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Piracy on the high x's:
“Dynamic Reorganization of River
= | Basins'®
l' Willett et al.,
B | Science, 343, 1248765, 2014. %"
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Piracy on the high x's:

More: How river networks move across a landscape (%"

(Science Daily)

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

&% In terms of network achitecture, Horton’s laws
appear to contain less detailed information than
Tokunaga's law.

&> 0ddly, Horton's laws have four parameters and
Tokunaga has two parameters.

& R,, R, R, and R, versus T} and R, . One simple
redundancy: R, = R,.

Insert question from assignment 15 ('

&> To make a connection, clearest approach is to
start with Tokunaga's law ...

&> Known result: Tokunaga — Horton [1819,20.9. 2]

Let us make them happy

We need one more ingredient:

Space-fillingness

&> Anetwork is space-filling if the average distance
between adjacent streams is roughly constant.

&% Reasonable for river and cardiovascular networks

<% For river networks:
Drainage density pyq = inverse of typical distance
between channels in a landscape.

&5 In terms of basin characteristics:

Q
> stream segment lengths > _; 7,5,

w=1

basin area ag

Pdd =~
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More with the happy-making thing

Start with Tokunaga'’s law: T, = T, Rk*

&% Start looking for Horton's stream number law:
nw/nwAl - R’n,‘

&% Estimate n,, the number of streams of order w in
terms of other n,,, ' > w.

<% Observe that each stream of order w terminates
by either:

1. Running into another stream of order w
and generating a stream of order w + 1

» 2n,,, streams of order w do this

2. Running into and being absorbed by a
stream of higher order w’ > w ...

» n, T, _, streams of order w do this

More with the happy-making thing

Putting things together:
&

Q
n, = 2N, + E Ty
—wtd LW @

generation  «’=w+1 absorption

&% Use Tokunaga's law and manipulate expression to
find Horton'’s law for stream numbers follows and

hence obtain R,,.
< Insert question from assignment 16 ('

&> Solution:

g o 2HBr+T) £+ Ry +T)° —8Ry
" 2

(The larger value is the one we want.)

Finding other Horton ratios

Connect Tokunaga to R,
& Now use uniform drainage density pyq.

&> Assume side streams are roughly separated by
distance 1/pgyq-

&% For an order w stream segment, expected length is
w—1

8w ™ Pad <1 +> Tk>
k=1

<& Substitute in Tokunaga's law T, = T, R5 1

w—1
5y ™ pya <1+T12R7’$1> xR

k=1
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Horton and Tokunaga are happy
Altogether then:
= 5u/5w 1 =Rp =R, =Ry

Recall R, = R, so

And from before:

R = (2+ Ry +Ty) ++/ @2+ Ry +T1)% —8Ry
‘n 2

Horton and Tokunaga are happy

Some observations:
R, and R, depend on T, and R.
Seems that R, must as well ...

Suggests Horton's laws must contain some
redundancy

We'llin fact see that R, = R,,.

Also: Both Tokunaga's law and Horton'’s laws can
be generalized to relationships between
non-trivial statistical distributions. >4

Horton and Tokunaga are happy

The other way round

Note: We can invert the expresssions for R,, and
R, to find Tokunaga's parameters in terms of
Horton's parameters.

Ry =R,

T, =R, — R, —2+2R,/R,,.

Suggests we should be able to argue that Horton's
laws imply Tokunaga’s laws (if drainage density is
uniform) ...
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Horton and Tokunaga are friends
From Horton to Tokunaga %!

Assume Horton's laws
hold for number and
length

Start with picture
showing an order w

®) generating and side
streams.
Scale up by a factor of
@ R,, orders increment

tow+1andw.
Maintain drainage

density by adding new

order w — 1 streams

Horton and Tokunaga are friends

..and in detail:
Must retain same drainage density.

Add an extra (R, — 1) first order streams for each
original tributary.

Since by definition, an order w + 1 stream segment
has T,, order 1 side streams, we have:

k—1
Ty = (R, —1) (1+ZTZ-> .

For large w, Tokunaga's law is the solution—let's
check ...

Horton and Tokunaga are friends

Just checking:
Substitute Tokunaga's law T; = Ty R#! = T\ R,/ ~!

into
k—1
T, = (R, — 1) <1+2Ti>
=1

k—1
T, = (R, —1) (1 + ZTlR;1>
i=1

i=

RF1-1

=R, -1 (1+T,—t——
(Rp—1)[1+T, R271>
Rf!

~ — 1T, =L
(Ry )13271

=T,RF* ..yep.

stream and order w —1
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Horton's laws of area and number:

The Mississippi , The Nile

o 3, (sakm)

1 Gm)

Trsis e e et Wi e s s on o
o stream ordew
The Mississippi ) The Nile

1

: )
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- ® -
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T35 54567 861001
stream ordew

T2 3456760101

Ti234s678 000
" stream orden

In bottom plots, stream number graph has been
flipped vertically.

Highly suggestive that R, = R, ...

Measuring Horton ratios is tricky:

How robust are our estimates of ratios?

Rule of thumb: discard data for two smallest and
two largest orders.

Mississippi:
wrange R, R, R, R, R,/R,
2,3] 527 526 248 230 1.00
[2,5] 486 496 242 231 1.02
[2,7] 477 488 240 2.31 1.02
[3,4] 472 491 2.41 2.34 1.04
[3,6] 470 483 240 235 1.03
3,8] 460 479 238 234 1.04
[4,6] 469 481 240 236 1.02
[4,8] 457 477 238 234 1.05
[5,7] 468 483 236 229 1.03
[6,7] 463 476 230 2.16 1.03
(7,8] 416 467 241 2.56 1.12
meanyu 469 485 240 233 1.04
stddeve 021 013 0.04 0.07 0.03
a/p 0.045 0.027 0.015 0.031 0.024
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Amazon:

w range R, R, R, R, R,/R,
[2,3] 478 471 247 208  0.99
[2,5] 455 458 232 212 1.01
[2,7] 442 453 224 210 1.02
[3,5] 445 452 226 214 1.01
[3,7] 435 449 220 2.10 1.03
[4,6] 438 454 222 218 1.03
[5,6] 438 462 222 221 1.06
(6,7] 4.08 427 205 1.83 1.05

meanp 442 453 225 210 1.02

stddeve 0.17 0.10 0.10 0.09 0.02
ol 0.038 0.023 0.045 0.042 0.019

Reducing Horton's laws:

Rough first effort to show R, = R,:

aq « sum of all stream segment lengths in a order
Q basin (assuming uniform drainage density)

So:

Q
ag =~ Z NywSe/ Pad

w=1 n, S
Q
_ Rnﬂgl Z <Rs>w
Rs w—=1 Rn

Reducing Horton's laws:

Continued ...

So, ag, is growing like R,S* and therefore:
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Reducing Horton's laws:

Not quite:
...But this only a rough argument as Horton'’s laws
do not imply a strict hierarchy
Need to account for sidebranching.
Insert question from assignment 16 (&'

Equipartitioning:

Intriguing division of area:
Observe: Combined area of basins of order w
independent of w.

Not obvious: basins of low orders not necessarily
contained in basis on higher orders.

Story:
Reason:
ay, o (Ry)®” ocng!
Equipartitioning:

Some examples:

Mississippi basin partitioning Amazon basin partitioning
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Neural Reboot: Fwoompf

Scaling laws

The story so far:
Natural branching networks are hierarchical,
self-similar structures
Hierarchy is mixed
Tokunaga's law describes detailed architecture:
T, =T, RE L.
We have connected Tokunaga's and Horton's laws
Only two Horton laws are independent (R,, = R,,)

Only two parameters are independent:
(T17 RT) < (Rn’ Rs)

Scaling laws

Alittle further ...
Ignore stream ordering for the moment
Pick a random location on a branching network p.

Each point p is associated with a basin and a
longest stream length

Q: What is probability that the p's drainage basin
has area a? P(a) xa 7 forlargea

Q: What is probability that the longest stream
from p has length 2 P(¢) oc ¢~ for large ¢

Roughly observed: 1.3 <7 <1.5and 1.7 <y <20
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Scaling laws Gpocsiox Scaling laws Gpocsvox Scaling laws @porsiox
Branching Fndn Branching Branching
Networks Il | | /e Networks Il . . Networks Il
&7 Finding ~:
L ) ot The connection between P(z) and P, (z) when ot W here: ot
Probability distributions with power-law decays o P(x) has a power law tail is simple: Shuns € are here: Tokunaga
We see them everywhere: RQ”I “"”gl”“”“” Given P(¢) ~ ¢~ large ¢ then for large enough ¢, _ Q oo - RP‘:”““*‘:‘“"“"
caling relations —w S w'— caling relations
Earthquake magnitudes (Gutenberg-Richter law) Zg[ o P_(¢,,) Z (1-RY ) (5, - R¥ 1) :gt
City sizes (Zipf's law) uctuations Lnax etuatons i) s
Word frequency (Zipf's law) [22] Models P, ([*) = P(f) de Models . . Models
Wealth (maybe not—at least heavy tailed) Nutshel =L, Hutshel Cleaning up irrelevant constants: Hutshel
Statistical mechanics (phase transitions) ! feferences oo feferences o o feferences
A big part of the story of complex systems ~ .//Z:/Z de P(l,)x > (gs )
Arise from mechanisms: growth, randomness, : , wi=wtl A
imi i —(y—1) |Fmax ) . .
optlmlzat.lon, ] ) ) _ /7 Change summation order by substituting
Our task is always to illuminate the mechanism ... —-(v=1],_, W =0 —u.

Sumis now fromw” =0tow” =Q —w—1

—(y—1)
oc L for fmax > L. (equivalent to w’ = Q down to w’ = w + 1)
vav 310f84 a v 340f84 a v 370f 84
Scaling laws Gpocsox Scaling laws Gpocsvox Scaling laws @pocsvox
Reworke Remorke Remorke
) Finding ~:
Connecting exponents Horton &1 Horton Finding ~: Horton
We have the detailed pict fb hi Tokunaga Aim: determine probability of randomly choosing Tokunaga Tokunaga
€ have the detailed picture ot brancnhing Reducing Horton a point on a network with main stream Iength >/, Reducing Horton Reducing Horton
networks (TOkunaga and Horton) Scaling relations . . . Scaling relations Scaling relations
) ~ N Lo e Assume some spatial sampling resolution A~ === Quwsl yp \W Qowol p W EEREEE
Plan: Derive P(a) x a~™ and P(¢) oc £~ starting Fluctuations g < brok } A of ) Fluctuations P(i.) x Z (75) o Z <J> Fluctuations
with Tokunaga/Horton story "7 1:21 Models Landscape is broken up into grid of A x A sites Models >\Vw 4= \R, 5= \R, Models
Let's work on P(Z) Nutshell Approximate P>(£*) as Nutshell Nutshell
References References References
Our first fudge: assume Horton's laws hold N_(4,;A) SinceR, >R ,and 1 K w <« ,
throughout a basin of order Q. P(t) = N_(0;A) o
(We know they deviate from strict laws for low w _ ) ) _ P.(i) R, o [ EBn
and high w but not too much.) where ]}/>(£*;hA) |€s the number of sites with main >V R, >\ R,
. . . ream len .
Next: place stick between teeth. Bite stick. stream length > £, ) ) n1 "
Proceed. Use Horton'’s law of stream segments: againusing>_; ; a' = (a" —1)/(a—1)
5,/5,.1=R, ..
DA 320f84 “va v 350f84 “a (v 380f84
Scaling laws Brocsvox Scaling laws Brocsvox Scaling laws Gpocsvox
Kewmorke Kemorke Kewmorke
Finding ~: Finding ~: H Finding ~: .
1 7 :)r‘mnyr . S’\“[‘Ewg
Often useful to work with cumulative 8 Set¢, =/, forsomel <w < Q. Tok Nearlv there: Tokunags
. . . . . . Reducing Horton Reducing Horton Reducing Horton
dIStrlbUtlons’ espeaa”y When deallng Wlth ;caling r“ela&iotns - Q ;caling r“elatiolns ? y . ;caling ;elatiolns
power-law distributions. R P No(li D) D air M Bur /X T ; R\ ¥ S Fluctuations
o = = o Zn = ¢~wIn(R,/R,) S
The complementary cumulative distribution turns — vodeis cre N.(0;A) zg,zl N8 /X Models Po(ly) o (Rs ) =e Models
out to be most useful: Nutshell Nutshell Nutshell
References 1 References References
A ncel . S -
P(6) = P(t> 1) /‘Zmax P0)de b >ca Fe . Need to express right hand side in terms of /.
«) = «) = enominator is , a constant. s
> e, ‘ - hort “f}pldd Recall that 7, ~ ¢, R&"™1.
0 ...using Horton’s laws ...
Q Q EMO(R“’:R;":E"'”RS
Blt)=1-Pi <L) Pl 3 ngsg= D5 (LRE)E RS ‘
Also known as the exceedance probability. w'=wtl w/=wtl

“aC 330f84 va 360f84 va e 390of8s



Scaling laws
Finding ~:
&% Therefore:

P.(1,) oc e IR /R) = In(Fn/ R0

(ew\an)f

&

o [, ~In(R,/R.)/NR,
&

_ z;(InR"—InRs)/Ian
-]

_ z;\nR,,,/InRﬁrl
&
_ z;wﬂ
Scaling laws

Finding ~:

&> And so we have:

v=InR,/InR,

&% Proceeding in a similar fashion, we can show

[r=2-InR /IR, =2—1/5]

Insert question from assignment 16 (&'

& Such connections between exponents are called
scaling relations

&% Let's connect to one last relationship: Hack’s law

Scaling laws

Hack’s law: [©!

&

o< a

& Typically observed that 0.5 < h < 0.7.
& Use Horton laws to connect h to Horton ratios:
{, < R¥and a, o RY

& Observe:

InR,/InR,,

? ewInRs e (ewlan)
w

- (R:)InRS/Ian

ainFe/MBn o Th — InR,/INR,,

PoCS
@pocsvox

Branching
Networks Il

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

Qv 40 of 84

PoCS
@pocsvox

Branching
Networks Il

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

Qv 410f84

PoCS
@pocsvox

Branching
Networks Il

Horton «
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

a(v 420f 84

We mentioned there were a good number

of ‘laws’;

Relation: Name or description:

T, =Ty (Rp)** Tokunaga's law

PoCS
@pocsvox

Branching
Networks Il

on <
inaga

icing Horton

¢~ L% self-affinity of single channels ngrektons
n,/n,., = R, Horton's law of stream numbers :“:”0”5
l,.1/t, =R, Horton'slaw of main stream lengths o
a,4,/a, =R, Horton's law of basin areas
§w+1/$w = RS Horton's law of stream segment lengths
L, ~LH scaling of basin widths
P(a) ~a~™ probability of basin areas
P(¢) ~¢7 probability of stream lengths
£ ~a™ Hack's law
a~ LP scaling of basin areas
A ~af Langbein's law
A~ L% variation of Langbein’s law 8l
o 430f 84
Connecting exponents Gpotsiox
Branching
Only 3 parameters are independent: Neworke
e.g., take d, R,, and R, I
relation: scaling relation/parameter: %! ;GZKZHW
e ~ Ld d Scaling relations
T, =Ty(Rp)** Ty =R, —R,—2+2R./R, Fluctuations
Ry =R Models
Ny /Mys1 =R, R, Nutshell

aw+1/@w = Ra Ra = Rn

ZW‘Fl/zUJ = RE RZ = RS
{~ah =InR./InR,,
a~ LP D=d/h

L, ~LH H=d/h—1

P(a) ~a ™ T=2—h

P(l) ~ 7 vy=1/h
A~aP B=1+h
A~ L¥ p=d

Scheidegger's model

Directed random networks (11.12]
A
A8
)

OV

:;Y\“S 3:% %x /Eggé};; 9 X
b }"

° ° Ef&f 3 ;,v ,N
.;‘:\?}'- \}fﬁ.; vzzz e

IRRINOAE \\\ ’zr“fi
&
P(N\) =P)=1/2
&% Functional form of all scaling laws exhibited but
exponents differ from real world ['> 16 14]
&% Useful and interesting test case

References
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A toy model—Scheidegger’'s model

Random walk basins:
& Boundaries of basins are random walks

X

area a

Scheidegger's model

Increasing partition of N=64 9 9 /

Scheidegger's model

Prob for first return of a random walk in (1+1)
dimensions (from CSYS/MATH 300):

&

LRy
P(n) NG n=3/2,
and so P(¢) oc £~3/2,

<& Typical area for a walk of length n is o n3/2:

Lo a?/3.

&> Findr=4/3,h=2/3,v=3/2,d = 1.
&> Noter=2—handy=1/h.
& R,, and R, have not been derived analytically.
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Equipartitioning reexamined:
Recall this story:

Mississippi basin partitioning ‘Amazon basin partitioning

g
.
0 o. .
. i .
. I<]
Ll B e eae’e !
o o
204 204
[F: 0
23 456 7 8 91011 2 3 456 7 8 91011
© 4
Nile basin partitioning
o.
.
. i
F0d o 000 ® i
<
304
03
2 3456 7 8 9 10
©

& What about
Pla) ~a™" ?

&> Since 7 > 1, suggests no equipartitioning:
aP(a) ~a~ ™1 & const

& P(a) overcounts basins within basins ...
<% while stream ordering separates basins ...

Fluctuations

Moving beyond the mean:

<% Both Horton’s laws and Tokunaga’s law relate
average properties, e.g.,

gw/gw—l = Rs
&% Natural generalization to consider relationships

between probability distributions

&% Yields rich and full description of branching
network structure

&5 See into the heart of randomness ...
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A toy model—Scheidegger's model

Directed random networks 012

&

R % \((Sfc \;y q};/
Ew m AR ‘K\M
I IO ELALE ( i

P(N) = P() =1/2

&> Flow is directed downwards

Generalizing Horton's laws

¢ Mississippi: length distributions
1

o (Ry)”

Ry)®

= N(flw) =

= N(alw) = (R})"“F,(a/R3)

(R Re) “F,(¢/RY)

N Mississippi: length distributions
10

° w3

R =469, R=238

100

200
I (km)

300 400

IR

&% Scaling collapse works well for intermediate

orders

&5 All moments grow exponentially with order

Generalizing Horton's laws

&> How well does overall basin fit internal pattern?

107 Mississippi

0 w4

1.2 0 w3

— actuall
-- <>

&

& & & &

Actual length = 4920
km (at 1 km res)

Predicted Mean length
=11100 km

Predicted Std dev =
5600 km

Actual length/Mean
length =44 %
Okay.
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Generalizing Horton's laws

Comparison of predicted versus measured main
stream lengths for large scale river networks (in 10°

km):
basin: Lo le oo Lolla 04/l
Mississippi  4.92 11.10 5.60 0.44 0.51
Amazon 575 9.18 6.85 0.63 0.75
Nile 6.49 266 220 244 0.83
Congo 5.07 10.13 5.75 0.50 0.57
Kansas 1.07 237 174 045 0.73
ag a9 0, aglig 0./ag
Mississippi 2.74 7.55 558 0.36 0.74
Amazon 540 9.07 8.04 0.60 0.89
Nile 3.08 0.96 0.79 3.19 0.82
Congo 3.70 10.09 8.28 0.37 0.82
Kansas 0.14 049 042 0.28 0.86

Combining stream segments distributions:

Generalizing Horton's laws

&% Sum of variables ¢,

:E“w

convolution of distributions.

N(llw)

Mississippi: stream segments

R,= 469, R=155

———

| ':s) R"fﬁ

N(slw) =

&> Stream segments

sum to give main
stream lengths

n=w
L, = Sy
p=1
& P(t,)isa

convolution of
distributions for

the s,

leads to

= N(s|1) % N(s|2) %% N(

1
R“’R“’

slw)

F(s/Ry)

F(x) =e /¢

Mississippi: € ~ 900 m.
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Next level up: Main stream length distributions
must combine to give overall distribution for o
stream length Reducing Horton

Scaling relations

Mississippi: length distributions

1 e Fluctuations
* g‘t*a w=3 Models
Nutshell
10° P(f) i References
i Another round of
z convolutions %!
10 .
Interesting ...
10
10" 10°
I (km)
va v 580f84
71 PoCS
Generalizing Horton's laws @pocsvox
Branching
Networks Il
Horton
Tokunaga
Number and Reducing Horton
area Scaling relations
distributions for Fluctuations
the Scheidegger Vodels
m |3 Nutshell
Ode References
P(ny ) versus
P(ag) fora
randomly
selectedw =6
basin.
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Observe exponential distributions for 7, ,,

Scaling collapse works using R,
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Mississippi: Horton
2! Tokunaga
[ @ 3. Reducing Horton
Ko 2
o o, | % (b) Scaling relations
30 vD““ﬁ%% R ':,;25 v 2, Fluctuations
E Vo Qo T % Models
- ® Eow . ',5 J s 9% 3 Nutshell
k=l v DmD Oooo(% o o 3;38 © References
% 19
05l w am * o, 8’3 @;Sg';“ﬁjo‘;f
o ooo@moo| = 4|
%V
0 20 40 60 0
1 2 3 y 5
TH‘V Tw (R‘ ©)
Same data collapse for Mississippi ...
S (o]
" [3
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Horton
So Tokunaga
P(Tu z/) — (RS)“7V71 Pt [Tu V/(Rs)ufvfl} Reducing Horton
’ ’ Scaling relations
where 1 Fluctuations
Py(2) = %/, Models
gt Nutshell
References
P(s,) = P(T, )
Exponentials arise from randomness.
Look at joint probability P(s,,, T, ,)-
Qv 620of 84
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Network architecture: Tokuns

Scaling relations

Inter-tributary Fluctuations

lengths Models
exponentially Nutshell
distributed References
Leads to random

spatial

distribution of
stream segments
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Generalizing Tokunaga's law

Follow streams segments down stream from their
beginning

Probability (or rate) of an order u stream segment
terminating is constant:

Py = 1/(R)#1E,

Probability decays exponentially with stream
order

Inter-tributary lengths exponentially distributed
= random spatial distribution of stream segments

Generalizing Tokunaga's law

Joint distribution for generalized version of
Tokunaga's law:

. (s5,—1\ T, , ~ T
P(S;MTH,U) :p“( 5; )py“' (1_171,—]7#)3“ Tl
%
where
p,, = probability of absorbing an order v side
stream

p,, = probability of an order x stream terminating
Approximation: depends on distance units of s,

In each unit of distance along stream, there is one
chance of a side stream entering or the stream
terminating.

Generalizing Tokunaga’s law

Now deal with this thing:

~ S, —
Pl T = (%

1\ T ~ _ _
)Puw(lfpyfp,i)s“ Tt
v

Set (z,y) = (s,,,T,,,)and g =1—p, —p,,
approximate liberally.
Obtain

P(z,y) = Na~ /2 [F(y/x)]"

- ()G

where
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Generalizing Tokunaga’s law

Checking form of P(s,,,T,, ,) works:

Scheidegger:
1
15 o
@ 55 (0)
08 il
z ., 06 = °9
= —=
= > O o
L o4 2
L Q
-0
0.2
= 5
02 04 06 08 1 -1 0.05 o1 015
v=T /10 v=T /1©
T wy'

Generalizing Tokunaga's law

Checking form of P(s,, T, ,) works:

Scheidegger:

Y

IoglOP(IJS)IT )

0.1 0.2 0.3

Generalizing Tokunaga’s law

Checking form of P(s,,,T,, ,) works:

Scheidegger:

N

()
1)

[1RY

0.9

log, (R, &) ™2 p(T
5
a

-02 -01 0 0.1 0.2
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Generalizing Tokunaga’s law

Checking form of P(s,,,T,, ,) works:
Mississippi:
1!
0.8
&4 @ = o, (b)
—~ v —_= v Vo
2. ] . - ~. 04 Zu??%omv
~, = o0 = Y ° o,
= v v o o oo o W
& 0.5} 7 L oo 0 ¢ o
o oo v o o = < P-IRIN
ES N | o o0 o o o oo
g lew o o 5 04 N v
of o o 5’ OODVO oooo
E &m
0 0.15 03 0.45 0.6 9 .5 -0.25 0 0.25 05
© ©_ v
T/ M /19 -p IR @)
Models

Random subnetworks on a Bethe lattice ['*]

Dominant theoretical

concept for several decades.

Bethe lattices are fun and
tractable.

Led to idea of “Statistical
inevitability” of river
network statistics [/!

But Bethe lattices
unconnected with surfaces.
In fact, Bethe lattices ~
infinite dimensional spaces

(oops).
So let's move on ...

Scheidegger's model

Directed random networks [ 12]
NN w\), A ‘
; g’ %\E\:;.{"} ?‘):{r )S) 'Y:\\

O K
AN AN
'ix;’-fgf@fg; !

oy

P
e

w
«fﬁ,

e

s

e

L .

l,-\{f\._‘-\f

3

®
®
B R
L
o
o)
DA
Py W
a
1&3;
«x’:
s
A

\

oy
=

‘-:‘\.
e

S
e
N
e
o

\\

z’zz N‘:n\(\/{(\(t{ g J%

P(\) = P(/) =1/2

Functional form of all scaling laws exhibited but
exponents differ from real world ['> 16141
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Optimal channel networks

Rodriguez-lturbe, Rinaldo, et al. "%

Landscapes h(Z) evolve such that energy
dissipation ¢ is minimized, where

éox /d? (flux) x (force) ~ > "a,Vh;, ~ > a]

Landscapes obtained numerically give exponents

near that of real networks.
But: numerical method used matters.

And: Maritan et al. find basic universality classes
are that of Scheidegger, self-similar, and a third
kind of random network !

Theoretical networks

Summary of universality classes:

network h d
Non-convergent flow 1 1
Directed random 2/3 1
Undirected random 5/8 5/4

Self-similar 1/2 1
OCN's (1) 1/2 1
OCN's (Il) 2/3 1
OCN's (I11) 3/5 1

Real rivers 0.5-0.7 1.0-1.2

h = 0 x a’ (Hack's law).
d=lx L“f (stream self-affinity).

Nutshell

Branching networks Il Key Points:
Horton’s laws and Tokunaga's law all fit together.

For 2-d networks, these laws are ‘planform’ laws

and ignore slope.

Abundant scaling relations can be derived.

Can take R, R,, and d as three independent
parameters necessary to describe all 2-d

branching networks.

For scaling laws, only h = InR,/InR,, and d are

needed.

Laws can be extended nicely to laws of

distributions.

Numerous models of branching network evolution
exist: nothing rock solid yet ...?
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