

## Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 300, 303, & 394 University of Vermont, Fall 2022 Assignment 18

Huge raving maniac with national borders and an anthem  $\square$ 

Due: Friday, February 17, by 11:59 pm https://pdodds.w3.uvm.edu/teaching/courses/2022-2023pocsverse/assignments/18/ Some useful reminders: Deliverator: Prof. Peter Sheridan Dodds (contact through Teams) Assistant Deliverator: Dylan Casey (contact through Teams) Office: The Ether Office hours: See Teams calendar Course website: https://pdodds.w3.uvm.edu/teaching/courses/2022-2023pocsverse Overleaf: LaTeX templates and settings for all assignments are available at https://www.overleaf.com/project/631238b0281a33de67fc1c2b.

All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly and list the names of others with whom you <del>conspired</del> collaborated.

For coding, we recommend you improve your skills with Python, R, and/or Julia. The (evil) Deliverator uses (evil) Matlab.

Graduate students are requested to use  $\[mathbb{E}T_{E}X\]$  (or related TEX variant). If you are new to  $\[mathbb{E}T_{E}X\]$ , please endeavor to submit at least n questions per assignment in  $\[mathbb{E}T_{E}X\]$ , where n is the assignment number.

## Assignment submission:

Via Blackboard.

- 1. (3 + 3) Reproduce Bohn and Magnasco's Figs. 2a and 2b in [1]:

Steps are given below but please read through the paper to understand how they set things up.

The full team is encouraged to work together on Teams.

- (a) Done (previous assignment): Construct an adjacency matrix A representing the hexagonal lattice used in [1]. Plot this adjacency matrix.
- (b) Run a minimization procedure to construct Figs. 2a and 2b which correspond to  $\gamma = 2$  and  $\gamma = 1/2$ . Steps:
  - i. Set each link's length to 1 (the  $d_{kl}$ ). The goal then reduces to minimizing the cost

$$C = \sum_{k,l} |I_{kl}|^{\Gamma}$$

where  $I_{kl}$  is the current on link kl and  $\Gamma = 2\gamma/(\gamma + 1)$ .

- ii. Place a current source of nominal size  $i_0$  at one node (as indicated in Fig. 2 above).
- iii. All other nodes are sinks, drawing a current of

$$i_k = -\frac{i_0}{N_{\text{nodes}-1}}.$$

- iv. Suggest setting  $i_0 = 1000$  (arbitrary but useful value given the size of the network).
- v. Generate an initial set of random conductances for each link, the  $\{\kappa_{kl}\}$ . From the paper, these must sum to some global constraint as

$$K = \left(\sum_{k,l} \kappa_{kl}^{\gamma}\right)^{1/\gamma}.$$

This constraint is meant to represent a limitation on the amount of material that can be used to build the network.

Note: There seems to be no reason not to set K = 1. However, taking the initial value of K determined by the initial set of random conductances would work.

To our notational peril, we now have a lot of k types on deck.

vi. Solve the following to determine the potential U at each node, and hence the current on each link using:

$$i_k = \sum_l \kappa_{kl} (U_k - U_l),$$

and then

$$I_{kl} = \kappa_{kl} (U_l - U_k).$$

Note: the paper erroneously has  $I_{kl} = R_{kl}(U_l - U_k)$  below equation 4; there are a few other instances of similar miswritings of  $R_{kl}$  instead of  $\kappa_{kl}$ .

vii. Now, use scaling in equation (10) to compute a new set of  $\{\kappa_{kl}\}$  from the  $I_{kl}$ . Everything boils down to

$$\kappa_{kl} \propto |I_{kl}|^{-(\Gamma-2)}$$

where the constant of proportionality is determined by again making sure  $K^\gamma = \sum_{k,l} \kappa_{kl}^\gamma.$ 

Some help—Let's sort out the key equation:

$$i_k = \sum_l \kappa_{kl} (U_k - U_l).$$

Each time we loop around through this equation, we know the  $i_k$  and the  $\kappa_{kl}$  and must determine the  $U_k$ . In matrixology, we love  $A\vec{x} = \vec{b}$  problems so let's see if we can fashion one:

$$i_{k} = \sum_{l} \kappa_{kl} (U_{k} - U_{l})$$
$$= \sum_{l} \kappa_{kl} U_{k} - \sum_{l} \kappa_{kl} U_{l}$$
$$= U_{k} \sum_{l} \kappa_{kl} - \sum_{l} \mathbf{K}_{kl} U_{l}$$
$$= \lambda_{k} U_{k} - [\mathbf{K}\vec{U}]_{k}$$

where we have set  $\lambda_k = \sum_l \kappa_{kl}$ , the sum of the *k*th row of the matrix **K**. We now construct a diagonal matrix  $\Lambda$  with the  $\lambda_k$  on the diagonal, and obtain:

$$\vec{i} = (\Lambda - \mathbf{K}) \vec{U}.$$

The above is in the form  $A\vec{x} = \vec{b}$  so we can solve for  $\vec{U}$  using standard features of R, Matlab, Python, ... (hopefully).

## References

 S. Bohn and M. O. Magnasco. Structure, scaling, and phase transition in the optimal transport network. *Phys. Rev. Lett.*, 98:088702, 2007. pdf