Branching Networks I

Last updated: 2023/01/24, 09:14:01 EST

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 300, 303, & 394, 2022-2023 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

The PoCSverse Branching Networks I 1 of 56

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

These slides are brought to you by:

The PoCSverse Branching Networks I

Introduction
Definitions

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Branching Networks I

Introduction

Definitions

Allometry

Laws

Stream Ordering Horton's Laws

Tokunaga's Law Nutshell

Outline

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

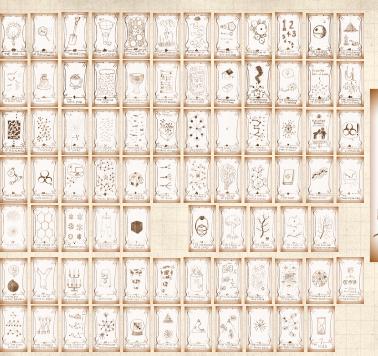
Tokunaga's Law

Nutshell

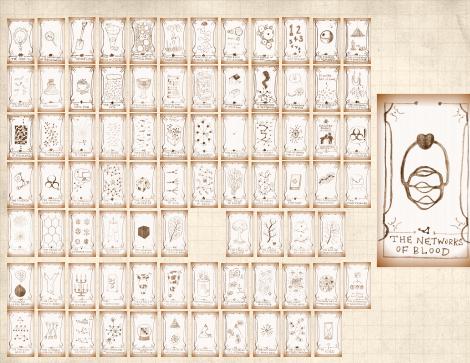
References

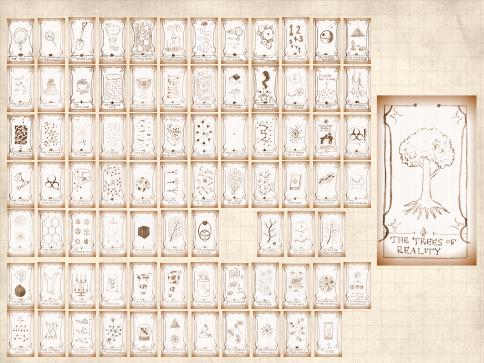
The PoCSverse Branching Networks I 4 of 56

Introduction
Definitions
Allometry
Laws


Stream Ordering

Horton's Laws


Tokunaga's Law


Nutshell

Branching networks are useful things:

Fundamental to material supply and collection

The PoCSverse Branching Networks I 8 of 56

Introduction

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Fundamental to material supply and collection

Supply: From one source to many sinks in 2- or 3-d.

The PoCSverse Branching Networks I 8 of 56

Introduction

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Branching networks are useful things:

Fundamental to material supply and collection

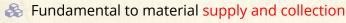
Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

The PoCSverse Branching Networks I 8 of 56

Introduction

Laws


Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Branching networks are useful things:

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

The PoCSverse Branching Networks I 8 of 56

Introduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

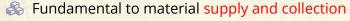
- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

The PoCSverse Branching Networks I 8 of 56

Introduction

Allometry Laws


Stream Ordering
Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

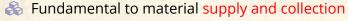
Examples:

River networks (our focus)

The PoCSverse Branching Networks I 8 of 56

Introduction

Allometry Laws


Stream Ordering
Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

Examples:

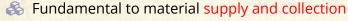
River networks (our focus)

Cardiovascular networks

The PoCSverse Branching Networks I 8 of 56

Introduction

Allometry Laws


Stream Ordering
Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

Examples:

River networks (our focus)

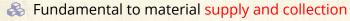
Cardiovascular networks

Plants

The PoCSverse Branching Networks I 8 of 56

Introduction

Allometry Laws


Stream Ordering
Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

Examples:

River networks (our focus)

Cardiovascular networks

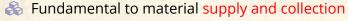
Plants

Evolutionary trees

The PoCSverse Branching Networks I 8 of 56

Introduction

Allometry Laws


Stream Ordering
Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

Examples:

River networks (our focus)

Cardiovascular networks

Plants

Evolutionary trees

Organizations (only in theory ...)

The PoCSverse Branching Networks I 8 of 56

Definitions Illometry

Laws


Stream Ordering
Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are everywhere ...

http://hydrosheds.cr.usgs.gov/☑

The PoCSverse Branching Networks I 9 of 56

Introduction Definitions

Allometi

Stream Ordering Horton's Laws

Tokunaga's Law Nutshell

Branching networks are everywhere ...

http://en.wikipedia.org/wiki/Image:Applebox.JPGC

The PoCSverse Branching Networks I 10 of 56

Introduction

Allometry Laws

Stream Ordering
Horton's Laws

Tokunaga's Law Nutshell

An early thought piece: Extension and Integration

"The Development of Drainage Systems: A Synoptic View"

Waldo S. Glock, The Geographical Review, **21**, 475–482, 1931. [2]

Initiation, Elongation

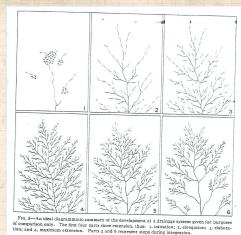
Elaboration, Piracy.

Abstraction, Absorption.

The PoCSverse Branching Networks I 11 of 56

Introduction

Allometry Laws


Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

The sequential stages recognized in the evolution of a drainage system are "extension" and "integration"; the first, a stage of increasing complexity; the second, of simplification.

The PoCSverse Branching Networks I 12 of 56

Introduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Shaw and Magnasco's beautiful erosion simulations

Unpublished.

Though to be destroyed and lost.

The VHS.

The PoCSverse Branching Networks I 13 of 56

Introduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Outline

Introduction Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshel

Reference

The PoCSverse Branching Networks I 14 of 56

Introduction

Definitions

Allometry

Laws

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

 \triangle Drainage basin for a point p is the complete region of land from which overland flow drains through p.

The PoCSverse Branching Networks I 15 of 56

Introduction Definitions Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

igoplus Drainage basin for a point <math>p is the complete region of land from which overland flow drains through p.

Definition most sensible for a point in a stream.

The PoCSverse Branching Networks I 15 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

Definition most sensible for a point in a stream.

Recursive structure: Basins contain basins and so on.

The PoCSverse Branching Networks I 15 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

Arr Drainage basin for a point p is the complete region of land from which overland flow drains through p.

Definition most sensible for a point in a stream.

Recursive structure: Basins contain basins and so on.

In principle, a drainage basin is defined at every point on a landscape. The PoCSverse Branching Networks I 15 of 56

ntroduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Definitions

- Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.

The PoCSverse Branching Networks I 15 of 56

ntroduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

- Arr Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.

The PoCSverse Branching Networks I 15 of 56

ntroduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

- Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks ...

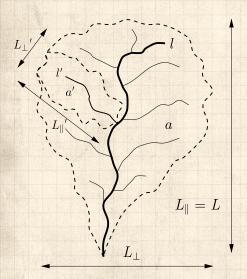
The PoCSverse Branching Networks I 15 of 56

ntroduction

Definitions

Allometry

Laws


Stream Ordering

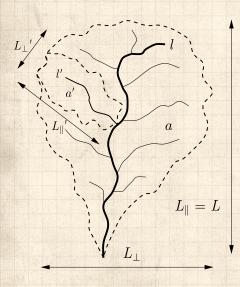
Horton's Laws

Tokunaga's Law

Nutshell

The PoCSverse Branching Networks I 16 of 56

Introduction
Definitions
Allometry
Laws


Stream Ordering

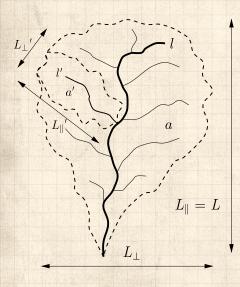
Horton's Laws

Tokunaga's Law

Nutshell

🚓 a = drainage basin area

The PoCSverse Branching Networks I 16 of 56


Introduction Definitions Laws

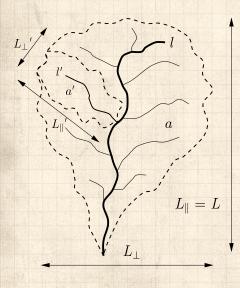
Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

a = drainagebasin area

& ℓ = length of longest (main) stream (which may be fractal) The PoCSverse Branching Networks I 16 of 56


Introduction Definitions Laws

Stream Ordering

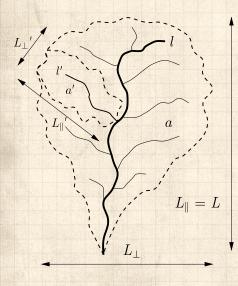
Horton's Laws

Tokunaga's Law Nutshell

a = drainagebasin area

♣ ℓ = length of longest (main) stream (which may be fractal)

& $L=L_{\parallel}$ = longitudinal length of basin The PoCSverse Branching Networks I 16 of 56


Introduction Definitions Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

a = drainagebasin area

🚓 ℓ = length of longest (main) stream (which may be fractal)

& $L=L_{\parallel}$ = longitudinal length of basin

... $L = L_{\perp} =$ width of basin

The PoCSverse Branching Networks I 16 of 56

Introduction Definitions Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Outline

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshel

Reference

The PoCSverse Branching Networks I 17 of 56

Introduction Definitions

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law


Nutshell

Allometry

dimensions scale linearly with each other.

The PoCSverse Branching Networks I 18 of 56

Introduction Definitions

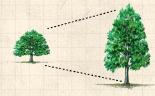
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

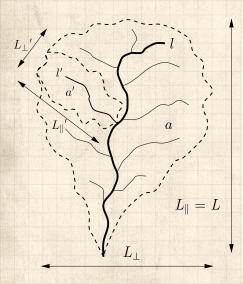

Allometry

dimensions scale linearly with each other.

& Allometry: dimensions scale nonlinearly.

The PoCSverse Branching Networks I 18 of 56

Introduction Definitions


Allometry

Stream Ordering

Horton's Laws

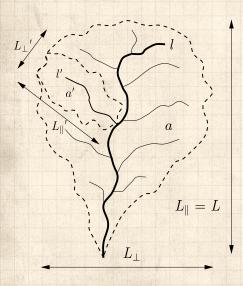
Tokunaga's Law Nutshell

Allometric relationships:

The PoCSverse Branching Networks I 19 of 56

Introduction Definitions

Allometry


Stream Ordering

Horton's Laws

Tokunaga's Law

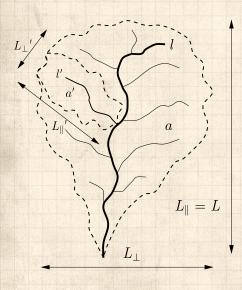
Nutshell

Allometric relationships:

 $\ell \propto a^h$

The PoCSverse Branching Networks I 19 of 56

Introduction Definitions


Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Allometric relationships:

 $\ell \propto a^h$

 $\ell \propto L^d$

The PoCSverse Branching Networks I 19 of 56

Introduction Definitions


Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Allometric relationships:

 $\ell \propto a^h$

 $\ell \propto L^d$

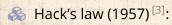
Combine above:

$$a \propto L^{d/h} \equiv L^D$$

The PoCSverse Branching Networks I 19 of 56

Introduction Definitions

Allometry


Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

'Laws'

$$\ell \propto a^h$$

reportedly 0.5 < h < 0.7

'Laws'

A Hack's law (1957) [3]:

$$\ell \propto a^h$$

reportedly 0.5 < h < 0.7

Scaling of main stream length with basin size:

$$\ell \propto L_\parallel^d$$

reportedly 1.0 < d < 1.1

'Laws'

A Hack's law (1957) [3]:

$$\ell \propto a^h$$

reportedly 0.5 < h < 0.7

Scaling of main stream length with basin size:

$$\ell \propto L_{\parallel}^d$$

reportedly 1.0 < d < 1.1

Basin allometry:

$$L_{\parallel} \propto a^{h/d} \equiv a^{1/D}$$

 $D < 2 \rightarrow$ basins elongate.

Outline

Introduction

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshel

Reference

The PoCSverse Branching Networks I 21 of 56

Introduction
Definitions
Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

There are a few more 'laws': [1]

T (D) k-1

 σ

The PoCSverse Branching Networks I 22 of 56

duction

Relation: Name or description:

etry
am Ordering

$T_k = T_1(R_T)^{\kappa - 1}$	Tokunaga's law
$\ell \sim L^d$	self-affinity of single channels
$n_{\omega}/n_{\omega+1} = R_n$	Horton's law of stream numbers
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	Horton's law of main stream lengths
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	Horton's law of basin areas
$\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s$	Horton's law of stream segment lengths
$L_{\perp} \sim L^H$	scaling of basin widths
$P(a) \sim a^{-\tau}$	probability of basin areas
$P(\ell) \sim \ell^{-\gamma}$	probability of stream lengths
$\ell \sim a^h$	Hack's law
$a \sim L^D$	scaling of basin areas

 $\lambda \sim L^{\varphi}$ variation of Langbein's law

Tokupaga's law

 $\Lambda \sim a^{eta}$ Langbein's law

on's Laws inaga's Law

rences

Reported parameter values: [1]

Parameter:	Real networks:
R_n	3.0-5.0
R_a	3.0-6.0
$R_{\ell} = R_T$	1.5-3.0
T_1	1.0-1.5
d	1.1 ± 0.01
D	1.8 ± 0.1
h	0.50-0.70
au	1.43 ± 0.05
γ	1.8 ± 0.1
H	0.75-0.80
β	0.50-0.70
arphi	1.05 ± 0.05

The PoCSverse Branching Networks I 23 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Order of business:

The PoCSverse Branching Networks I 24 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Order of business:

1. Find out how these relationships are connected.

The PoCSverse Branching Networks I 24 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.

The PoCSverse Branching Networks I 24 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

The PoCSverse Branching Networks I 24 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

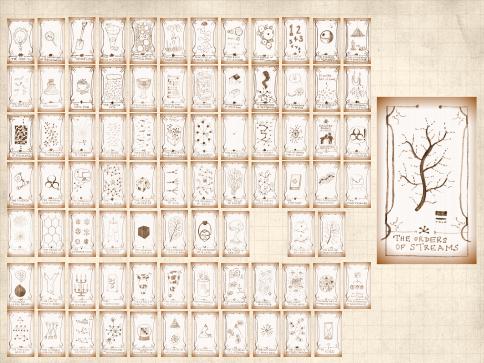
Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out ...

The PoCSverse Branching Networks I 24 of 56

ntroduction Definitions Allometry Laws


Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Method for describing network architecture:

The PoCSverse Branching Networks I 26 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Method for describing network architecture:

A Introduced by Horton (1945)^[4]

The PoCSverse Branching Networks I 26 of 56

Introduction Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Method for describing network architecture:

Introduced by Horton (1945)^[4]

Modified by Strahler (1957) [7]

The PoCSverse Branching Networks I 26 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Method for describing network architecture:

Introduced by Horton (1945)^[4]

Modified by Strahler (1957) [7]

A Term: Horton-Strahler Stream Ordering [5]

The PoCSverse Branching Networks I 26 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Method for describing network architecture:

Introduced by Horton (1945) [4]

Modified by Strahler (1957) [7]

Term: Horton-Strahler Stream Ordering [5]

Can be seen as iterative trimming of a network.

The PoCSverse Branching Networks I 26 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Some definitions:

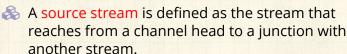
A channel head is a point in landscape where flow becomes focused enough to form a stream.

The PoCSverse Branching Networks I 27 of 56

Introduction Laws

Stream Ordering

Horton's Laws


Tokunaga's Law

Nutshell

Some definitions:

A channel head is a point in landscape where flow becomes focused enough to form a stream.

The PoCSverse Branching Networks I 27 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Some definitions:

- A channel head is a point in landscape where flow becomes focused enough to form a stream.
- A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.

The PoCSverse Branching Networks I 27 of 56

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Some definitions:

- A channel head is a point in landscape where flow becomes focused enough to form a stream.
- A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- & Use symbol $\omega = 1, 2, 3, ...$ for stream order.

The PoCSverse Branching Networks I 27 of 56

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

The PoCSverse Branching Networks I 28 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

1. Label all source streams as order $\omega = 1$ and remove.

The PoCSverse Branching Networks I 28 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

1. Label all source streams as order $\omega = 1$ and remove.

The PoCSverse Branching Networks I 28 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.

The PoCSverse Branching Networks I 28 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.

The PoCSverse Branching Networks I 28 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)

The PoCSverse Branching Networks I 28 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.

The PoCSverse Branching Networks I 28 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

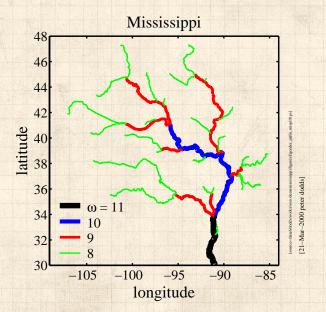
Tokunaga's Law Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

The PoCSverse Branching Networks I 28 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering


Horton's Laws

Tokunaga's Law

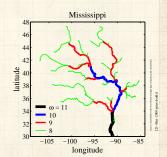
Nutshell

Stream Ordering—A large example:

The PoCSverse Branching Networks I 29 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering


Horton's Laws

Tokunaga's Law

Nutshell

Another way to define ordering:

The PoCSverse Branching Networks I 30 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

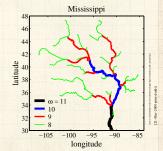
Tokunaga's Law

Nutshell

Another way to define ordering:

 \triangle As before, label all source streams as order $\omega = 1$.

The PoCSverse Branching Networks I 30 of 56


Introduction Laws

Stream Ordering

Horton's Laws

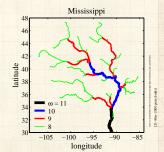
Tokunaga's Law

Nutshell

Another way to define ordering:

 \triangle As before, label all source streams as order $\omega = 1$.

Follow all labelled streams downstream

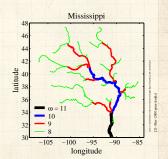

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell



Another way to define ordering:

 \clubsuit As before, label all source streams as order $\omega = 1$.

Follow all labelled streams downstream.

& Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega + 1$).

The PoCSverse Branching Networks I 30 of 56

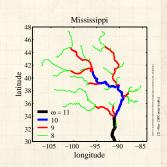
Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell


Another way to define ordering:

 \clubsuit As before, label all source streams as order $\omega = 1$.

🚓 Follow all labelled streams downstream

Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega+1$).

& If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.

The PoCSverse Branching Networks I 30 of 56

ntroduction

Definitions

Allometry

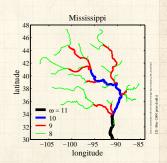
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell



Another way to define ordering:

- \clubsuit As before, label all source streams as order $\omega = 1$.
- 🙈 Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega+1$).
- If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.
- Simple rule:

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.

The PoCSverse Branching Networks I 30 of 56

ntroduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

One problem:

Resolution of data messes with ordering

The PoCSverse Branching Networks I 31 of 56

Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

One problem:

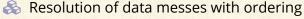
Resolution of data messes with ordering

Micro-description changes (e.g., order of a basin may increase)

The PoCSverse Branching Networks I 31 of 56

Introduction Laws

Stream Ordering


Horton's Laws

Tokunaga's Law

Nutshell

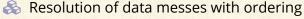
One problem:

Micro-description changes (e.g., order of a basin may increase)

...but relationships based on ordering appear to be robust to resolution changes. The PoCSverse Branching Networks I 31 of 56

Definitions
Allometry
Laws

Stream Ordering


Horton's Laws

Tokunaga's Law

Nutshell

One problem:

Micro-description changes (e.g., order of a basin may increase)

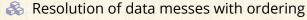
...but relationships based on ordering appear to be robust to resolution changes.

Utility:

The PoCSverse Branching Networks I 31 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering


Horton's Laws

Tokunaga's Law

Nutshell

One problem:

Micro-description changes (e.g., order of a basin may increase)

...but relationships based on ordering appear to be robust to resolution changes.

Utility:

Stream ordering helpfully discretizes a network.

The PoCSverse Branching Networks I 31 of 56

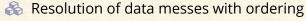
ntroduction

Definitions

Allometry

Laws

Stream Ordering


Horton's Laws

Tokunaga's Law

Nutshell

One problem:

Micro-description changes (e.g., order of a basin may increase)

...but relationships based on ordering appear to be robust to resolution changes.

Utility:

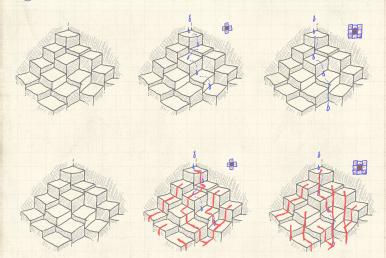
Stream ordering helpfully discretizes a network.

Goal: understand network architecture

The PoCSverse Branching Networks I 31 of 56

ntroduction
Definitions
Allometry
Laws

Stream Ordering


Horton's Laws

Tokunaga's Law

Nutshell

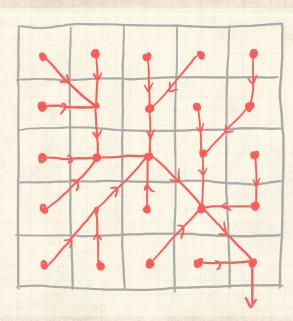
Basic algorithm for extracting networks from Digital Elevation Models (DEMs):

The PoCSverse Branching Networks I 32 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

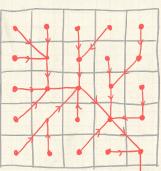

Tokunaga's Law Nutshell

References

/Users/dodds/work/rivers/1998dems/kevinlakewaster.c

The PoCSverse Branching Networks I 33 of 56

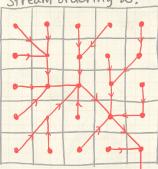
Introduction
Definitions
Allometry
Laws


Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell



stream ordering w:

main stream length L:

The PoCSverse Branching Networks I 34 of 56

Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

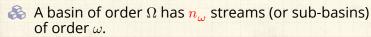
Resultant definitions:

 \triangle A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .

The PoCSverse Branching Networks I 35 of 56

Introduction Definitions Laws

Stream Ordering


Horton's Laws

Tokunaga's Law

Nutshell

Resultant definitions:

$$n_{\omega} > n_{\omega+1}$$

The PoCSverse Branching Networks I 35 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Resultant definitions:

A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .

$$n_{\omega} > n_{\omega+1}$$

 \clubsuit An order ω basin has area a_{ω} .

The PoCSverse Branching Networks I 35 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Resultant definitions:

- & A basin of order Ω has $n_ω$ streams (or sub-basins) of order ω.
 - $n_{\omega} > n_{\omega+1}$
- $\mbox{\&}$ An order ω basin has area a_{ω} .
- \triangle An order ω basin has a main stream length ℓ_{ω} .

The PoCSverse Branching Networks I 35 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Resultant definitions:

- & A basin of order Ω has $n_ω$ streams (or sub-basins) of order ω.
 - $n_{\omega} > n_{\omega+1}$
- \clubsuit An order ω basin has area a_{ω} .
- \Leftrightarrow An order ω basin has a main stream length ℓ_{ω} .
- \clubsuit An order ω basin has a stream segment length s_{ω}

The PoCSverse Branching Networks I 35 of 56

ntroduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Resultant definitions:

- A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .
 - $n_{\omega} > n_{\omega+1}$
- \clubsuit An order ω basin has area a_{ω} .
- $\mbox{\&}$ An order ω basin has a main stream length ℓ_{ω} .
- \red{a} An order ω basin has a stream segment length s_{ω}
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω

The PoCSverse Branching Networks I 35 of 56

ntroduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

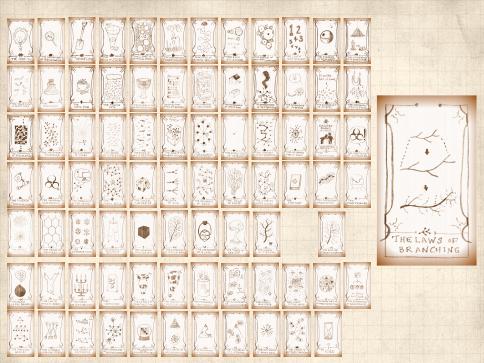
Nutshell

Resultant definitions:

- & A basin of order Ω has $n_ω$ streams (or sub-basins) of order ω.
 - $n_{\omega} > n_{\omega+1}$
- \clubsuit An order ω basin has area a_{ω} .
- \clubsuit An order ω basin has a main stream length ℓ_{ω} .
- $\red {\Bbb A}$ An order ω basin has a stream segment length s_ω
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega-1$ streams

The PoCSverse Branching Networks I 35 of 56

ntroduction
Definitions
Allometry
Laws


Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Horton's laws Self-similarity of river networks

The PoCSverse Branching Networks I 37 of 56

Introduction
Definitions
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Laws

Self-similarity of river networks

First quantified by Horton (1945)[4], expanded by Schumm (1956) [6]

The PoCSverse Branching Networks I 37 of 56

Introduction

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

Three laws:

The PoCSverse Branching Networks I 37 of 56

Introduction

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

Three laws:

Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

The PoCSverse Branching Networks I 37 of 56

Introduction

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

Three laws:

Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1}=R_n>1$$

Horton's law of stream lengths:

$$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega}=R_{\ell}>1$$

The PoCSverse Branching Networks I 37 of 56

Introduction

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

A First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

Three laws:

Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

Horton's law of stream lengths:

$$\boxed{\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell} > 1}$$

Horton's law of basin areas:

$$\left| \bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a > 1 \right|$$

The PoCSverse Branching Networks I 37 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Laws

Horton's Ratios:

So ...laws are defined by three ratios:

 R_n , R_ℓ , and R_a .

The PoCSverse Branching Networks I 38 of 56

Introduction Definitions Allometry

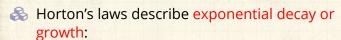
Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Laws



Horton's Ratios:

So ...laws are defined by three ratios:

$$R_n, R_\ell, \text{ and } R_a.$$

$$\begin{split} n_{\omega} &= n_{\omega-1}/R_n \\ &= n_{\omega-2}/R_n^2 \\ &\vdots \\ &= n_1/R_n^{\omega-1} \\ &= n_1 e^{-(\omega-1)\ln R_n} \end{split}$$

The PoCSverse Branching Networks I 38 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Similar story for area and length:

The PoCSverse Branching Networks I 39 of 56

Introduction
Definitions
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Laws

Similar story for area and length:

$$\bar{a}_{\omega} = \bar{a}_1 e^{(\omega-1) \ln\!R_a}$$

$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega - 1) \ln R_{\ell}}$$

The PoCSverse Branching Networks I 39 of 56

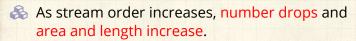
Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell


Similar story for area and length:

$$\bar{a}_{\omega} = \bar{a}_1 e^{(\omega - 1) \ln R_a}$$

$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega - 1) \ln R_{\ell}}$$

The PoCSverse Branching Networks I 39 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A few more things:

The PoCSverse Branching Networks I 40 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A few more things:

Horton's laws are laws of averages.

The PoCSverse Branching Networks I 40 of 56

Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A few more things:

Horton's laws are laws of averages.

Averaging for number is across basins.

The PoCSverse Branching Networks I 40 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A few more things:

- Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.

The PoCSverse Branching Networks I 40 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A few more things:

- Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network ...

The PoCSverse Branching Networks I 40 of 56

Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A few more things:

- Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network ...
- But we need one other piece of information ...

The PoCSverse Branching Networks I 40 of 56

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A bonus law:

Horton's law of stream segment lengths:

$$\bar{s}_{\omega+1}/\bar{s}_{\omega}=R_s>1$$

The PoCSverse Branching Networks I 41 of 56

Introduction Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A bonus law:

Horton's law of stream segment lengths:

$$\boxed{\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s > 1}$$

 \Leftrightarrow Can show that $R_s = R_{\ell}$.

The PoCSverse Branching Networks I 41 of 56

Introduction Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A bonus law:

Horton's law of stream segment lengths:

$$\boxed{\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s > 1}$$

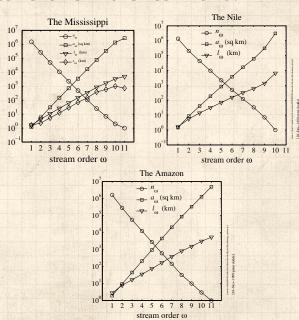
 \mathfrak{S} Can show that $R_s = R_{\ell}$.

Insert question from assignment 1

The PoCSverse Branching Networks I 41 of 56

Introduction Laws

Stream Ordering


Horton's Laws

Tokunaga's Law

Nutshell

Horton's laws in the real world:

The PoCSverse Branching Networks I 42 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Blood networks:

The PoCSverse Branching Networks I 43 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

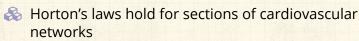
Blood networks:

A Horton's laws hold for sections of cardiovascular networks

The PoCSverse Branching Networks I 43 of 56

Introduction Allometry Laws

Stream Ordering


Horton's Laws

Tokunaga's Law

Nutshell

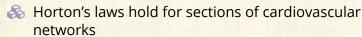
Blood networks:

Measuring such networks is tricky and messy ...

The PoCSverse Branching Networks I 43 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering


Horton's Laws

Tokunaga's Law

Nutshell

Blood networks:

Measuring such networks is tricky and messy ...

Vessel diameters obey an analogous Horton's law.

The PoCSverse Branching Networks I 43 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Data from real blood networks

	D			$\ln R_r$	$\ln\!R_{\scriptscriptstyle \ell}$	
Network	R_n	R_r	R_{ℓ}	$-\frac{\ln R_r}{\ln R_n}$	$-\frac{\ln R_{\ell}}{\ln R_n}$	α
West <i>et al.</i>	-	-	-	1/2	1/3	3/4
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
cat (PAT) ^[11]	3.67	1.71	1.78	0.41	0.44	0.79
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
3						
pig (LCX)	3.57	1.89	2.20	0.50	0.62	0.62
pig (RCA)	3.50	1.81	2.12	0.47	0.60	0.65
pig (LAD)	3.51	1.84	2.02	0.49	0.56	0.65
10.						
human (PAT)	3.03	1.60	1.49	0.42	0.36	0.83
human (PAT)	3.36	1.56	1.49	0.37	0.33	0.94

The PoCSverse Branching Networks I 44 of 56

Introduction
Definitions
Allometry
Laws
Stream Ordering

Horton's Laws
Tokunaga's Law
Nutshell

Observations:

Horton's ratios vary:

3.0-5.0 R_n R_a 3.0–6.0 R_{ℓ} 1.5 - 3.0 The PoCSverse Branching Networks I 45 of 56

Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Observations:

Horton's ratios vary:

 R_n 3.0–5.0 R_a 3.0-6.0 R_{ℓ} 1.5–3.0

No accepted explanation for these values.

The PoCSverse Branching Networks I 45 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Observations:

Horton's ratios vary:

 R_n 3.0-5.0 R_a 3.0-6.0 R_{ℓ} 1.5–3.0

No accepted explanation for these values.

Horton's laws tell us how quantities vary from level to level ...

The PoCSverse Branching Networks I 45 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Observations:

& Horton's ratios vary:

 $egin{array}{ll} R_n & 3.0 - 5.0 \\ R_a & 3.0 - 6.0 \\ R_\ell & 1.5 - 3.0 \\ \end{array}$

No accepted explanation for these values.

Horton's laws tell us how quantities vary from level to level ...

...but they don't explain how networks are structured. The PoCSverse Branching Networks I 45 of 56

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Delving deeper into network architecture:

The PoCSverse Branching Networks I 46 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Delving deeper into network architecture:

Nokunaga (1968) identified a clearer picture of network structure [8, 9, 10]

The PoCSverse Branching Networks I 46 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Delving deeper into network architecture:

Nokunaga (1968) identified a clearer picture of network structure [8, 9, 10]

As per Horton-Strahler, use stream ordering.

The PoCSverse Branching Networks I 46 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Delving deeper into network architecture:

- Tokunaga (1968) identified a clearer picture of network structure [8, 9, 10]
- As per Horton-Strahler, use stream ordering.
- Focus: describe how streams of different orders connect to each other.

The PoCSverse Branching Networks I 46 of 56

Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Delving deeper into network architecture:

- Nokunaga (1968) identified a clearer picture of network structure [8, 9, 10]
- As per Horton-Strahler, use stream ordering.
- Recursive to each other.
- Tokunaga's law is also a law of averages.

The PoCSverse Branching Networks I 46 of 56

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definition:

 $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ

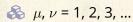
The PoCSverse Branching Networks 47 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law


Nutshell

Definition:

 $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ

The PoCSverse Branching Networks 47 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definition:

 $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ

& μ , ν = 1, 2, 3, ...

 $\Leftrightarrow \mu \geq \nu + 1$

The PoCSverse Branching Networks 47 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definition:

- $T_{\mu,\nu}=$ the average number of side streams of order ν that enter as tributaries to streams of order μ
- & μ , ν = 1, 2, 3, ...
- Recall each stream segment of order μ is 'generated' by two streams of order $\mu-1$

The PoCSverse Branching Networks I 47 of 56

Introductio
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definition:

- $T_{\mu,\nu}=$ the average number of side streams of order ν that enter as tributaries to streams of order μ
- & μ , ν = 1, 2, 3, ...
- Recall each stream segment of order μ is 'generated' by two streams of order $\mu-1$
- These generating streams are not considered side streams.

The PoCSverse Branching Networks I 47 of 56

Introductio
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

D-6----

Tokunaga's law

The PoCSverse Branching Networks I 48 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

The PoCSverse Branching Networks I 48 of 56

Introduction

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu} = T_{\mu-\nu}$$

The PoCSverse Branching Networks I 48 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu} = T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

The PoCSverse Branching Networks I 48 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu} = T_{\mu-\nu}$$

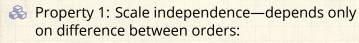
Property 2: Number of side streams grows exponentially with difference in orders:

$$T_{\mu,\nu} = T_1(R_T)^{\mu-\nu-1}$$

The PoCSverse Branching Networks I 48 of 56

Introduction

Stream Ordering


Horton's Laws

Laws

Tokunaga's Law Nutshell

Tokunaga's law

$$T_{\mu,\nu} = T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

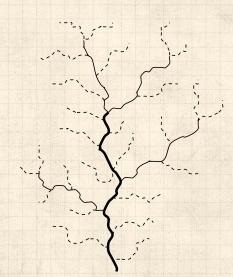
$$T_{\mu,\nu} = T_1(R_T)^{\mu-\nu-1}$$

We usually write Tokunaga's law as:

$$T_k = T_1(R_T)^{k-1}$$
 where $R_T \simeq 2$

The PoCSverse Branching Networks I 48 of 56

Laws


Stream Ordering Horton's Laws

Tokunaga's Law Nutshell

Tokunaga's law—an example:

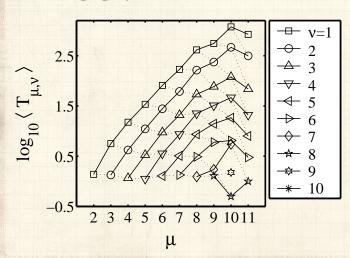
 $T_1 \simeq 2$ $R_T \simeq 4$

The PoCSverse Branching Networks I 49 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws


Tokunaga's Law

Nutshell

The Mississippi

A Tokunaga graph:

The PoCSverse Branching Networks I 50 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

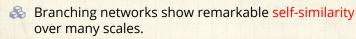
Nutshell References

Nutshell:

Branching networks show remarkable self-similarity over many scales.

The PoCSverse Branching Networks I 51 of 56

Introduction
Definitions
Allometry
Laws


Stream Ordering

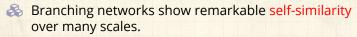
Horton's Laws

Tokunaga's Law

Nutshell

There are many interrelated scaling laws.

The PoCSverse Branching Networks I 51 of 56


Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

There are many interrelated scaling laws.

Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks. The PoCSverse Branching Networks I 51 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.

The PoCSverse Branching Networks I 51 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.

The PoCSverse Branching Networks I 51 of 56

Introductio
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.

The PoCSverse Branching Networks I 51 of 56

Introductio
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

~~~~ ·



- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.

The PoCSverse Branching Networks I 51 of 56

Introductio
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law



- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- A Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- & Horton and Tokunaga can be connected analytically.

The PoCSverse Branching Networks I 51 of 56

Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell



- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- & Horton and Tokunaga can be connected analytically.
- Surprisingly:

$$R_n = \frac{(2+R_T+T_1)+\sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

The PoCSverse Branching Networks I 51 of 56

Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell



# Crafting landscapes—Far Lands or Bust ::



The PoCSverse Branching Networks I 52 of 56

Introduction Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell



# References I

[1] P. S. Dodds and D. H. Rothman.
Unified view of scaling laws for river networks.
Physical Review E, 59(5):4865–4877, 1999. pdf

✓

[2] W. S. Glock. The development of drainage systems: A synoptic view.

The Geographical Review, 21:475–482, 1931. pdf ☑

[3] J. T. Hack.
Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957. pdf

✓

The PoCSverse Branching Networks I 53 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell



## References II

[4] R. E. Horton.

Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology.

Bulletin of the Geological Society of America, 56(3):275–370, 1945. pdf

- [5] I. Rodríguez-Iturbe and A. Rinaldo.
   Fractal River Basins: Chance and
   Self-Organization.
   Cambridge University Press, Cambrigde, UK,
   1997.
- [6] S. A. Schumm.
  Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey.
  Bulletin of the Geological Society of America, 67:597–646, 1956. pdf

The PoCSverse Branching Networks I 54 of 56

ntroduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell



# References III

63:1117-1142, 1952.

[7] A. N. Strahler.
 Hypsometric (area altitude) analysis of erosional topography.
 Bulletin of the Geological Society of America,

[8] E. Tokunaga. The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966. pdf

 [9] E. Tokunaga.
 Consideration on the composition of drainage networks and their evolution.
 Geographical Reports of Tokyo Metropolitan

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf ☑

The PoCSverse Branching Networks I 55 of 56

ntroduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell



# References IV

[10] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

[11] D. L. Turcotte, J. D. Pelletier, and W. I. Newman.

Networks with side branching in biology.

Journal of Theoretical Biology, 193:577–592, 1998.

pdf

The PoCSverse Branching Networks I 56 of 56

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

