

Gods come and go, and still the Turtle Moves. \square

Due: Friday, October 28, by 11:59 pm

https://pdodds.w3.uvm.edu/teaching/courses/2022-2023pocsverse/assignments/08/ Some useful reminders: Deliverator: Prof. Peter Sheridan Dodds (contact through Teams) Assistant Deliverator: Dylan Casey (contact through Teams) Office: The Ether Office hours: See Teams calendar Course website: https://pdodds.w3.uvm.edu/teaching/courses/2022-2023pocsverse Overleaf: LaTeX templates and settings for all assignments are available at https://www.overleaf.com/project/631238b0281a33de67fc1c2b.

All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly and list the names of others with whom you conspired collaborated.

For coding, we recommend you improve your skills with Python, R, and/or Julia. The (evil) Deliverator uses (evil) Matlab.

Graduate students are requested to use $\[mathbb{E}T_{E}X\]$ (or related TEX variant). If you are new to $\[mathbb{E}T_{E}X\]$, please endeavor to submit at least n questions per assignment in $\[mathbb{E}T_{E}X\]$, where n is the assignment number.

Assignment submission:

Via Blackboard.

1. (3 + 3)

Repeat the first question from the previous assignment changed from $\gamma=5/2$ to $\gamma=3/2.$

Now $1<\gamma<2$ so we should see a very different behavior.

Here's the question reprinted with γ switched to 3/2:

For $\gamma = 3/2$, generate n = 1000 sets each of $N = 10, 10^2, 10^3, 10^4, 10^5$, and 10^6 samples, using $P_k = ck^{-3/2}$ with k = 1, 2, 3, ...

How do we computationally sample from a discrete probability distribution?

Hint: You can use a continuum approximation to speed things up. In fact, taking the exact continuum version from the first two assignments will work.

- (a) For each value of sample size N, sequentially create n sets of N samples. For each set, determine and record the maximum value of the set's N samples. (You can discard each set once you have found the maximum sample.) You should have k_{max,i} for i = 1, 2, ..., n where i is the set number. For each N, plot the n values of k_{max,i} as a function of i. If you think of n as time t, you will be plotting a kind of time series. These plots should give a sense of the unevenness of the maximum value of k, a feature of power-law size distributions.
- (b) Now find the average maximum value $\langle ik_{\max,i} \rangle$ for each N.

The steps again here are:

1. Sample N times from P_k ;

2. Determine the maximum of the sample, k_{\max} ;

3. Repeat steps 1 and 2 a total n times and take the average of the n values of k_{\max} you have obtained.

Plot $\langle k_{\text{max}} \rangle$ as a function of N on double logarithmic axes, and calculate the scaling using least squares. Report error estimates.

Does your scaling match up with your theoretical estimate for $\gamma = 3/2$?

How to sample from your power law distribution (and similar kinds of beasts):

We now turn our problem of randomly selecting from this distribution into randomly selecting from the uniform distribution. After playing around a little, $k = 10^6$ seems like a good upper limit for the number of samples we're talking about.

Using Matlab (or some ghastly alternative), we create a cdf for P_k for $k = 1, 2, ..., 10^6$ and one final entry $k > 10^6$ (for which the cdf will be 1).

We generate a random number x and find the value of k for which the cdf is the first to meet or exceed x. This gives us our sample k according to P_k and we repeat as needed. We would use the exactly normalized $P_k = \frac{1}{\zeta(3/2)}k^{-3/2}$ where ζ is the Riemann zeta function.

Now, we can use a quick and dirty method by approximating P_k with a continuous function $P(z) = (\gamma - 1)z^{-\gamma}$ for $z \ge 1$ (we have used the normalization coefficient found in assignment 1 for a = 1 and $b = \infty$). Writing F(z) as the cdf for P(z), we have $F(z) = 1 - z^{-(\gamma-1)} = 1 - z^{-1/2}$. Inverting, we obtain $z = [1 - F(z)]^{-2}$. We replace F(z) with our random number x and round the value of z to finally get an estimate of k.

2. The 1-*d* theoretical percolation problem:

Consider an infinite 1-d lattice forest with a tree present at any site with probability p.

- (a) Find the distribution of forest sizes as a function of p. Do this by moving along the 1-d world and figuring out the probability that any forest you enter will extend for a total length ℓ .
- (b) Find p_c , the critical probability for which a giant component exists. Hint: One way to find critical points is to determine when certain average quantities explode. Compute $\langle l \rangle$ and find p such that this expression goes boom (if it does).
- 3. Show analytically that the critical probability for site percolation on a triangular lattice is $p_c = 1/2$.

Hint—Real-space renormalization gets it done.:

http://www.youtube.com/watch?v=JlkbU5U7QqU

4. (3 + 3)

Coding, it's what's for breakfast:

(a) Percolation in two dimensions (2-d) on a simple square lattice provides a classic, nutritious example of a phase transition.

Your mission, whether or not you choose to accept it, is to code up and analyse the L by L square lattice percolation model for varying L.

Take L = 20, 50, 100, 200, 500, and 1000.

(Go higher if you feel L = 1000 is for mere mortals.)

(Go lower if your code explodes.)

Let's continue with the tree obsession. A site has a tree with probability p, and a sheep grazing on what's left of a tree with probability 1 - p.

Forests are defined as any connected component of trees bordered by sheep, where connections are possible with a site's four nearest neighbors on a lattice.

Each square lattice is to be considered as a landscape on which forests and sheep co-exist.

Do not bagelize (or doughnutize) the landscape (no periodic boundary conditions—boundaries are boundaries).

(Note: this set up is called site percolation. Bond percolation is the alternate case when all links between neighboring sites exist with probability p.) Steps:

i. For each L, run N_{tests} =100 tests for occupation probability p moving from 0 to 1 in increments of 10^{-2} . (As for L, you may use a smaller or larger increment depending on how things go.)

- ii. Determine the fractional size of the largest connected forest for each of the $N_{\rm tests}$, and find the average of these, $S_{\rm avg}$.
- iii. On a single figure, for each L, plot the average S_{avg} as a function of p.
- (b) Comment on how $S_{avg}(p; N)$ changes as a function of L and estimate the critical probability p_c (the percolation threshold).

For the few Matlabbers, a helpful reuse of code (intended for black and white image analysis): You can use Matlab's bwconncomp to find the sizes of components. Very nice.

- 5. (3 + 3)
 - (a) Using your model from the previous question and your estimate of p_c , plot the distribution of forest sizes (meaning cluster sizes) for $p \simeq p_c$ for the largest L your code and psychological makeup can withstand. (You can average the distribution over separate simulations.)

Comment on what kind of distribution you find.

(b) Repeat the above for $p = p_c/2$ and $p = p_c + (1 - p_c)/2$, i.e., well below and well above p_c .

Produce plots for both cases, and again, comment on what you find.