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Basic idea:

Random networks with arbitrary degree
distributions cover much territory but do not
represent all networks.
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Basic idea:

Random networks with arbitrary degree
distributions cover much territory but do not
represent all networks.

Moving away from pure random networks was a
key first step.
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Basic idea:

Random networks with arbitrary degree
distributions cover much territory but do not
represent all networks.

Moving away from pure random networks was a
key first step.

We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.
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Basic idea:

Random networks with arbitrary degree
distributions cover much territory but do not
represent all networks.

Moving away from pure random networks was a
key first step.

We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.
Node attributes may be anything, e.g.:

1. degree

2. demographics (age, gender, etc.)

3. group affiliation
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Node attributes may be anything, e.g.:

1. degree

2. demographics (age, gender, etc.)

3. group affiliation

We speak of mixing patterns, correlations, biases... 4. PoCS
Networks are still random at base but now have 2
more global structure.

Build on work by Newman > ©, and Bogufia and

Serano. ',
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General mixing between node categories

Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....
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Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....

Consider networks with directed edges.
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General mixing between node categories

Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....

Consider networks with directed edges.

eMV::Pr(

an edge connects a node of type u
to a node of type v

)
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Notes:

Varying e,,,, allows us to move between the
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Notes:

Varying e ,,, allows us to move between the
following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requirese,, = 0if u # v and ZH i

2. Uncorrelated networks (as we have studied so far)
For these we must have independence:
€, =0a,b,.

3. Disassortative networks where nodes connect to
nodes distinct from themselves.

Disassortative networks can be hard to build and
may require constraints on thee,, ..

Basic story: level of assortativity reflects the
degree to which nodes are connected to nodes
within their group.
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Quantify the level of assortativity with the
following assortativity coefficient [°!;

g Zue““_zua“b“ 2k TrE—||E?||,
1 Myalb L || B2y

LI O

where || - ||; is the 1-norm = sum of a matrix’s
entries.

TrE is the fraction of edges that are within groups.

The PoCSverse
Assortativity and
Mixing

8 of 40

Definition

General mixing

Assortativity by
degree

Contagion
Spre.

Expected si

References

@ PoCS



Correlation coefficient:

Quantify the level of assortativity with the
following assortativity coefficient [°!;

e 2 BT 2 e _ TrE—||E?||,

r = =
1_Zp,aﬂbli 1_HE2H1

where || - ||; is the 1-norm = sum of a matrix’s
entries.

TrE is the fraction of edges that are within groups.

||E2||, is the fraction of edges that would be
within groups if connections were random.
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Correlation coefficient:

Quantify the level of assortativity with the
following assortativity coefficient [°!;
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where || - ||; is the 1-norm = sum of a matrix’s
entries.

TrE is the fraction of edges that are within groups.

||E2||, is the fraction of edges that would be
within groups if connections were random.

1 —||E?||; is a normalization factor so 7., = 1.
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Correlation coefficient:

Quantify the level of assortativity with the
following assortativity coefficient [°!;

e 2 BT 2 e _ TrE—||E?||,

r = =
1_Zp,aﬂbli 1_HE2H1

where || - ||; is the 1-norm = sum of a matrix’s
entries.

TrE is the fraction of edges that are within groups.

||E2||, is the fraction of edges that would be
within groups if connections were random.

1 —||E?||; is a normalization factor so 7., = 1.
When Tre,, =1, we haver=1. ¥
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r = —1 is inaccessible if three or more types are
present.

Disassortative networks simply have nodes
connected to unlike nodes—no measure of how
unlike nodes are.
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Correlation coefficient:

r = —1 is inaccessible if three or more types are
present.

Disassortative networks simply have nodes
connected to unlike nodes—no measure of how
unlike nodes are.

Minimum value of r occurs when all links between
non-like nodes: Tr el 0
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Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
Examples: age in years, height in inches, number
of friends, ...
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Scalar quantities
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Examples: age in years, height in inches, number
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e, = Pr(arandomly chosen edge connects a node
with value j to a node with value k).
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Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
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of friends, ...

e, = Pr(arandomly chosen edge connects a node
with value j to a node with value k).

a; and b, are defined as before.
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Scalar quantities

Now consider nodes defined by a scalar integer
quantity.

Examples: age in years, height in inches, number
of friends, ...

e, = Pr(arandomly chosen edge connects a node
with value j to a node with value k).

a; and b, are defined as before.

Can now measure correlations between nodes

based on this scalar quantity using standard
Pearson correlation coefficient (3"
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Examples: age in years, height in inches, number Assortativity by
of friends, ... SERes
Contagion

e, = Pr(arandomly chosen edge connects a node e
with value j to a node with value k). Expeced sz

a; and b, are defined as before. Sk
Can now measure correlations between nodes
based on this scalar quantity using standard
Pearson correlation coefficient ("
Y E]kzjk<€.7k ajbk) B <]k>_<.7>a<k>b
r= i 5 : : # PoCS
ab I

This is the observed normalized deviation from
randomness in the product jk.
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Degree-degree correlations

Natural correlation is between the degrees of
connected nodes.
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an edge connects a degree j + 1 node
z to a degree k + 1 node

References

_pr( @ edge runs between a node of in-degree j
il and a node of out-degree k

Useful for calculations (as per R;)

Important: Must separately define P, as the {e;} 4 PoCS
contain no information about isolated nodes. &

Directed networks still fine but we will assume
from here on thate;; = e;.
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Degree-degree correlations

Remove edge i and recompute r to obtain r,.

Repeat for all edges and compute using the
jackknife method ('3

Mildly sneaky as variables need to be independent
for us to be truly happy and edges are correlated...

The PoCSverse
Assortativity and
Mixing

16 of 40

Definition

General mixing

Assortativity by

References

@< PoCS


http://en.wikipedia.org/wiki/Resampling_(statistics)#Jackknife

Measurements of degree-degree

correlations

Group Network Type Size n Assortativity r  Error o,

a Physics coauthorship undirected 52909 0.363 0.002
a Biology coauthorship undirected 1 520251 0.127 0.0004

b Mathematics coauthorship  undirected 253339 0.120 0.002
Social c Film actor collaborations undirected 449913 0.208 0.0002

d Company directors undirected 7673 0.276 0.004

e Student relationships undirected 573 —=0.029 0.037

f Email address books directed 16 881 0.092 0.004

g Power grid undirected 4941 —0.003 0.013

Technological h Internet undirected 10 697 —0.189 0.002
i World Wide Web directed 269 504 —0.067 0.0002

j Software dependencies directed 3162 —-0.016 0.020

k Protein interactions undirected 2115 —0.156 0.010

1 Metabolic network undirected 765 —0.240 0.007

Biological m  Neural network directed 307 —0.226 0016

n Marine food web directed 134 —0.263 0.037

o Freshwater food web directed 92 —0.326 0.031

Social networks tend to be assortative (homophily)

Technological and biological networks tend to be

disassortative
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to degree-correlated networks. Sk
As before, by allowing that a node of degree & is Eipecteds
activated by one neighbor with probability B, References

we can handle various problems:

@ PoCS



Spreading on degree-correlated networks — ioramiyand
Mixing
21 of 40

Definition
General mixing

Assortativity by
degree

Next: Generalize our work for random networks

to degree-correlated networks. i
As before, by allowing that a node of degree & is Eipecteds
activated by one neighbor with probability B, References

we can handle various problems:
1. find the giant component size.
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Next: Generalize our work for random networks

to degree-correlated networks. i
As before, by allowing that a node of degree & is Eipecteds
activated by one neighbor with probability B, References

we can handle various problems:

1. find the giant component size.
2. find the probability and extent of spread for
simple disease models.
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Definition

General mixing

Assortativity by
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Next: Generalize our work for random networks
to degree-correlated networks.

As before, by allowing that a node of degree & is
activated by one neighbor with probability B, References
we can handle various problems:

1. find the giant component size.

2. find the probability and extent of spread for
simple disease models.

3. find the probability of spreading for simple
threshold models.
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Spreading on degree-correlated networks

Goal: Find f,, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

Repeat: a node of degree k is in the game with
probability B, .
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Spreading on degree-correlated networks

Goal: Find f,, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

Repeat: a node of degree k is in the game with
probability B, .

Define B, = [By,]-
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Spreading on degree-correlated networks

Goal: Find f,, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

Repeat: a node of degree k is in the game with
probability B, .

Define B, = [By,].

Plan: Find the generating function
I%(x,él)::E::iofndx”.
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Spreading on degree-correlated networks

Recursive relationship:

oo
= e-k
Pz B — o E T?Ji (1= Bgy1,1)
k=0 ~J

o= €k il
+$I§§;Bk+1,1 [ BB
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Spreading on degree-correlated networks

Recursive relationship:

o
= €k
Fj(x;B1> = a° Z T% (I Bk+1,1>
REQS]

o= €k il
+xkz::0R—jBk+1,1 [ BB

First term = Pr (that the first node we reach is not
in the game).
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Spreading on degree-correlated networks

Recursive relationship:

oo
e.
Fy(z;B,) =2°> 21— B,y 1)
k:O‘Rj :

o= €k il
+xkz::0R7jBk+1,1 [ BB

First term = Pr (that the first node we reach is not
in the game).

Second term involves Pr (we hit an active node
which has k outgoing edges).
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Spreading on degree-correlated networks

Recursive relationship:

o0
= €
Fi(z;B,) =2°) 22(1—B, .4 5)
k:O‘Rj :

o= €k el
+$kz::0R7jBk+1,1 [ BB

First term = Pr (that the first node we reach is not
in the game).

Second term involves Pr (we hit an active node
which has k outgoing edges).

Next: find average size of active components
reached by following a link from a degree j + 1
node = F;(1; By).
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Spreading on degree-correlated networks

Differentiate F(x; B,), setz = 1, and rearrange.
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Spreading on degree-correlated networks

Differentiate F(x; B,), setz = 1, and rearrange.

We use F,,(1; B,) = 1 which is true when no giant
component exists.
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Differentiate F;(z; B, ), set = = 1, and rearrange. T

Assortativity by

We use F,,(1; B,) = 1 which is true when no giant iegree
5 = ontagion
component exists. We find: :

Spre

g condition

Expe

oo oo =
= = References
k=0 k=0

@< PoCS



Spreading on degree-correlated networks — ioramiyand
Mixing
24 of 40

Definition

i i 3 Ger | mixing
Differentiate F;(z; B, ), set z = 1, and rearrange. ST

Assortativity by

We use Fy(1; B;) = 1 which is true when no giant 2
. . Contagion
component exists. We find: Spreadingcondition

Expected si

o oo
= = References
k=0 k=0
Rearranging and introducing a sneaky 4,

oo o0
Z (5ijk o ]ka+1,1€jk) Fy(1;By) = Z €ixBri1,1- r@pocs
k=0 k=0 PR



Spreading on degree-correlated networks

In matrix form, we have
AE,Blpl(LBﬁ = EB,
where

A A] S R kD e.
[ E,B; 41, k+1 Jjk Yk k+1,1%5k>

/(1. D /
[F(1; By)] o =R B,),
[E]j+1,k+1 = €k, and [ ] k:+1 1-
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Spreading on degree-correlated networks
So, in principle at least:

Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.
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Spreading on degree-correlated networks
So, in principle at least:

Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

Right at the transition, the average component
size explodes.
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Spreading on degree-correlated networks

So, in principle at least:

Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

Right at the transition, the average component
size explodes.

Exploding inverses of matrices occur when their
determinants are 0.
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Spreading on degree-correlated networks

So, in principle at least:

Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

Right at the transition, the average component
size explodes.

Exploding inverses of matrices occur when their
determinants are 0.

The condition is therefore:

detAE’B,I =0
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Spreading on degree-correlated networks

General condition details:

detAg p =det [0, Ry 1 — (k—1)By 1€5_1 1] = 0.

The above collapses to our standard contagion
condition when e, = R; R, (see next slide).
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Spreading on degree-correlated networks

General condition details:

detAg p =det [0, Ry 1 — (k—1)By 1€5_1 1] = 0.

The above collapses to our standard contagion
condition when e, = R; R, (see next slide).

When B, = B1, we have the condition for a simple
disease model's successful spread

det [(5JkRk_1 Fom B(k = 1>ej—l,k:—1] = 0
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General condition details: 27 0f 40

Definition

General mixing

detAg p =det [0, Ry 1 — (k—1)By 1€5_1 1] = 0.

Assortativity by
degree

The above collapses to our standard contagion
condition when e, = R; R, (see next slide).

When B, = BI, we have the condition for a simple  references
disease model's successful spread

det [(5JkRk_1 Fom B(k = 1>ej—l,k—1] = 0

When B, = 1, we have the condition for the

existence of a giant component:
@ PoCS
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Spreading on degree-correlated networks — ioramiyand
Mixing
General condition details: 27 0f 40

Definition

General mixing
detAE,Bl =5 det [6Jk3Rk*1 T <k 35 1)Bk716j71»k*1] =0 Assortativity by
degree

The above collapses to our standard contagion Contagion
S . Spre
condition when e, = R; R, (see next slide). p~

Expected size

When B, = BI, we have the condition for a simple  references
disease model's successful spread

det [5JkRk_1 Fom B(k = 1>ej—l,k—1] = 0

When B, = 1, we have the condition for the
existence of a giant component: R

deglidon, Roo (B illel el Lo im0,

Bonusville: We'll find a much better version of this
set of conditions later...
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Spreading on degree-correlated networks

We'll next find two more pieces:
1. Pyig, the probability of starting a cascade
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Spreading on degree-correlated networks

1. Pyig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.
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Spreading on degree-correlated networks

1. Pyig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.

Generating function:

H@B)=2) Py [Fia(e:By)]
k=0
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Spreading on degree-correlated networks

1. Pyig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.

Generating function:

H@B)=2) Py [Fia(e:By)]
k=0

Generating function for vulnerable component
size is more complicated.
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Spreading on degree-correlated networks

Want probability of not reaching a finite
component.

Ptrig = Strig =1—H(L; Bl)
= Sk
St DBy [Fk71(1;31>] :
k=0
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Spreading on degree-correlated networks

Want probability of not reaching a finite
component.

Ptrig = Strig =1—H(L; §1>

-5 p [Fk71<1§él)]k :
k=0

Last piece: we have to compute F,, ,(1; B,).
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Puig = Suig =1 — H(1; By) Sl B
0o k abilicy
— Expected si:
=1 — Z Pk [Fk71(17 Bl)] 3 References
k=0

Last piece: we have to compute F,, ,(1; B,).

Nastier (nonlinear)—we have to solve the

recursive expression we started with when z = 1:
2 > €.

F,(13B1) =21 éj(l_ﬂBk+1J>+

@ PoCS
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Definition

Want probability of not reaching a finite

General mixing

Component. Assortativity by
degree
Ptrig = Strig =1- H<1§ El) g,f,rjmg‘onww
:: e L
=1 — Z Pk [Fk71(17 Bl)] 3 References
k=0

Last piece: we have to compute F,, ,(1; B,).

Nastier (nonlinear)—we have to solve the
recursive expression we started with when z = 1:

B Bir=0" 1 %j(l — Bpi1,1)+

co e = k
2 k0 B, Br+1,1 [Fk<1;B1>] :
[terative methods should work here.
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Spreading on degree-correlated networks

Truly final piece: Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.
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Spreading on degree-correlated networks

Truly final piece: Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.

Need to compute 6, ,, the probability that an edge
leading to a degree j node is infected at time ¢.
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Spreading on degree-correlated networks

Truly final piece: Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.

Need to compute 6, ,, the probability that an edge
leading to a degree j node is infected at time ¢.

Evolution of edge activity probability:

(o = Gj(ét) = g + (1 — ¢g) ¥

S5 71 AT e RUSEVRRD
k; =8 ; o )0k (1= Op) ki
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Spreading on degree-correlated networks

Truly final piece: Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.

Need to compute 6, ,, the probability that an edge
leading to a degree j node is infected at time ¢.

Evolution of edge activity probability:

(o = Gj(ét) = g + (1 — ¢g) ¥

o] k—1

Cj1,k- o T —1—4
Sl i)

k=1 Jj—1 i=0

Overall active fraction’s evolution:

o0

P11 = Po+( PkZ( )912 Wt B

kzO
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Spreading on degree-correlated networks

As before, these equations give the actual
evolution of ¢, for synchronous updates.
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Spreading on degree-correlated networks

As before, these equations give the actual
evolution of ¢, for synchronous updates.

—

Contagion condition follows from 6§, , = G(6,).

The PoCSverse
Assortativity and
Mixing

34 of 40
Definition
General mixing

Assortativity by
degree

Contagion

References

@< PoCS


https://pdodds.w3.uvm.edu/teaching/courses/2022-2023principles-of-complex-systems//assignments/09/

Spreading on degree-correlated networks

As before, these equations give the actual
evolution of ¢, for synchronous updates.

Contagion condition follows from 6§, , = G(6,).
Expand G around 6, = 0.
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Spreading on degree-correlated networks — ioramiyand

As before, these equations give the actual 34 of 0

evolution of ¢, for synchronous updates. gt

Contagiop conditiop follows from §t+1 = G(b,). ii;‘i‘“”v“m”;

Expand G around 6, = 5 ks

e e >, 92G,(0)

0441 =G;(0)+ Z 80 HE Z 802 Qi,ﬁ‘ :
References

If Gj(ﬁ) + 0 for at least one j, always have some

infection.

If G (q) = 0V j, want largest eigenvalue

aG (6
[ 56, , } > 1.
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Spreading on degree-correlated networks — ioramiyand
Mixin;
As before, these equations give the actual 34 (ﬁo
evolution of ¢, for synchronous updates. Fepen

Contagion condition follows from 6§, , = G(6,).

General mixing

Assortativity by

Expand G around 6, = 6 degree
e >, 92G,(0)
2
0,601 = G;(0)+ Z 39 2! Z 392 9k7t+ :
References
If Gj(ﬁ) + 0 for at least one j, always have some
infection.
If G (q) = 0V j, want largest eigenvalue
aG (6 L
[ 56, , } >

Condition for spreading is therefore dependent on
eigenvalues of this matrix:

8Gj(6) i
a@k,t ijl

Insert question from assignment 9 (4
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How the giant component changes with

assortativity:

1.0
0s [

% L

5 osl

2o E

g L

2]

g L

A AR o assortative

s [ o neutral

0 L A disassortative
02 - 3]
0.0 heetl :

10

exponential parameter K

from Newman, 2002 (5]

100

More assortative
networks
percolate for
lower average
degrees

But
disassortative
networks end up
with higher
extents of
spreading.
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