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Principles of Complex Systems, Vols. 1, 2, & 3D
CSYS/MATH 300, 303, & 394

University of Vermont, Fall 2022
Assignment 17

So much universe, and so little time 

Due: Friday, February 10, by 11:59 pm
https://pdodds.w3.uvm.edu/teaching/courses/2022-2023pocsverse/assignments/17/
Some useful reminders:
Deliverator: Prof. Peter Sheridan Dodds (contact through Teams)
Assistant Deliverator: Dylan Casey (contact through Teams)
Office: The Ether
Office hours: See Teams calendar
Course website: https://pdodds.w3.uvm.edu/teaching/courses/2022-2023pocsverse
Overleaf: LaTeX templates and settings for all assignments are available at
https://www.overleaf.com/project/631238b0281a33de67fc1c2b.

All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly
and list the names of others with whom you conspired collaborated.

For coding, we recommend you improve your skills with Python, R, and/or Julia. The (evil)
Deliverator uses (evil) Matlab.

Graduate students are requested to use LATEX (or related TEX variant). If you are new to LATEX,
please endeavor to submit at least n questions per assignment in LATEX, where n is the
assignment number.

Assignment submission:

Via Blackboard.

1. Derive Murray’s law.
Per lectures, find the minimum rate of energy expenditure working from the
assertion that:

P = Pdrag + Pmet = Φ2 8ηℓ

πr4
+ cmetr

2ℓ,

where met stands for metabolic.
We are interested in how P varies with the tube radius r.
Per lectures, we defined the ‘parent’ branch’s radius as rparent, and the ‘offspring’
branches as having radii roffspring1 and roffspring2 (which need not be the same).
Show that minimizing energy expenditure leads to r3parent = r3offspring1 + r3offspring2.
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Note that in the LATEX settings for assignments, various derivative notations are
included.
Here, you will want to use partial derivatives, and here’s a start.
Note the code-like formatting as expounded on here . Far easier to create, edit,
debug, read.

∂P
∂r

= ∂
∂r

(
Φ2 8ηℓ

πr4
+ cmetr

2ℓ
)

1 $
2 \ partialdiff {P}{r}
3 =
4 \ partialdiff {}{r}
5 \ left (
6 \Phi^{2}
7 \frac{
8 8 \eta \ell
9 }{

10 \pi r^{4}
11 }
12 +
13 c_{\textnormal{met}}
14 r^{2}
15 \ell
16 \right)
17 $

2. Derive the equivalent of Murray’s law for branching networks where material
moves by diffusion. Perhaps surprisingly, this connects the inner workings of
insects, electrical networks, and search on networks.
For diffusion, the impedance of a vessel is now Z = cdiffℓr

−2 where cdiff is a
constant, ℓ is vessel length, and r is vessel radius.
In terms of general impedance, the expression for the rate of energy expenditure is:

P = Pdrag + Pmet = Φ2Z + cmetr
2ℓ.

3. Now derive the generalized version of Murray’s law for a generalized impedance
Z = cimpℓr

−2α, where cimp is a general impedance constant, ℓ is vessel length, and
r is vessel radius.
We can assume α > 0 as impedance should decrease with wider vessels.
We choose r−2α because cross sectional area πr2 can be considered the essential
parameter here, and because we skipped to the end of the book and decided to
rewrite the start.
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4. Murray’s law for real data.
See if you can track down a data set for real branching networks where Murray’s
law might reasonably apply, and then test how well Murray’s law holds up.
Could be blood vessels, trees, … [1, 2, 3].
As always, you are welcome to collaborate. Feel free to share data sets on Teams.

5. (3 + 3)
Let’s start on trying to reproduce reproduce Bohn and Magnasco’s Figs. 2a and
2b in [4].
A profound physical result. For movement of stuff, when should networks exist?
Preliminary work:

• Construct an adjacency matrix for the underlying hexagonal lattice where the
side number of nodes is a variable n.

• Plot the n = 8 version to match with the grids underlying the figures below.

the potential at the nodes by solving the system of linear
equations ik !

P
lRkl"Uk #Ul$, then the currents through

the links Ikl are determined. We use these currents to
determine a first approximation of the optimal conductiv-
ities on the basis of the scaling relation. Then, the currents
are recalculated with this set of conductivities, and the
scaling relation is reused for the next approximation.
These steps are repeated until the values have converged.
We check by perturbing the solution that it actually is a
minimum of the dissipation, which was always the case.

For all !> 1, independently of the initial conditions, the
same conductivity distribution is obtained, which con-
forms to the analytical result of [6]: there exists a unique
minimum which is therefore global.

Furthermore, the distribution of "kl is ‘‘smooth,’’ vary-
ing only on a ‘‘macroscopic scale,’’ as show in Fig. 2(a).
No formation of any particular structure occurs. However,
the conductivity distribution is not isotropic. We can inter-
pret the conductivity distribution as a discrete approxima-
tion of a continuous, macroscopic conductivity tensor (see
also [10]). The smooth aspect of the distribution is con-
served while approaching ! ! 1 while the local anisotropy
increases, while the values of all "kl remain finite, even if
they get very small. For ! ! 1:5 and Ndia ! 15, the con-
ductivity distribution spreads already over eight decades
and becomes still broader as ! ! 1%, in which limit the
number of iteration steps diverges as the minima becomes
less and less steep.

! ! 1 presents a marginal case. The results of the
simulation suggest that the minimum is highly degenerate;
i.e., there are a large number of conductivity distributions
yielding the same minimal dissipation.

For !< 1, the output of the relaxation algorithm is
qualitatively different [Fig. 2(b)]. A large number of con-
ductivities converge to zero so that no loop remains. The
highly redundant network is transformed to a spanning
tree topology and the currents are canalized in a hierarch-
ical manner. This, too, is predicted by the analytical results
[6]. In contrast to !> 1, the conductivity distribution
cannot be interpreted as a discrete approximation of a
conductivity tensor: for Ndia ! 1, the structure becomes
fractal.

For different initial conditions, the relaxation algorithm
yields trees with different topologies: each local minima in
the high-dimensional and continuous space of conductiv-
ities f"klg corresponds to a different tree topology. To find
the global minima with !< 1, we search consequently in
the (exponentially large) space of tree topologies using a
Monte Carlo algorithm. (We start with some initial tree and
then switch links without creating loops and without dis-
connecting a part of the network.) Note that for a tree
topology, the currents do not depend on the values "kl
and, using the scaling relation, one may directly write
down the dissipation rate for a given tree; the iterative
relaxation is not necessary here. This regime has been
widely explored in the context of river networks
[4,5,13,15], mainly for a set of parameters that corre-
sponds, in our case, to ! ! 0:5. An example of a resulting
minimal dissipation tree structure is given in Fig. 2(c).
Note also, that the scaling relations can be seen as some
kind of erosion model: the more currents flows through a
link, the better the link conducts [4].

The qualitative transition is reflected also quantitatively
in the value of the minimal dissipation [Fig. 3(a)]. The
points for !> 1 were obtained with the relaxation algo-
rithm, the points !< 1 by optimizing the tree topologies
with a Monte Carlo algorithm. For ! ! 1, Jmin=Jhomo !
1 by definition; for ! ! 0, Jmin=Jhomo ! 0, because the
vanishing "kl allow the remaining "kl ! 1.

Figure 3(b) shows the behavior of minimal dissipation
rate close to ! ! 1. For ! smaller than 1, the relaxation
method only furnishes a local minimum, the Monte Carlo
algorithm searching for the optimal tree topologies gives
lower dissipation values. The different values correspond-
ing to different realization indicate that the employed
Monte Carlo method does not find the exact global min-
ima. For !> 1, the optimal tree obtained by the
Monte Carlo algorithm is not the optimal solution since
the absolute and only minima has loops. The dissipation
rate which results from the relaxation algorithm is then, of
course, lower than the dissipation of any tree. While the
curve is continuous, the crossover at ! ! 1 shows a clear
change in the slope of Jmin"!$. One could interpret this
behavior as a second order phase transition. (The change in

 

)c()b()a(

FIG. 2. Examples of the optimized conductivity distributions obtained by the relaxation method for (a) ! ! 2:0 and (b) ! ! 0:5. For
!< 1, the relaxation leads in general only to a local minimum. The global minimum can be approached by searching in the space of
tree topologies. The result for ! ! 0:5 is shown in (c). The arrows indicate the localized inlet.
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