Branching Networks I

Last updated: 2023/01/24, 09:23:51 EST

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 300, 303, & 394, 2022-2023 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

000 Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS

@pocsvox

Branching

Networks I

Allometry

Nutshell

References

Stream Ordering

Horton's Laws

Tokunaga's Law

PoCS

@pocsvox

Branching

Networks

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Lav

Nutshell

References

Allometry

Outline

n	tr	0	Ы	1.1	<u> </u>	ti	0	n	
	u	U	u	u	C	u	U		

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

Introduction

Branching networks are useful things:

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

- 🗞 River networks (our focus)
- 🗞 Cardiovascular networks
- 🚳 Plants
- Evolutionary trees
- Organizations (only in theory ...)

Branching networks are everywhere ...

Branching networks are everywhere ...

http://en.wikipedia.org/wiki/Image:Applebox.JPG

(I) (S

PoCS

@pocsvox

Branching Networks

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

UM 8

Allometry

An early thought piece: Extension and Integration

'The Development of Drainage Systems: A Synoptic View" Waldo S. Glock,

The Geographical Review, 21, 475-482,

1931.^[2]

Initiation,

Elongation

Elaboration, Abstraction, Piracy. Absorption.

PoCS

@pocsvo>

Branching

Networks

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Reference

8

PoCS

@pocsvox

Branching

Networks

Introduction

Stream Ordering

Horton's Laws

Nutshell

References

Branching

Networks

Introduction

Stream Ordering

Horton's Law

Nutshell

References

Tokunaga's Lav

Allometr

PoCS @pocsvox

Tokunaga's Law

Allometro

Laws

•ე զ. ભ 7 of 54

Allometry

Introduction Allometry Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

PoCS

@pocsvo>

Branching

Networks

The sequential stages recognized in the evolution of a drainage system are "extension" and "integration"; the first, a stage of increasing complexity; the second, of simplification.

000 ୬ ବ 🗠 10 of 54

PoCS @pocsvo> Branching Networks

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

Definitions

 \bigotimes Drainage basin for a point p is the complete region

of land from which overland flow drains through p. line the sensible for a point in a stream.

Recursive structure: Basins contain basins and so on.

- ln principle, a drainage basin is defined at every point on a landscape.
- line construction of the second secon linear.
- & We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks ...

Geomorphological networks

Definitions

00 ୬ ବ (୦୦ 12 of 54

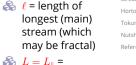
Basic basin quantities: a, l, L_{\parallel} , L_{\perp} :

а

 L_{\perp}

 $L_{\parallel} = L$

Branching Networks



a = drainage

basin area

 $lag{l} L = L_{\perp}$ = width of

basin

References longitudinal length of basin

(in |

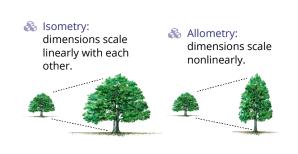
a

(in |S •⊃ < <>> 13 of 54

PoCS @pocsvo>

Tokunaga's Law Nutshell

Allometry



PoCS @pocsvox	There are a fev	v more 'laws': ^[1]	PoCS @pocsvox
Branching Networks I			Branching Networks I
	Relation:	Name or description:	
Introduction			duction
Definitions Allometry	$T_k = T_1(R_T)^{k-1}$	Tokunaga's law	tions etry
Laws	$\ell \sim L^d$	self-affinity of single channels	un Ordering
Stream Ordering Horton's Laws	$n_{\omega}/n_{\omega+1}=R_n$	Horton's law of stream numbers	im Ordering on's Laws
Tokunaga's Law	$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	Horton's law of main stream length	5 naga's Law
Nutshell	$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	Horton's law of basin areas	hell
References	$\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s$	Horton's law of stream segment len	gths _{rences}
	$L_\perp \sim L^H$	scaling of basin widths	
	$P(a) \sim a^{-\tau}$	probability of basin areas	
	$P(\ell) \sim \ell^{-\gamma}$	probability of stream lengths	
		Hack's law	
	$a \sim L^D$	scaling of basin areas	
	$\Lambda \sim a^\beta$	Langbein's law	
	$\lambda \sim L^{\varphi}$	variation of Langbein's law	IQI
୍ଚି ।			UNN SS
- ን			-
PoCS @pocsvox	Reported para	meter values: ^[1]	PoCS @pocsvox
Branching Networks I			Branching Networks I
	2		
Introduction	Para	meter: Real networks:	Introduction
Allometry Laws		<i>R_n</i> 3.0–5.0	Allometry Laws

3.0-6.0

1.5-3.0

1.0-1.5

 $D = 1.8 \pm 0.1$

 1.1 ± 0.01

0.50-0.70

 1.43 ± 0.05

 1.05 ± 0.05

 1.8 ± 0.1

H 0.75–0.80 0.50-0.70

 R_a

 T_1

d

h

τ

 γ

β

 φ

 $R_{\ell} = R_T$

Stream Ordering:

Stream Ordering

Horton's Laws

Nutshell

() ()

PoCS

@pocsvox

Branching

Networks

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

(III)

Allometry

Laws

∙n q (~ 20 of 54

References

Tokunaga's Law

PoCS @pocsvo> Branching Networks

Definitions Allometry Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

Introduction

🗞 Introduced by Horton (1945) ^[4]	
🗞 Modified by Strahler (1957) ^[7]	
left Term: Horton-Strahler Stream Ordering [5]	

land be seen as iterative trimming of a network.

Method for describing network architecture:

	ሳ ዓ (ዮ 23 of 54
ream Ordering:	PoCS @pocsvox
	Branching Networks I

Some definitions:

Stream Ordering:

St

- line and the second sec becomes focused enough to form a stream.
- A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- Solution Use symbol $\omega = 1, 2, 3, ...$ for stream order.
- () () ∽ q (~ 24 of 54

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Allometry

Nutshell

References

PoCS

@pocsvox Branching Networks

Stream Ordering Horton's Laws iga's Law

- ces

	\$	5	Tokunag
	((Nutshell
			Reference
1. Label all source strea	ams as order $\omega = 1$ a	and	
remove.			
2. Label all new source	streams as order ω	= 2 and	

2. Label all new source streams as order $\omega = 2$ and remove.

- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

ି 🎆 ∽ q (~ 25 of 54

a $L_{\parallel} = L$ L_{\perp}

Basin allometry

Allometric elationships:
$\&$ $\ell \propto a^h$
${\color{black} \bigotimes} \ell \propto L^d$
🗞 Combine above:

ric ships:	Introduction Definitions Allometry Laws
	Stream Ordering
a h	Horton's Laws
$\ell \propto a^h$	Tokunaga's Law
	Nutshell
$\ell \propto L^d$	References
bine above:	

 $a \propto L^{d/h} \equiv L^D$

0

Kind o

- 1. Fi e relationships are connected.
- 2. D indamental description.
- 3. E hese parameter values

For (3): Many attempts: not yet sorted out ...

reportedly 1.0 < d < 1.1

 $\ell \propto a^h$

reportedly 0.5 < h < 0.7

 $\ell \propto L^d_{\rm H}$

🚳 Scaling of main stream length with basin size:

Basin allometry:

🚳 Hack's law (1957)^[3]:

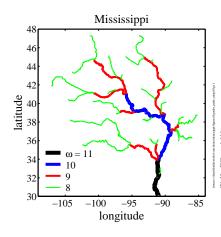
'Laws'



 $D < 2 \rightarrow$ basins elongate.

ofa	mess	

Stream Ordering—A large example:



Stream Ordering:

Another way to define ordering:

- As before, label all source streams as order $\omega = 1$.
- 🚳 Follow all labelled streams downstream
- \Re Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega + 1$).
- lf streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.
- \delta Simple rule:

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.

Stream Ordering:

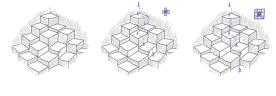
One problem:

- Resolution of data messes with ordering
- A Micro-description changes (e.g., order of a basin may increase)
- 🚳 ...but relationships based on ordering appear to be robust to resolution changes.

Utility:

- Stream ordering helpfully discretizes a network.
- Goal: understand network architecture

Basic algorithm for extracting networks from **Digital Elevation Models (DEMs):**



\Lambda Also: ୬ ୦ ୦ ୦ େ 26 of 54

PoCS

@pocsvox

Branching

Networks

Introduction

Stream Ordering

Horton's Laws

Nutshell

(m) [8]

PoCS

@pocsvox

Branching

Networks

Allometry

Nutshell

PoCS

@pocsvox

Branching

Networks

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Allometry

Nutshell

References

•∋ < <> 27 of 54

Mississippi

longitude

References

Stream Ordering

Horton's Laws

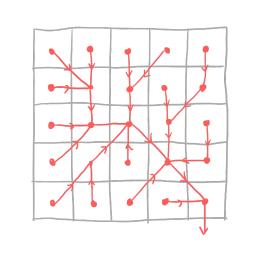
Tokunaga's Law

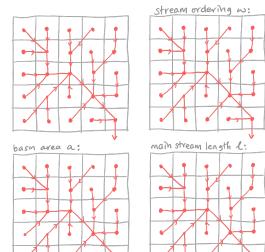
References

Tokunaga's Law

Allometry

/Users/dodds/work/rivers/1998dems/kevinlakewasters 29 of 54





Stream Ordering:

PoCS

@pocsvox

Branching

Networks

Introduction

Stream Ordering

Horton's Laws

Nutshell

References

12

UVH

PoCS

@pocsvox

Branching

Networks

Introduction

Tokunaga's Law

Allometry

Nutshell

References

Tokunaga's Law

Allometry

Resultant definitions:

A basin of order Ω has n_{μ} streams (or sub-basins) of order ω .

 $n_{\omega} > n_{\omega+1}$

- An order ω basin has area a_{ω} .
- An order ω basin has a main stream length ℓ_{ω} .
- An order ω basin has a stream segment length s_{ω}
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω 2. an order ω stream segment runs from the basin
 - outlet up to the junction of two order $\omega 1$ streams

00

• n q (+ 32 of 54

PoCS @pocsvox	
Branching Networks I	

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Allometry Laws

Nutshell

References

First guantified by Horton (1945)^[4], expanded by Schumm (1956)^[6]

Stream Ordering Three laws: Horton's Laws

Horton's laws

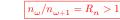
Horton's laws

Horton's Ratios:

growth:

Horton's law of stream numbers:

Self-similarity of river networks



A Horton's law of stream lengths:

 $R_n, R_\ell, \text{ and } R_n$.

Horton's law of basin areas:

So ... laws are defined by three ratios:

A Horton's laws describe exponential decay or

 $n_{\omega} = n_{\omega-1}/R_n$

 $= n_{\omega-2}/R_n^{\ 2}$

 $= n_1 / R_n^{\omega - 1}$

 $= n_1 e^{-(\omega-1) \ln R_n}$

∙n q (~ 30 of 54

PoCS

@pocsvox

Branching

Networks

Introduction

Stream Ordering

Horton's Laws

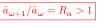
Tokunaga's Law

Allometry

Nutshell

References

(in |



() () • n q (~ 34 of 54

PoCS @pocsvox Branching Networks

Introduction Allometry

Stream Ordering Horton's Laws

Tokunaga's Lav Nutshell

References

PoCS @pocsvo> Branching Networks

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Allometry

Nutshell

References

Horton's laws

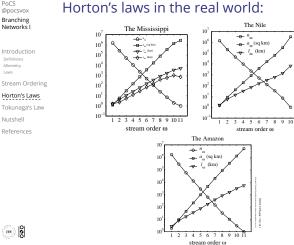
Similar story for area and length:

 $\bar{a}_{\omega}=\bar{a}_{1}e^{(\omega-1){\rm ln}R_{a}}$

 $\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega - 1) \ln R_{\ell}}$

8

As stream order increases, number drops and area and length increase.



00

PoCS

@pocsvox

Branching Networks I

Allometry

Nutshell

References

Stream Ordering

Horton's Laws

Tokunaga's Law

PoCS

@pocsvox

Branching

Networks I

Introduction

Horton's Laws

Tokunaga's Law

References

Allometry

Horton's laws-at-large

A few more things:

Horton's laws

- 🚯 Horton's laws are laws of averages.
- Averaging for number is across basins.
- line and areas is within the second s basins.
- Horton's ratios go a long way to defining a branching network ...
- But we need one other piece of information ...

Blood networks:

- A Horton's laws hold for sections of cardiovascular networks
- Measuring such networks is tricky and messy ...
- law. Vessel diameters obey an analogous Horton's law.

•ე q (№ 37 of 54

PoCS

@pocsvox

Data from real blood networks

Horton's laws

A Horton's law of stream segment lengths:

\bigotimes Can show that $R_s = R_{\ell}$.

🚳 Insert question from assignment 1 🗹

Introduction	Network	R_n	R_r	R_ℓ	$-\frac{\ln R_r}{\ln R_n}$	$-\frac{\ln R_\ell}{\ln R_n}$	α	Introduction
Allometry Laws Stream Ordering	West <i>et al.</i>	-	-	-	1/2	1/3	3/4	Allometry Laws Stream Ordering
Horton's Laws Tokunaga's Law	rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73	Horton's Laws Tokunaga's Law
Nutshell References	cat (PAT) ^[11]	3.67	1.71	1.78	0.41	0.44	0.79	Nutshell References
	dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90	
	pig (LCX) pig (RCA)	3.57 3.50	1.89 1.81	2.20 2.12	0.50 0.47	0.62 0.60	0.62 0.65	
	pig (LAD)	3.51	1.84	2.02	0.49	0.56	0.65	
S	human (PAT) human (PAT)	3.03 3.36	1.60 1.56	1.49 1.49	0.42 0.37	0.36 0.33	0.83 0.94	

Horton's laws

Networks Introduction **Observations:** Definition: Allometry Laws 🚳 Horton's ratios vary: Stream Ordering *R_n* 3.0–5.0 Horton's Laws *R_a* 3.0-6.0 Tokunaga's Law *R*_ℓ 1.5–3.0 Nutshell References No accepted explanation for these values.

- A Horton's laws tell us how quantities vary from level to level ...
- 🚳 ...but they don't explain how networks are structured.

()) ())	
୬ ଏ. ଫ 39 of 54	

PoCS

@pocsvox

Branching

Networks

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

() ()

Laws

PoCS

@pocsvox

Branching

Networks

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

Allometry

Tokunaga's law

• ୨ ୧.୦ + 42 of 54 PoCS

(III)

PoCS

@pocsvo> Branching

@pocsvox Branching Networks

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Allometry

Nutshell

References

Introduction

Delving deeper into network architecture:

- 🗞 Tokunaga (1968) identified a clearer picture of network structure^[8, 9, 10]
- Nutshell References

As per Horton-Strahler, use stream ordering.

- Focus: describe how streams of different orders connect to each other.
- 🚯 Tokunaga's law is also a law of averages.
- () () ୬ ବ ଦ 43 of 54

PoCS

@pocsvox Branching Networks

Introduction Allometry

Stream Ordering Horton's Laws

Tokunaga's Law Nutshell

References

() ()

Network Architecture @pocsvox Branching Networks

Definition:

 $rac{1}{8}$ $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ

Recall each stream segment of order μ is

'generated' by two streams of order $\mu - 1$ These generating streams are not considered side

🔬 μ, ν = 1, 2, 3, ... $\& \mu \geq \nu + 1$

streams.

Network Architecture

Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

 $T_{\mu,\nu}=T_{\mu-\nu}$

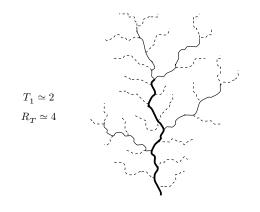
Property 2: Number of side streams grows exponentially with difference in orders:

 $T_{\mu,\nu}=T_1(R_T)^{\mu-\nu-1}$

🗞 We usually write Tokunaga's law as:

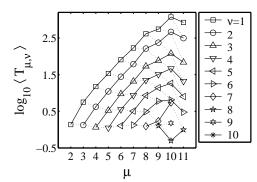
 $T_k = T_1(R_T)^{k-1}$ where $R_T \simeq 2$

Tokunaga's law—an example:



The Mississippi

A Tokunaga graph:



Nutshell:

PoCS

@pocsvox

Branching

Networks I

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

(m) [8]

PoCS

@pocsvox

Branching

Networks I

Allometry

Stream Ordering

Horton's Laws

Nutshell

References

Tokunaga's Law

•ጋ < C+ 45 of 54

Allometry

- Sranching networks show remarkable self-similarity over many scales.
- laws. There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- 🚳 Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- 🛞 Horton and Tokunaga can be connected analytically.
- 🚳 Surprisingly:

 $R_n = \frac{(2+R_T+T_1) + \sqrt{(2+R_T+T_1)^2 - 8R_T}}{2}$

Crafting landscapes—Far Lands or Bust 🗷:

わくぐ 46 of 54

(I) (S

PoCS

@pocsvox

Branching Networks

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Allometry

Nutshell

References

References I

- P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf C
- [2] W. S. Glock. The development of drainage systems: A synoptic view. <u>The Geographical Review</u>, 21:475–482, 1931. pdf^C
- J. T. Hack.
 Studies of longitudinal stream profiles in Virginia and Maryland.
 United States Geological Survey Professional

Paper, 294-B:45–97, 1957. pdf

References II

PoCS

@pocsvox

Branching

Networks

Introduction

Stream Ordering

Horton's Laws

Nutshell

PoCS

@pocsvox

Branching

Networks

Introduction

Stream Ordering

Horton's Laws

Nutshell

Reference

(in 19

PoCS

@pocsvox

Branching

Networks

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Allometry

Nutshell

References

(in |

ൗ < ເ≁ 50 of 54

•ጋ q (ጐ 49 of 54

Tokunaga's Law

Allometry

୬ ବ ଦ 48 of 54

Tokunaga's Law

Allometry

- [4] R. E. Horton.
 Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology.
 Bulletin of the Geological Society of America, 56(3):275–370, 1945. pdf C^A
- [5] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997.
- [6] S. A. Schumm.
 Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey.
 <u>Bulletin of the Geological Society of America</u>, 67:597–646, 1956. pdf

References III

 [7] A. N. Strahler. Hypsometric (area altitude) analysis of erosional topography.
 <u>Bulletin of the Geological Society of America</u>, 63:1117–1142, 1952.

[8] E. Tokunaga. The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. <u>Geophysical Bulletin of Hokkaido University</u>, 15:1–19, 1966. pdf C[™]

 [9] E. Tokunaga.
 Consideration on the composition of drainage networks and their evolution.
 Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf

References IV

PoCS @pocsvox Branching

(III)

[10] E. Tokunaga.

- Ordering of divide segments and law of divide segment numbers. Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.
- [11] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577–592, 1998. pdf 27

PoCS @pocsvox Branching Networks

> Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

্র ৩৭৬ 51 of 54

> PoCS @pocsvox Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

Branching Networks I Introduction Definitions Allometry Laws

Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

