𝜌dd.
 For an order 𝜔 stream segment, expected length is

̄𝑠𝜔 ≃ 𝜌−1
dd (1 +

𝜔−1
∑
𝑘=1

𝑇𝑘)

 Substitute in Tokunaga’s law 𝑇𝑘 = 𝑇1𝑅𝑘−1
𝑇 :

̄𝑠𝜔 ≃ 𝜌−1
dd (1 + 𝑇1

𝜔−1
∑
𝑘=1

𝑅 𝑘−1
𝑇 ) ∝ 𝑅 𝜔

𝑇

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Horton and Tokunaga are happy

Altogether then:


⇒ ̄𝑠𝜔/ ̄𝑠𝜔−1 = 𝑅𝑇 ⇒ 𝑅𝑠 = 𝑅𝑇

 Recall 𝑅ℓ = 𝑅𝑠 so

𝑅ℓ = 𝑅𝑠 = 𝑅𝑇

 And from before:

𝑅𝑛 = (2 + 𝑅𝑇 + 𝑇1) +√(2 + 𝑅𝑇 + 𝑇1)2 − 8𝑅𝑇
2

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Horton and Tokunaga are happy

Some observations:
 𝑅𝑛 and 𝑅ℓ depend on 𝑇1 and 𝑅𝑇 .
 Seems that 𝑅𝑎 must as well …
 Suggests Horton’s laws must contain some

redundancy
 We’ll in fact see that 𝑅𝑎 = 𝑅𝑛.
 Also: Both Tokunaga’s law and Horton’s laws can

be generalized to relationships between
non-trivial statistical distributions. [3, 4]

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Horton and Tokunaga are happy

The other way round
 Note: We can invert the expresssions for 𝑅𝑛 and

𝑅ℓ to find Tokunaga’s parameters in terms of
Horton’s parameters.


𝑅𝑇 = 𝑅ℓ,


𝑇1 = 𝑅𝑛 −𝑅ℓ − 2 + 2𝑅ℓ/𝑅𝑛.

 Suggests we should be able to argue that Horton’s
laws imply Tokunaga’s laws (if drainage density is
uniform) …

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Horton and Tokunaga are friends

From Horton to Tokunaga [2]

(c)

(×R
s
)

(a)

(b)

 Assume Horton’s laws
hold for number and
length

 Start with picture
showing an order 𝜔
stream and order 𝜔 − 1
generating and side
streams.

 Scale up by a factor of
𝑅ℓ, orders increment
to 𝜔 + 1 and 𝜔.

 Maintain drainage
density by adding new
order 𝜔 − 1 streams

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Horton and Tokunaga are friends

…and in detail:
 Must retain same drainage density.
 Add an extra (𝑅ℓ − 1) first order streams for each

original tributary.
 Since by definition, an order 𝜔 + 1 stream segment

has 𝑇𝜔 order 1 side streams, we have:

𝑇𝑘 = (𝑅ℓ − 1)(1 +
𝑘−1
∑
𝑖=1

𝑇𝑖).

 For large 𝜔, Tokunaga’s law is the solution—let’s
check …

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Horton and Tokunaga are friends

Just checking:
 Substitute Tokunaga’s law 𝑇𝑖 = 𝑇1𝑅 𝑖−1

𝑇 = 𝑇1𝑅 𝑖−1
ℓ

into

𝑇𝑘 = (𝑅ℓ − 1)(1 +
𝑘−1
∑
𝑖=1

𝑇𝑖)



𝑇𝑘 = (𝑅ℓ − 1)(1 +
𝑘−1
∑
𝑖=1

𝑇1𝑅 𝑖−1
ℓ )

= (𝑅ℓ − 1)(1 + 𝑇1
𝑅 𝑘−1

ℓ − 1
𝑅ℓ − 1 )

≃ (𝑅ℓ − 1)𝑇1
𝑅 𝑘−1

ℓ
𝑅ℓ − 1 = 𝑇1𝑅𝑘−1

ℓ …yep.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Horton’s laws of area and number:

1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

ω

(a)

The Mississippi

[s
ou

rc
e=

/d
at

a6
/d

od
ds

/w
or

k/
riv

er
s/

de
m

s/
m

is
si

ss
ip

pi
/fi

gu
re

s/
fig

na
lo

m
eg

a_
m

is
pi

10
.p

s]

[1
5−

S
ep

−
20

00
 p

et
er

 d
od

ds
]

1 2 3 4 5 6 7 8 9 10 11
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

stream order ω

The Nile

nω        

aω (sq km)

 lω  (km) 

[s
ou

rc
e=

/d
at

a1
1/

do
dd

s/
w

or
k/

riv
er

s/
de

m
s/

H
Y

D
R

O
1K

/a
fr

ic
a/

ni
le

/fi
gu

re
s/

fig
na

lo
m

eg
a_

ni
le

.p
s]

[1
0−

D
ec

−
19

99
 p

et
er

 d
od

ds
]

1 2 3 4 5 6 7 8 9 10 11
100

101

102

103

104

105

106

107

stream order ω

The Amazon
n
ω

        
a
ω

 (sq km)
 l
ω

  (km) 

[s
ou

rc
e=

/d
at

a6
/d

od
ds

/w
or

k/
riv

er
s/d

em
s/a

m
az

on
/fi

gu
re

s/f
ig

na
lo

m
eg

a_
am

az
on

.p
s]

[1
6−

N
ov
−1

99
9 

pe
te

r d
od

ds
]

1 2 3 4 5 6 7 8 9 10 11
−7

−6

−5

−4

−3

−2

−1

0

ω

(b)

The Mississippi

Ω = 11

[s
ou

rc
e=

/d
at

a6
/d

od
ds

/w
or

k/
riv

er
s/

de
m

s/
m

is
si

ss
ip

pi
/fi

gu
re

s/
fig

nf
lip

ao
m

eg
a_

m
is

pi
10

.p
s]

[1
5−

S
ep

−
20

00
 p

et
er

 d
od

ds
]

1 2 3 4 5 6 7 8 9 10 11
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

stream order ω

The Nile

nΩ−ω+1
aω (sq km)   

Ω = 10

[s
ou

rc
e=

/d
at

a1
1/

do
dd

s/
w

or
k/

riv
er

s/
de

m
s/

H
Y

D
R

O
1K

/a
fr

ic
a/

ni
le

/fi
gu

re
s/

fig
nf

lip
ao

m
eg

a_
ni

le
.p

s]

[1
0−

D
ec

−
19

99
 p

et
er

 d
od

ds
]

1 2 3 4 5 6 7 8 9 10 11
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

stream order ω

The Amazon

nΩ−ω+1
aω (sq km)   

Ω = 11

[s
ou

rc
e=

/d
at

a6
/d

od
ds

/w
or

k/
riv

er
s/

de
m

s/
am

az
on

/fi
gu

re
s/

fig
nf

lip
ao

m
eg

a_
am

az
on

.p
s]

[1
6−

N
ov

−
19

99
 p

et
er

 d
od

ds
]

 In bottom plots, stream number graph has been
flipped vertically.

 Highly suggestive that 𝑅𝑛 ≡ 𝑅𝑎 …

https://pdodds.w3.uvm.edu
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Measuring Horton ratios is tricky:

 How robust are our estimates of ratios?
 Rule of thumb: discard data for two smallest and

two largest orders.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Mississippi:

𝜔 range 𝑅𝑛 𝑅𝑎 𝑅ℓ 𝑅𝑠 𝑅𝑎/𝑅𝑛
[2, 3] 5.27 5.26 2.48 2.30 1.00
[2, 5] 4.86 4.96 2.42 2.31 1.02
[2, 7] 4.77 4.88 2.40 2.31 1.02
[3, 4] 4.72 4.91 2.41 2.34 1.04
[3, 6] 4.70 4.83 2.40 2.35 1.03
[3, 8] 4.60 4.79 2.38 2.34 1.04
[4, 6] 4.69 4.81 2.40 2.36 1.02
[4, 8] 4.57 4.77 2.38 2.34 1.05
[5, 7] 4.68 4.83 2.36 2.29 1.03
[6, 7] 4.63 4.76 2.30 2.16 1.03
[7, 8] 4.16 4.67 2.41 2.56 1.12

mean 𝜇 4.69 4.85 2.40 2.33 1.04
std dev 𝜎 0.21 0.13 0.04 0.07 0.03

𝜎/𝜇 0.045 0.027 0.015 0.031 0.024

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Amazon:

𝜔 range 𝑅𝑛 𝑅𝑎 𝑅ℓ 𝑅𝑠 𝑅𝑎/𝑅𝑛
[2, 3] 4.78 4.71 2.47 2.08 0.99
[2, 5] 4.55 4.58 2.32 2.12 1.01
[2, 7] 4.42 4.53 2.24 2.10 1.02
[3, 5] 4.45 4.52 2.26 2.14 1.01
[3, 7] 4.35 4.49 2.20 2.10 1.03
[4, 6] 4.38 4.54 2.22 2.18 1.03
[5, 6] 4.38 4.62 2.22 2.21 1.06
[6, 7] 4.08 4.27 2.05 1.83 1.05

mean 𝜇 4.42 4.53 2.25 2.10 1.02
std dev 𝜎 0.17 0.10 0.10 0.09 0.02

𝜎/𝜇 0.038 0.023 0.045 0.042 0.019

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Reducing Horton’s laws:

Rough first effort to show 𝑅𝑛 ≡ 𝑅𝑎:
 𝑎Ω ∝ sum of all stream segment lengths in a order

Ω basin (assuming uniform drainage density)
 So:

𝑎Ω ≃
Ω
∑
𝜔=1

𝑛𝜔 ̄𝑠𝜔/𝜌dd

∝
Ω
∑
𝜔=1

𝑅 Ω−𝜔𝑛 ⋅
𝑛Ω
⏞1⏟⏟⏟⏟⏟

𝑛𝜔

̄𝑠1 ⋅ 𝑅 𝜔−1𝑠⏟⏟⏟⏟⏟
�̄�𝜔

= 𝑅 Ω
𝑛

𝑅𝑠
̄𝑠1

Ω
∑
𝜔=1

(𝑅𝑠
𝑅𝑛

)
𝜔

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Reducing Horton’s laws:

Continued …


𝑎Ω ∝ 𝑅Ω
𝑛

𝑅𝑠
̄𝑠1

Ω
∑
𝜔=1

(𝑅𝑠
𝑅𝑛

)
𝜔

= 𝑅Ω
𝑛

𝑅𝑠
̄𝑠1
𝑅𝑠
𝑅𝑛

1 − (𝑅𝑠/𝑅𝑛)Ω
1 − (𝑅𝑠/𝑅𝑛)

∼ 𝑅Ω−1
𝑛 ̄𝑠1

1
1 − (𝑅𝑠/𝑅𝑛)

as Ω ↗

 So, 𝑎Ω is growing like 𝑅 Ω
𝑛 and therefore:

𝑅𝑛 ≡ 𝑅𝑎

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Reducing Horton’s laws:

Not quite:
 …But this only a rough argument as Horton’s laws

do not imply a strict hierarchy
 Need to account for sidebranching.
 Insert question from assignment 16

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://pdodds.w3.uvm.edu/teaching/courses/2022-2023pocsverse/assignments/16/


PoCS
@pocsvox

Branching
Networks II

Horton⇔
Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

.
.
.
.
.

.
28 of 86

Equipartitioning:

Intriguing division of area:
 Observe: Combined area of basins of order 𝜔

independent of 𝜔.
 Not obvious: basins of low orders not necessarily

contained in basis on higher orders.
 Story:

𝑅𝑛 ≡ 𝑅𝑎 ⇒ 𝑛𝜔 ̄𝑎𝜔 = const

 Reason:
𝑛𝜔 ∝ (𝑅𝑛)−𝜔

̄𝑎𝜔 ∝ (𝑅𝑎)𝜔 ∝ 𝑛−1
𝜔

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Equipartitioning:
Some examples:
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Neural Reboot: Fwoompf

https://www.youtube.com/watch?v=5mUs70SqD4o?rel=0

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}


https://www.youtube.com/watch?v=5mUs70SqD4o?rel=0
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Scaling laws

The story so far:
 Natural branching networks are hierarchical,

self-similar structures
 Hierarchy is mixed
 Tokunaga’s law describes detailed architecture:

𝑇𝑘 = 𝑇1𝑅𝑘−1
𝑇 .

 We have connected Tokunaga’s and Horton’s laws
 Only two Horton laws are independent (𝑅𝑛 = 𝑅𝑎)
 Only two parameters are independent:

(𝑇1, 𝑅𝑇 ) ⇔ (𝑅𝑛, 𝑅𝑠)

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Scaling laws

A little further …
 Ignore stream ordering for the moment
 Pick a random location on a branching network 𝑝.
 Each point 𝑝 is associated with a basin and a

longest stream length
 Q: What is probability that the 𝑝’s drainage basin

has area 𝑎? 𝑃(𝑎) ∝ 𝑎−𝜏 for large 𝑎
 Q: What is probability that the longest stream

from 𝑝 has length ℓ? 𝑃(ℓ) ∝ ℓ−𝛾 for large ℓ
 Roughly observed: 1.3 ≲ 𝜏 ≲ 1.5 and 1.7 ≲ 𝛾 ≲ 2.0

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Scaling laws

Probability distributions with power-law decays
 We see them everywhere:

 Earthquake magnitudes (Gutenberg-Richter law)
 City sizes (Zipf’s law)
 Word frequency (Zipf’s law) [22]
 Wealth (maybe not—at least heavy tailed)
 Statistical mechanics (phase transitions) [5]

 A big part of the story of complex systems
 Arise from mechanisms: growth, randomness,

optimization, …
 Our task is always to illuminate the mechanism …

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Scaling laws

Connecting exponents
 We have the detailed picture of branching

networks (Tokunaga and Horton)
 Plan: Derive 𝑃(𝑎) ∝ 𝑎−𝜏 and 𝑃(ℓ) ∝ ℓ−𝛾 starting

with Tokunaga/Horton story [17, 1, 2]

 Let’s work on 𝑃(ℓ) …
 Our first fudge: assume Horton’s laws hold

throughout a basin of order Ω.
 (We know they deviate from strict laws for low 𝜔

and high 𝜔 but not too much.)
 Next: place stick between teeth. Bite stick.

Proceed.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Scaling laws

Finding 𝛾:
 Often useful to work with cumulative

distributions, especially when dealing with
power-law distributions.

 The complementary cumulative distribution turns
out to be most useful:

𝑃>(ℓ∗) = 𝑃(ℓ > ℓ∗) = ∫
ℓmax

ℓ=ℓ∗

𝑃(ℓ)dℓ


𝑃>(ℓ∗) = 1 − 𝑃(ℓ < ℓ∗)

 Also known as the exceedance probability.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Scaling laws
Finding 𝛾:
 The connection between 𝑃(𝑥) and 𝑃>(𝑥) when

𝑃(𝑥) has a power law tail is simple:
 Given 𝑃(ℓ) ∼ ℓ−𝛾 large ℓ then for large enough ℓ∗

𝑃>(ℓ∗) = ∫
ℓmax

ℓ=ℓ∗

𝑃(ℓ)dℓ

∼ ∫
ℓmax

ℓ=ℓ∗

ℓ−𝛾dℓ

= ℓ−(𝛾−1)

−(𝛾 − 1)∣
ℓmax

ℓ=ℓ∗

∝ ℓ−(𝛾−1)
∗ for ℓmax ≫ ℓ∗

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Scaling laws

Finding 𝛾:
 Aim: determine probability of randomly choosing

a point on a network with main stream length > ℓ∗
 Assume some spatial sampling resolution Δ
 Landscape is broken up into grid of Δ×Δ sites
 Approximate 𝑃>(ℓ∗) as

𝑃>(ℓ∗) =
𝑁>(ℓ∗;Δ)
𝑁>(0;Δ) .

where 𝑁>(ℓ∗;Δ) is the number of sites with main
stream length > ℓ∗.

 Use Horton’s law of stream segments:
̄𝑠𝜔/ ̄𝑠𝜔−1 = 𝑅𝑠 …

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Scaling laws

Finding 𝛾:
 Set ℓ∗ = ̄ℓ𝜔 for some 1 ≪ 𝜔 ≪ Ω.


𝑃>( ̄ℓ𝜔) =
𝑁>( ̄ℓ𝜔;Δ)
𝑁>(0;Δ) ≃

∑Ω
𝜔′=𝜔+1 𝑛𝜔′ ̄𝑠𝜔′/��Δ

∑Ω
𝜔′=1 𝑛𝜔′ ̄𝑠𝜔′/��Δ

 Δ’s cancel
 Denominator is 𝑎Ω𝜌dd, a constant.
 So …using Horton’s laws …

𝑃>( ̄ℓ𝜔) ∝
Ω
∑

𝜔′=𝜔+1
𝑛𝜔′ ̄𝑠𝜔′ ≃

Ω
∑

𝜔′=𝜔+1
(1⋅𝑅Ω−𝜔′

𝑛 )( ̄𝑠1⋅𝑅𝜔′−1
𝑠 )

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Scaling laws

Finding 𝛾:
 We are here:

𝑃>( ̄ℓ𝜔) ∝
Ω
∑

𝜔′=𝜔+1
(1 ⋅ 𝑅Ω−𝜔′

𝑛 )( ̄𝑠1 ⋅ 𝑅𝜔′−1
𝑠 )

 Cleaning up irrelevant constants:

𝑃>( ̄ℓ𝜔) ∝
Ω
∑

𝜔′=𝜔+1
(𝑅𝑠
𝑅𝑛

)
𝜔′

 Change summation order by substituting
𝜔″ = Ω− 𝜔′.

 Sum is now from 𝜔″ = 0 to 𝜔″ = Ω− 𝜔 − 1
(equivalent to 𝜔′ = Ω down to 𝜔′ = 𝜔 + 1)

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Scaling laws

Finding 𝛾:


𝑃>( ̄ℓ𝜔) ∝
Ω−𝜔−1
∑
𝜔″=0

(𝑅𝑠
𝑅𝑛

)
Ω−𝜔″

∝
Ω−𝜔−1
∑
𝜔″=0

(𝑅𝑛
𝑅𝑠

)
𝜔″

 Since 𝑅𝑛 > 𝑅𝑠 and 1 ≪ 𝜔 ≪ Ω,

𝑃>( ̄ℓ𝜔) ∝ (𝑅𝑛
𝑅𝑠

)
Ω−𝜔

∝ (𝑅𝑛
𝑅𝑠

)
−𝜔

again using∑𝑛−1
𝑖=0 𝑎𝑖 = (𝑎𝑛 − 1)/(𝑎 − 1)

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Scaling laws

Finding 𝛾:
 Nearly there:

𝑃>( ̄ℓ𝜔) ∝ (𝑅𝑛
𝑅𝑠

)
−𝜔

= 𝑒−𝜔ln(𝑅𝑛/𝑅𝑠)

 Need to express right hand side in terms of ̄ℓ𝜔.
 Recall that ̄ℓ𝜔 ≃ ̄ℓ1𝑅𝜔−1

ℓ .


̄ℓ𝜔 ∝ 𝑅𝜔
ℓ = 𝑅𝜔

𝑠 = 𝑒𝜔ln𝑅𝑠

https://pdodds.w3.uvm.edu
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Scaling laws
Finding 𝛾:
 Therefore:

𝑃>( ̄ℓ𝜔) ∝ 𝑒−𝜔ln(𝑅𝑛/𝑅𝑠) = (𝑒𝜔ln𝑅𝑠)−ln(𝑅𝑛/𝑅𝑠)/ln(𝑅𝑠)


∝ ̄ℓ𝜔−ln(𝑅𝑛/𝑅𝑠)/ln𝑅𝑠


= ̄ℓ−(ln𝑅𝑛−ln𝑅𝑠)/ln𝑅𝑠𝜔


= ̄ℓ−ln𝑅𝑛/ln𝑅𝑠+1

𝜔


= ̄ℓ−𝛾+1

𝜔

https://pdodds.w3.uvm.edu
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Scaling laws

Finding 𝛾:
 And so we have:

𝛾 = ln𝑅𝑛/ln𝑅𝑠

 Proceeding in a similar fashion, we can show

𝜏 = 2 − ln𝑅𝑠/ln𝑅𝑛 = 2 − 1/𝛾

Insert question from assignment 16
 Such connections between exponents are called

scaling relations
 Let’s connect to one last relationship: Hack’s law

https://pdodds.w3.uvm.edu
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Scaling laws

Hack’s law: [6]



ℓ ∝ 𝑎ℎ

 Typically observed that 0.5 ≲ ℎ ≲ 0.7.
 Use Horton laws to connect ℎ to Horton ratios:

̄ℓ𝜔 ∝ 𝑅𝜔
𝑠 and ̄𝑎𝜔 ∝ 𝑅𝜔

𝑛

 Observe:

̄ℓ𝜔 ∝ 𝑒𝜔ln𝑅𝑠 ∝ (𝑒𝜔ln𝑅𝑛)ln𝑅𝑠/ln𝑅𝑛

∝ (𝑅𝜔
𝑛 )ln𝑅𝑠/ln𝑅𝑛 ∝ ̄𝑎 ln𝑅𝑠/ln𝑅𝑛𝜔 ⇒ ℎ = ln𝑅𝑠/ln𝑅𝑛

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/


PoCS
@pocsvox

Branching
Networks II

Horton⇔
Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

.
.
.
.
.

.
45 of 86

We mentioned there were a good number
of ‘laws’: [2]

Relation: Name or description:

𝑇𝑘 = 𝑇1(𝑅𝑇 )𝑘−1 Tokunaga’s law
ℓ ∼ 𝐿𝑑 self-affinity of single channels

𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛 Horton’s law of stream numbers
̄ℓ𝜔+1/ ̄ℓ𝜔 = 𝑅ℓ Horton’s law of main stream lengths
̄𝑎𝜔+1/ ̄𝑎𝜔 = 𝑅𝑎 Horton’s law of basin areas
̄𝑠𝜔+1/ ̄𝑠𝜔 = 𝑅𝑠 Horton’s law of stream segment lengths

𝐿⟂ ∼ 𝐿𝐻 scaling of basin widths
𝑃(𝑎) ∼ 𝑎−𝜏 probability of basin areas
𝑃(ℓ) ∼ ℓ−𝛾 probability of stream lengths

ℓ ∼ 𝑎ℎ Hack’s law
𝑎 ∼ 𝐿𝐷 scaling of basin areas
Λ ∼ 𝑎𝛽 Langbein’s law
𝜆 ∼ 𝐿𝜑 variation of Langbein’s law

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Connecting exponents

Only 3 parameters are independent:
e.g., take 𝑑, 𝑅𝑛, and 𝑅𝑠

relation: scaling relation/parameter: [2]
ℓ ∼ 𝐿𝑑 𝑑

𝑇𝑘 = 𝑇1(𝑅𝑇 )𝑘−1 𝑇1 = 𝑅𝑛 −𝑅𝑠 − 2 + 2𝑅𝑠/𝑅𝑛
𝑅𝑇 = 𝑅𝑠

𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛 𝑅𝑛
̄𝑎𝜔+1/ ̄𝑎𝜔 = 𝑅𝑎 𝑅𝑎 = 𝑅𝑛̄ℓ𝜔+1/ ̄ℓ𝜔 = 𝑅ℓ 𝑅ℓ = 𝑅𝑠

ℓ ∼ 𝑎ℎ ℎ = ln𝑅𝑠/ln𝑅𝑛
𝑎 ∼ 𝐿𝐷 𝐷 = 𝑑/ℎ
𝐿⟂ ∼ 𝐿𝐻 𝐻 = 𝑑/ℎ − 1
𝑃(𝑎) ∼ 𝑎−𝜏 𝜏 = 2 − ℎ
𝑃(ℓ) ∼ ℓ−𝛾 𝛾 = 1/ℎ
Λ ∼ 𝑎𝛽 𝛽 = 1 + ℎ
𝜆 ∼ 𝐿𝜑 𝜑 = 𝑑

https://pdodds.w3.uvm.edu
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Scheidegger’s model

Directed random networks [11, 12]


𝑃(↘) = 𝑃(↙) = 1/2

 Functional form of all scaling laws exhibited but
exponents differ from real world [15, 16, 14]

 Useful and interesting test case

https://pdodds.w3.uvm.edu
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A toy model—Scheidegger’s model

Random walk basins:
 Boundaries of basins are random walks

n

x

  area a

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Scheidegger’s model

n

2

6 6

8 8 8 8

9 9Increasing partition of N=64

x

https://pdodds.w3.uvm.edu
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Scheidegger’s model

Prob for first return of a random walk in (1+1)
dimensions (from CSYS/MATH 300):


𝑃(𝑛) ∼ 1
2√𝜋 𝑛−3/2.

and so 𝑃(ℓ) ∝ ℓ−3/2.
 Typical area for a walk of length 𝑛 is ∝ 𝑛3/2:

ℓ ∝ 𝑎2/3.

 Find 𝜏 = 4/3, ℎ = 2/3, 𝛾 = 3/2, 𝑑 = 1.
 Note 𝜏 = 2 − ℎ and 𝛾 = 1/ℎ.
 𝑅𝑛 and 𝑅ℓ have not been derived analytically.

https://pdodds.w3.uvm.edu
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Equipartitioning reexamined:
Recall this story:
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Equipartitioning

 What about
𝑃(𝑎) ∼ 𝑎−𝜏 ?

 Since 𝜏 > 1, suggests no equipartitioning:

𝑎𝑃(𝑎) ∼ 𝑎−𝜏+1 ≠ const

 𝑃(𝑎) overcounts basins within basins …
 while stream ordering separates basins …

https://pdodds.w3.uvm.edu
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Fluctuations

Moving beyond the mean:
 Both Horton’s laws and Tokunaga’s law relate

average properties, e.g.,

̄𝑠𝜔/ ̄𝑠𝜔−1 = 𝑅𝑠

 Natural generalization to consider relationships
between probability distributions

 Yields rich and full description of branching
network structure

 See into the heart of randomness …
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A toy model—Scheidegger’s model

Directed random networks [11, 12]


𝑃(↘) = 𝑃(↙) = 1/2

 Flow is directed downwards

https://pdodds.w3.uvm.edu
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Generalizing Horton’s laws

 ̄ℓ𝜔 ∝ (𝑅ℓ)𝜔 ⇒ 𝑁(ℓ|𝜔) = (𝑅𝑛𝑅ℓ)−𝜔𝐹ℓ(ℓ/𝑅𝜔
ℓ )

 ̄𝑎𝜔 ∝ (𝑅𝑎)𝜔 ⇒ 𝑁(𝑎|𝜔) = (𝑅2
𝑛)−𝜔𝐹𝑎(𝑎/𝑅𝜔

𝑛)
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 Scaling collapse works well for intermediate
orders

 All moments grow exponentially with order
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Generalizing Horton’s laws

 How well does overall basin fit internal pattern?
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 Actual length = 4920
km (at 1 km res)

 Predicted Mean length
= 11100 km

 Predicted Std dev =
5600 km

 Actual length/Mean
length = 44 %

 Okay.
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Generalizing Horton’s laws
Comparison of predicted versus measured main
stream lengths for large scale river networks (in 103
km):

basin: ℓΩ ̄ℓΩ 𝜎ℓ ℓΩ/ ̄ℓΩ 𝜎ℓ/ ̄ℓΩ
Mississippi 4.92 11.10 5.60 0.44 0.51
Amazon 5.75 9.18 6.85 0.63 0.75
Nile 6.49 2.66 2.20 2.44 0.83
Congo 5.07 10.13 5.75 0.50 0.57
Kansas 1.07 2.37 1.74 0.45 0.73

𝑎Ω ̄𝑎Ω 𝜎𝑎 𝑎Ω/ ̄𝑎Ω 𝜎𝑎/ ̄𝑎Ω
Mississippi 2.74 7.55 5.58 0.36 0.74
Amazon 5.40 9.07 8.04 0.60 0.89
Nile 3.08 0.96 0.79 3.19 0.82
Congo 3.70 10.09 8.28 0.37 0.82
Kansas 0.14 0.49 0.42 0.28 0.86

https://pdodds.w3.uvm.edu
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Combining stream segments distributions:

 Stream segments
sum to give main
stream lengths



ℓ𝜔 =
𝜇=𝜔
∑
𝜇=1

𝑠𝜇

 𝑃(ℓ𝜔) is a
convolution of
distributions for
the 𝑠𝜔

https://pdodds.w3.uvm.edu
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Generalizing Horton’s laws

 Sum of variables ℓ𝜔 = ∑𝜇=𝜔
𝜇=1 𝑠𝜇 leads to

convolution of distributions:

𝑁(ℓ|𝜔) = 𝑁(𝑠|1) ∗ 𝑁(𝑠|2) ∗ ⋯ ∗ 𝑁(𝑠|𝜔)
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𝑁(𝑠|𝜔) = 1
𝑅𝜔𝑛𝑅𝜔

ℓ
𝐹 (𝑠/𝑅𝜔

ℓ )

𝐹(𝑥) = 𝑒−𝑥/𝜉

Mississippi: 𝜉 ≃ 900m.
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Generalizing Horton’s laws

 Next level up: Main stream length distributions
must combine to give overall distribution for
stream length
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 𝑃(ℓ) ∼ ℓ−𝛾

 Another round of
convolutions [3]

 Interesting …
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Generalizing Horton’s laws

 Number and
area
distributions for
the Scheidegger
model [3]

 𝑃(𝑛1,6) versus
𝑃(𝑎6) for a
randomly
selected 𝜔 = 6
basin.
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Generalizing Tokunaga’s law

Scheidegger:
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 Observe exponential distributions for 𝑇𝜇,𝜈
 Scaling collapse works using 𝑅𝑠
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Generalizing Tokunaga’s law

Mississippi:
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 Same data collapse for Mississippi …
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Generalizing Tokunaga’s law

So
𝑃(𝑇𝜇,𝜈) = (𝑅𝑠)𝜇−𝜈−1𝑃𝑡 [𝑇𝜇,𝜈/(𝑅𝑠)𝜇−𝜈−1]

where
𝑃𝑡(𝑧) =

1
𝜉𝑡

𝑒−𝑧/𝜉𝑡 .

𝑃 (𝑠𝜇) ⇔ 𝑃(𝑇𝜇,𝜈)

 Exponentials arise from randomness.
 Look at joint probability 𝑃(𝑠𝜇, 𝑇𝜇,𝜈).
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Generalizing Tokunaga’s law

Network architecture:

 Inter-tributary
lengths
exponentially
distributed

 Leads to random
spatial
distribution of
stream segments

��� 1�� 2
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Generalizing Tokunaga’s law

 Follow streams segments down stream from their
beginning

 Probability (or rate) of an order 𝜇 stream segment
terminating is constant:

̃𝑝𝜇 ≃ 1/(𝑅𝑠)𝜇−1𝜉𝑠

 Probability decays exponentially with stream
order

 Inter-tributary lengths exponentially distributed
 ⇒ random spatial distribution of stream segments
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Generalizing Tokunaga’s law

 Joint distribution for generalized version of
Tokunaga’s law:

𝑃(𝑠𝜇, 𝑇𝜇,𝜈) = ̃𝑝𝜇(
𝑠𝜇 − 1
𝑇𝜇,𝜈

)𝑝𝑇𝜇,𝜈
𝜈 (1−𝑝𝜈− ̃𝑝𝜇)𝑠𝜇−𝑇𝜇,𝜈−1

where
 𝑝𝜈 = probability of absorbing an order 𝜈 side

stream
 �̃�𝜇 = probability of an order 𝜇 stream terminating

 Approximation: depends on distance units of 𝑠𝜇
 In each unit of distance along stream, there is one

chance of a side stream entering or the stream
terminating.
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Generalizing Tokunaga’s law

 Now deal with this thing:

𝑃(𝑠𝜇, 𝑇𝜇,𝜈) = ̃𝑝𝜇(
𝑠𝜇 − 1
𝑇𝜇,𝜈

)𝑝𝑇𝜇,𝜈
𝜈 (1−𝑝𝜈− ̃𝑝𝜇)𝑠𝜇−𝑇𝜇,𝜈−1

 Set (𝑥, 𝑦) = (𝑠𝜇, 𝑇𝜇,𝜈) and 𝑞 = 1 − 𝑝𝜈 − ̃𝑝𝜇,
approximate liberally.

 Obtain
𝑃(𝑥, 𝑦) = 𝑁𝑥−1/2 [𝐹 (𝑦/𝑥)]𝑥

where

𝐹(𝑣) = (1 − 𝑣
𝑞 )

−(1−𝑣)
(𝑣
𝑝)

−𝑣
.
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Generalizing Tokunaga’s law

 Checking form of 𝑃(𝑠𝜇, 𝑇𝜇,𝜈) works:
Scheidegger:
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Generalizing Tokunaga’s law

 Checking form of 𝑃(𝑠𝜇, 𝑇𝜇,𝜈) works:
Scheidegger:
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Generalizing Tokunaga’s law

 Checking form of 𝑃(𝑠𝜇, 𝑇𝜇,𝜈) works:
Scheidegger:
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Generalizing Tokunaga’s law

 Checking form of 𝑃(𝑠𝜇, 𝑇𝜇,𝜈) works:
Mississippi:
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Models

Random subnetworks on a Bethe lattice [13]

 Dominant theoretical
concept for several decades.

 Bethe lattices are fun and
tractable.

 Led to idea of “Statistical
inevitability” of river
network statistics [7]

 But Bethe lattices
unconnected with surfaces.

 In fact, Bethe lattices ≃
infinite dimensional spaces
(oops).

 So let’s move on …
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Scheidegger’s model

Directed random networks [11, 12]


𝑃(↘) = 𝑃(↙) = 1/2

 Functional form of all scaling laws exhibited but
exponents differ from real world [15, 16, 14]
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Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [10]

 Landscapes ℎ( ⃗𝑥) evolve such that energy
dissipation ̇𝜀 is minimized, where

̇𝜀 ∝ ∫d ⃗𝑟 (flux) × (force) ∼ ∑
𝑖

𝑎𝑖∇ℎ𝑖 ∼ ∑
𝑖

𝑎𝛾𝑖

 Landscapes obtained numerically give exponents
near that of real networks.

 But: numerical method used matters.
 And: Maritan et al. find basic universality classes

are that of Scheidegger, self-similar, and a third
kind of random network [8]
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Theoretical networks

Summary of universality classes:

network h d
Non-convergent flow 1 1
Directed random 2/3 1

Undirected random 5/8 5/4
Self-similar 1/2 1
OCN’s (I) 1/2 1
OCN’s (II) 2/3 1
OCN’s (III) 3/5 1
Real rivers 0.5–0.7 1.0–1.2

ℎ ⇒ ℓ ∝ 𝑎ℎ (Hack’s law).
𝑑 ⇒ ℓ ∝ 𝐿𝑑

∥ (stream self-affinity).
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Nutshell

Branching networks II Key Points:
 Horton’s laws and Tokunaga’s law all fit together.
 For 2-d networks, these laws are ‘planform’ laws

and ignore slope.
 Abundant scaling relations can be derived.
 Can take 𝑅𝑛, 𝑅ℓ, and 𝑑 as three independent

parameters necessary to describe all 2-d
branching networks.

 For scaling laws, only ℎ = ln𝑅ℓ/ln𝑅𝑛 and 𝑑 are
needed.

 Laws can be extended nicely to laws of
distributions.

 Numerous models of branching network evolution
exist: nothing rock solid yet …?
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