Allotaxonometry

Last updated: 2022/08/28, 08:34:20 EDT
Principles of Complex Systems, Vols. 1, 2, \& 3D CSYS/MATH 300, 303, \& 394, 2022-2023| @pocsvox

A plenitude of

Rank-turbulence divergence

Probability turbulence divergence

Explorations
References

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

cc) (i)오 (2)

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

The PoCSverse Allotaxonometry 2 of 67

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
References

These slides are also brought to you by:

Special Guest Executive Producer

The PoCSverse Allotaxonometry 3 of 67

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations
References

O On Instagram at pratchett_the_cat[

Outline

The PoCSverse Allotaxonometry 4 of 67
A plenitude of
distances
Rank-turbulence
A plenitude of distances

Rank-turbulence divergence
Probability-
turbulence

Probability-turbulence divergence

Explorations

References

Goal-Understand this:

The PoCSverse Allotaxonometry 6 of 67

The Boggoracle Speaks:

A plenitude of distances

Rank-turbulence
divergence
Probability
turbulence
divergence
Explorations
References

Site (papers, examples, code):
http://compstorylab.org/allotaxonometry/[

Foundational papers:

"Allotaxonometry and rank-turbulence divergence: A universal instrument for comparing complex systems" $\boxed{ }$
Dodds et al., , 2020. ${ }^{[5]}$
"Probability-turbulence divergence: A

tunable allotaxonometric instrument for comparing heavy-tailed categorical distributions"
Dodds et al.,
, 2020. ${ }^{[6]}$

Basic science = Describe + Explain:

Dashboards of single scale instruments helps us understand, monitor, and control systems.

The PoCSverse Allotaxonometry 8 of 67
A plenitude of distances

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
References

Basic science = Describe + Explain:

Dashboards of single scale instruments helps us understand, monitor, and control systems.
Archetype: Cockpit dashboard for flying a plane Allotaxonometry 8 of 67
A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations
References

Basic science = Describe + Explain:

 understand, monitor, and control systems.Archetype: Cockpit dashboard for flying a plane
Okay if comprehendible.

Basic science = Describe + Explain:

Dashboards of single scale instruments helps us understand, monitor, and control systems.
Archetype: Cockpit dashboard for flying a plane
Okay if comprehendible.
Complex systems present two problems for dashboards:

1. Scale with internal diversity of components: We need meters for every species, every company, every word.
2. Tracking change: We need to re-arrange meters on the fly.

Basic science = Describe + Explain:

Dashboards of single scale instruments helps us understand, monitor, and control systems.
Archetype: Cockpit dashboard for flying a plane
Okay if comprehendible.
Complex systems present two problems for dashboards:

1. Scale with internal diversity of components: We need meters for every species, every company, every word.
2. Tracking change: We need to re-arrange meters on the fly.

- Goal-Create comprehendible, dynamically-adjusting, differential dashboards showing two pieces: ${ }^{1}$

Basic science = Describe + Explain:

Dashboards of single scale instruments helps us understand, monitor, and control systems.
Archetype: Cockpit dashboard for flying a plane
Okay if comprehendible.
Complex systems present two problems for dashboards:

1. Scale with internal diversity of components: We need meters for every species, every company, every word.
2. Tracking change: We need to re-arrange meters on the fly.

- Goal-Create comprehendible, dynamically-adjusting, differential dashboards showing two pieces: ${ }^{1}$

1. 'Big picture' map-like overview,
2. A tunable ranking of components.
[^0]
Baby names, much studied: ${ }^{[12]}$

The PoCSverse Allotaxonometry 9 of 67
A plenitude of

distances

just a decade or so. If you were born in the United States around this year, these are names that are more likely to seem common and generic to you, but are distinctive generational markers.

1886 Grover, Maude, Will, Mirnie, Lizzic, Bffic, Mauy, Cora, Lula, Nettie
1890 Maude, Mas, Minnie, Effec, Mabel, Besse, Mertie, Hattie, Lula, Cuma
 1900 Mabel, Myyrte, Bessie, Mamie, Pearl, Blanche, Gertnude, Ethel, Minmie, Gladys
1906 Gladys, Viola, Mabel, Myrtle, Gertrude, Pearl, Bessic, Blanche, Mamic, Ehbel
 1910 Thelma, Gladys, Vaida, Mildred, Beatrix, Lacilie, Gertrude, Agnes, Hazel, Ethed

 1930 Dolvrex, Betty, Jorn, Billie, Dovis, Nargna, Lois, Billy, Jurve, Marilign 1935 Shiridy, Martene, Joan, Doloress, Marilym, Bobby, Berty, Billy, Joyce, Beveriy
 ${ }^{1950}$ Linde, Deboraih, Gail, Jucty, Gary. Larry, Diomer, Dennis, Brenda, Junice 1968 Devran, Deborah, Cathy, Kathy, Pameia, Randy, Kim, Cymthia, Diane, Cheryd

1968 Lisa, Tammy, Lori, Tadd, Kin, Rhonda, Tracy, Tina, Dawn, Michele
1970 Tarmun, Tanga, Troay, Todid, Draun, Thinn, Slocep, Stocy, Michele, Lisa
1980 Brandy, Crystal, April, Jason, Jeremu, Eini, Tïffunk, Jamie, Melissa, Jemnijer 1985 Krystal, Lindkny, Ashbly, Lindsyy, Dustin, Jessikn, Amanda, Tiffany, Oystal, Amber 1990 Briturny, Checsea, Kelscy, Cody, Astley, Courthey, Kapla, Kyle, Megan, Jessic 1996 Taydbr, Kedan, Dakota, Austin, Hakey, Cody, Thwr, Shelhy, Brittany, Kayda
 2010 Jayder, Adifen, Nevereht, Addison, Brayden, Landon, Peyton, Isantello, Ave, 2015 Aria, Harper, Scariett, Jaxon, Grayson, Lincoin, Hiatson, Liam, Zoey, Layla If kids in your class were named Jeff, Lisa, Michael, Karen, and David, then you
were probably born in the mid-1960s. If they were named Jayden, Isabella, Sophia, Ave, and Ethan, then you were probably born somewhere around 2010 ,

But names can reveal things about age in other ways.
The mid-1990s TV show Friends featured six roommates, played by actors, named Matthew, Jennifer, Courtney, Lisa, David, and another Matthew. Each of those names has its own popularity curve; if we combine them all, we can guess what years the group of actors was likely born:

The actors were actually born in the late 1960 s, on the very early edge of the popularity of their names. In other words, the actors all have names that were a little before their time. Courtney cox and Jennifer Aniston had names that didn't really be-
come popular until a decade later. (Maybe people with trendy parents are more likely to wind up in acting) But the names are generally consistent with their era, if a little ahead of the curve.
We get something very different if we look at
Phoebe, Joseph, Ross, Chandler, Rachel, and Monica:

19651970197519801985199019952000200520102015
The show debuted in 1994. There's a clear spike in popularity of the names in 1995 and 1996, which can probably be attributed to the show putting the names in the minds of new parents. But it's not just the show-that name combination was clearly on the rise in the years before Friends premiered. It's possible that parents looking for good names for their children are influenced by some of the same cultural trends as TV writers looking for good names for their characters.

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
References

> How to build a dynamical dashboard that helps sort through a massive number of interconnected time series?
"Is language evolution grinding to a halt? The scaling of lexical turbulence in English fiction suggests it is not" CB
Pechenick, Danforth, Dodds, Alshaabi, Adams, Dewhurst, Reagan, Danforth, Reagan, and Danforth.
Journal of Computational Science, 21, 24-37, 2017. ${ }^{[14]}$

For language, Zipf's law has two scaling regimes:

$$
f \sim\left\{\begin{array}{l}
r^{-\alpha} \text { for } r \ll r_{\mathrm{b}}, \\
r^{-\alpha^{\prime}} \text { for } r \gg r_{\mathrm{b}},
\end{array}\right.
$$

When comparing two texts, define Lexical turbulence as flux of words across a frequency threshold:

The PoCSverse Allotaxonometry 11 of 67

A plenitude of
distances
Rank-turbulence divergence

Probability
turbulence divergence

Explorations
References

$$
\phi \sim\left\{\begin{array}{l}
f_{\mathrm{th}}^{-\mu} \text { for } f_{\mathrm{thr}} \ll f_{\mathrm{b}}, \\
f_{\mathrm{thr}}^{-\mu^{\prime}} \text { for } f_{\mathrm{thr}} \gg f_{\mathrm{b}},
\end{array}\right.
$$

Estimates: $\mu \simeq 0.77$ and $\mu^{\prime} \simeq 1.10$, and f_{b} is the scaling break point.

$$
\phi \sim\left\{\begin{array}{l}
r^{\nu}=r^{\alpha \mu^{\prime}} \text { for } r \ll r_{\mathrm{b}}, \\
r^{\nu^{\prime}}=r^{\alpha^{\prime} \mu} \text { for } r \gg r_{\mathrm{b}} .
\end{array}\right.
$$

Estimates: Lower and upper exponents $\nu \simeq 1.23$ and $\nu^{\prime} \simeq 1.47$.

A. Rank-turbulence histogram:

Zipf-turbulence histogram for probability:

The PoCSverse Allotaxonometry 14 of 67

So, so many ways to compare probability distributions:

"Families of Alpha- Beta- and Gamma-

 Divergences: Flexible and RobustMeasures of Similarities"【オ
Cichocki and Amari,
Entropy, 12, 1532-1568, 2010. ${ }^{[2]}$
"Comprehensive survey on
distancelsimilarity measures between probability density functions"
Sung-Hyuk Cha, International Journal of Mathematical Models and Methods in Applied Sciences, 1, 300-307, 2007. ${ }^{[1]}$

So, so many ways to compare probability distributions:

"Families of Alpha- Beta- and Gamma-

 Divergences: Flexible and Robust Measures of Similarities"[]Cichocki and Amari, Entropy, 12, 1532-1568, 2010. ${ }^{[2]}$ "Comprehensive survey on distancè/similarity measures between probability density functions" Sung-Hyuk Cha, International Journal of Mathematical Models and Methods in Applied Sciences, 1, 300-307, 2007. ${ }^{[1]}$
Comparisons are distances, divergences, similarities, inner products, fidelities ...
A worry: Subsampled distributions with very heavy tails

So, so many ways to compare probability distributions:

"Families of Alpha- Beta- and Gamma-

 Divergences: Flexible and Robust Measures of Similarities"[]Cichocki and Amari, Entropy, 12, 1532-1568, 2010. ${ }^{[2]}$ "Comprehensive survey on distancè/similarity measures between probability density functions" Sung-Hyuk Cha, International Journal of Mathematical Models and Methods in Applied Sciences, 1, 300-307, 2007. ${ }^{[1]}$
Comparisons are distances, divergences, similarities, inner products, fidelities ...
A worry: Subsampled distributions with very heavy tails

60ish kinds of comparisons grouped into 10 families

Quite the festival:

1. Euclidean L_{2}	$d_{\text {L }}=\sqrt{\sum \sum\left\|P_{-}-Q\right\|^{2}}$	(1)
2. City block L_{1}	$d_{c a}=\sum_{c=1}^{j}\left\|P_{t}-Q_{i}\right\|$	(2)
3. Minkowski L_{p}	$d_{\text {n }}-\sqrt{\sum \sum P^{\prime} P-\left.Q_{1}\right\|^{\prime}}$	(3)
4. Chebyshev $L_{\text {. }}$	$d_{\text {cme }}=$ max $\mid P_{1}-Q_{1}$,	(4)

Table 2. L_{1} family		
5. Swensen	$\sum \mid P^{-Q}$	
	$\sum(p+Q)$	(5)

6. Gower	$\begin{aligned} & \left.d_{s-}=\frac{1}{d} \sum_{n=1}^{\sum} \frac{\|P-Q\|}{R} \right\rvert\, \\ & -\frac{1}{d} \sum_{i=1}\|P-Q\| \end{aligned}$	(6) (7)
7. Soergel	$d_{=}=\frac{\sum_{1}^{J} P_{-}-Q_{1}}{\sum \operatorname{man}\left(P, P_{1}\right)}$	(8)
8. Kulcrynskid	$d_{\Delta}=\frac{\sum_{\infty}^{\dot{c}} P-Q \mid}{\sum_{i=1}^{i} \min \left(P_{C} Q\right)}$	(9)
9. Cankerra	$d_{c}-\sum_{i=1} \frac{\|P-Q\|}{P_{1}+Q}$	(10)
10. Lorentrian	$d_{L}-\sum_{L} \ln \left(1+\mid P_{\sim}-Q_{1}\right)$	(11)
$* L_{1}$ family \supset (Intersectoin (13), Wave HedgesCzckanowski (16), Ruzicka (21), Tanimoto (23), etc).		

Table 3. Intersection family	
11. Intersection $\quad s_{5}-\sum \min \left(P_{0}, Q\right)$	(12)
$d_{--a-1-s_{u}}-\frac{1}{2} \sum_{n=1}^{1}\left\|R_{1}-Q\right\|$	(13)
$\begin{aligned} & \text { 12. Wave Hedges } d_{m 1}-\sum\left(0-\frac{\min (P, Q)}{\max (P, Q)}\right) \\ &-\sum \frac{\|P, Q,\|}{\max (P, Q)} \\ & \hline \end{aligned}$	(14) (15)
	(16)
	(17)

14. Motyka	$x_{1 L}=\frac{\dot{\sum} \min (P, Q)}{\sum \sum(P+Q)}$	(18)
		(19)
15. Kulczynski s		(20)
16. Ruzicka	$\therefore=-\frac{\sum_{1}^{j} \min (P, Q)}{\sum_{1}^{j} \max (P, Q)}$	(21)
$\begin{array}{\|c\|} \hline \text { 17. Taniv } \\ \text { moto } \end{array}$		(22) (23)

18. Inner Product	$s_{y}=P \cdot Q-\sum P Q_{i}$	(24)
19. Harmonic mean	$s_{\mathrm{ma}}=2 \sum_{\mathrm{M}}^{t} \frac{P Q}{P_{1}+Q_{1}}$	(25)
20. Cosine	$\operatorname{se}-\frac{\sum_{=1}^{\infty} P Q}{\sqrt{\sum_{=1}^{2} P^{2}} \sqrt{\sum_{n=1} Q^{2}}}$	(26)

22. Jis	$S_{1}=\frac{\sum_{i=1}^{j} P Q}{\sum_{i=1}^{P_{1}^{2}+\sum_{i=1}^{\infty} Q^{2}-\sum_{==1}^{j} P Q}}$	(28)
		(39)
23. Dice	$s_{\mathrm{n}=}-\frac{2 \sum \sum Q}{\sum \sum_{n}^{2}+\sum Q^{2}}$	(40)
		(31)

Table 5. Fidelity farnily or Squared-chord family			
24. Fidelity	$s_{n}-\sum_{n=1} \sqrt{P_{Q},}$	(32)	
25. Bhattacharyya	$d_{\alpha}=-\ln \sum_{n}^{5} \sqrt{P_{Q}}$	(33)	
26. Hellinger	$d_{n}-\sqrt{2 \sum_{1}^{2}(\sqrt{P}-\sqrt{Q})^{2}}$	(34)	
	$-2 \sqrt{1-\sum_{n=1}^{5} \sqrt{P Q_{n}}}$	(35)	

The PoCSverse
Allotaxonometry 16 of 67

A plenitude of distān̄̄̄ēs

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
References

We want two main things:

1. A measure of difference between systems
2. A way of sorting which types/species/words contribute to that difference

Table 1. L_{p} Minkowski family				
1. Euclidean L_{2}	$d_{E u c}=\sqrt{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{2}}$	(1)		
2. City block L_{1}	$d_{C B}=\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$	(2)		
3. Minkowski L_{p}	$d_{M k}=\sqrt[p]{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{p}}$	(3)		
4. Chebyshev L_{∞}	$d_{\text {Cheb }}=\max _{i}\left\|P_{i}-Q_{i}\right\|$			
Table 2. L_{1} family (4) 5. Sørensen $d_{\text {sor }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$			$.$	
:---				

$\begin{array}{|lll|}\hline \text { 6. Gower } & d_{\text {gow }}=\frac{1}{d} \sum_{i=1}^{d} \frac{\left|P_{i}-Q_{i}\right|}{R_{i}} & \text { (6) } \\ & =\frac{1}{d} \sum_{i=1}^{d}\left|P_{i}-Q_{i}\right| & \text { (7) } \\ \hline \text { 7. Soergel } & d_{\text {sg }}=\frac{\sum_{i=1}^{d}\left|P_{i}-Q_{i}\right|}{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)} & \text { (8) } \\ \hline \text { 8. Kulczynski } d & d_{\text {kat }}=\frac{\sum_{i=1}^{d}\left|P_{i}-Q_{i}\right|}{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)} & \text { (9) } \\ \hline \text { 9. Canberra } & d_{\text {Can }}=\sum_{i=1}^{d} \frac{\left|P_{i}-Q_{i}\right|}{P_{i}+Q_{i}} & \text { (10) } \\ \hline \text { 10. Lorentzian } & d_{\text {Lor }}=\sum_{i=1}^{d} \ln \left(1+\left|P_{i}-Q_{i}\right|\right)\end{array} \quad$ (11) $)$

The PoCSverse Allotaxonometry 17 of 67
A plenitude of distān̄̄ēē

Rank-turbulence divergence

Probabilityturbulence divergence

We want two main things:

1. A measure of difference between systems
2. A way of sorting which types/species/words contribute to that difference

For sorting, many comparisons give the same ordering.

Table 1. L_{p} Minkowski family				
1. Euclidean L_{2}	$d_{E u c}=\sqrt{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{2}}$	(1)		
2. City block L_{1}	$d_{C B}=\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$	(2)		
3. Minkowski L_{p}	$d_{M k}=\sqrt[p]{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{p}}$	(3)		
4. Chebyshev L_{∞}	$d_{\text {Cheb }}=\max _{i}\left\|P_{i}-Q_{i}\right\|$			
Table 2. L_{1} family (4) 5. Sørensen $d_{\text {sor }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$			$.$	
:---				

6. Gower	$\begin{aligned} & d_{\text {gow }}=\frac{1}{d} \sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{R_{i}} \\ & =\frac{1}{d} \sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\| \end{aligned}$	(6) (7)
7. Soergel	$d_{\mathrm{sg}}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)}$	(8)
8. Kulczynski d	$d_{k u t}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}$	(9)
9. Canberra	$d_{C a n}=\sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{P_{i}+Q_{i}}$	(10)
10. Lorentzian	$d_{L o r}=\sum_{i=1}^{d} \ln \left(1+\left\|P_{i}-Q_{i}\right\|\right)$	(11)
* L_{1} family \supset \{Intersectoin (13), Wave Hedges (15), Czekanowski (16), Ruzicka (21), Tanimoto (23), etc \}.		

The PoCSverse Allotaxonometry 17 of 67
A plenitude of distān̄̄ēē

Rank-turbulence divergence

Probability-
turbulence divergence

Explorations
References

We want two main things:

1. A measure of difference between systems
2. A way of sorting which types/species/words contribute to that difference

For sorting, many

 comparisons give the same ordering.A few basic building blocks:
$\left|P_{i}-Q_{i}\right|$ (dominant)
$\max \left(P_{i}, Q_{i}\right)$
$\min \left(P_{i}, Q_{i}\right)$
$P_{i} Q_{i}$
$\left|P_{i}^{1 / 2}-Q_{i}^{1 / 2}\right|$
(Hellinger)

Table 1. L_{p} Minkowski family

1. Euclidean L_{2}	$d_{E u C}=\sqrt{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{2}}$	
2. City block L_{1}	$d_{C B}=\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$	(1)
3. Minkowski L_{p}	$d_{M M k}=\sqrt[p]{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{p}}$	
4. Chebyshev L_{∞}	$d_{C h u e b}=\max _{i}\left\|P_{i}-Q_{i}\right\|$	

Table 2. L_{1} family
5. Sørensen

$$
\begin{equation*}
d_{\text {sor }}=\frac{\sum_{i=1}^{d}\left|P_{i}-Q_{i}\right|}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)} \tag{5}
\end{equation*}
$$

The PoCSverse Allotaxonometry 17 of 67
A plenitude of distān̄c̄ēs

Rank-turbulence divergence

Probability turbulence divergence

Explorations
References

6. Gower	$\begin{aligned} & d_{g o w}=\frac{1}{d} \sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{R_{i}} \\ & =\frac{1}{d} \sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\| \end{aligned}$	(6) (7)
7. Soergel	$d_{\mathrm{sg}}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)}$	(8)
8. Kulczynski d	$d_{k u t}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}$	(9)
9. Canberra	$d_{C a n}=\sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{P_{i}+Q_{i}}$	(10)
10. Lorentzian	$d_{L o r}=\sum_{i=1}^{d} \ln \left(1+\left\|P_{i}-Q_{i}\right\|\right)$	(11)
* L_{1} family \supset \{Intersectoin (13), Wave Hedges (15), Czekanowski (16), Ruzicka (21), Tanimoto (23), etc\} .		

Table 1. L_{p} Minkowski family

1. Euclidean L_{2}	$d_{E u c}=\sqrt{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{2}}$
2. City block L_{1}	$d_{C B}=\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$
3. Minkowski L_{p}	$d_{M k}=\sqrt[p]{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{p}}$
4. Chebyshev L_{∞}	$d_{\text {Cheb }}=\max _{i}\left\|P_{i}-Q_{i}\right\|$

Table 2. L_{1} family
5. Sørensen

$$
\begin{equation*}
d_{s o o r}=\frac{\sum_{i=1}^{d}\left|P_{i}-Q_{i}\right|}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)} \tag{5}
\end{equation*}
$$

Information theoretic sortings are more opaque

The PoCSverse Allotaxonometry 18 of 67

A plenitude of díst̄ān̄ēs

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
References

| 6. Gower | $d_{\text {gow }}=\frac{1}{d} \sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{R_{i}}$ |
| :--- | :--- | :--- |
| | $=\frac{1}{d} \sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$ |
| 7. Soergel | $d_{s g}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)}$ |
| 8. Kulczynski d | $d_{\text {kut }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}$ |
| 9. Canberra | $d_{C a n}=\sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{P_{i}+Q_{i}}$ |
| 10. Lorentzian | $d_{\text {Lor }}=\sum_{i=1}^{d} \ln \left(1+\left\|P_{i}-Q_{i}\right\|\right)$ |

* L_{1} family \supset \{Intersectoin (13), Wave Hedges (15), Czekanowski (16), Ruzicka (21), Tanimoto (23), etc \}.

Table 1. L_{p} Minkowski family

1. Euclidean L_{2}	$d_{E u c}=\sqrt{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{2}}$
2. City block L_{1}	$d_{C B}=\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$
3. Minkowski L_{p}	$d_{M k}=\sqrt[p]{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|^{p}}$
4. Chebyshev L_{∞}	$d_{C h e b}=\max _{i}\left\|P_{i}-Q_{i}\right\|$

Table 2. L_{1} family
5. Sørensen $\quad d_{\text {sor }}=\frac{\sum_{i=1}^{d}\left|P_{i}-Q_{i}\right|}{\sum_{i=1}^{d}\left(P_{i}+Q_{i}\right)}$

Information theoretic sortings are more opaque

No tunability

The PoCSverse Allotaxonometry 18 of 67

A plenitude of distān̄̄̄ē

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
References

| 6. Gower | $d_{\text {gow }}=\frac{1}{d} \sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{R_{i}}$ |
| :--- | :--- | :--- |
| | $=\frac{1}{d} \sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|$ |
| 7. Soergel | $d_{s g}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \max \left(P_{i}, Q_{i}\right)}$ |
| 8. Kulczynski d | $d_{\text {tul }}=\frac{\sum_{i=1}^{d}\left\|P_{i}-Q_{i}\right\|}{\sum_{i=1}^{d} \min \left(P_{i}, Q_{i}\right)}$ |
| 9. Canberra | $d_{C a n}=\sum_{i=1}^{d} \frac{\left\|P_{i}-Q_{i}\right\|}{P_{i}+Q_{i}}$ |
| 10. Lorentzian | $d_{\text {Lor }}=\sum_{i=1}^{d} \ln \left(1+\left\|P_{i}-Q_{i}\right\|\right)$ |

* L_{1} family $\supset\{$ Intersectoin (13), Wave Hedges (15), Czekanowski (16), Ruzicka (21), Tanimoto (23), etc \}.

Shannon's Entropy:

$$
H(P)=\left\langle\log _{2} \frac{1}{p_{\tau}}\right\rangle=\sum_{\tau \in R_{1,2 ; \alpha}} p_{\tau} \log _{2} \frac{1}{p_{\tau}}
$$

The PoCSverse Allotaxonometry 19 of 67
(1) A plenitude of
distān̄c̄ē-
Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations

References

Shannon's Entropy:

$$
\begin{equation*}
H(P)=\left\langle\log _{2} \frac{1}{p_{\tau}}\right\rangle=\sum_{\tau \in R_{1,2 ; \alpha}} p_{\tau} \log _{2} \frac{1}{p_{\tau}} \tag{1}
\end{equation*}
$$

Kullback-Liebler (KL) divergence:

$$
\begin{align*}
& D^{\mathrm{KL}}\left(P_{2} \| P_{1}\right)=\left\langle\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right\rangle_{P_{2}} \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau}\left[\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right] \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau} \log _{2} \frac{p_{1, \tau}}{p_{2, \tau}} . \tag{2}
\end{align*}
$$

The PoCSverse Allotaxonometry 19 of 67
A plenitude of distān̄c̄ēs
Rank-turbulence divergence

Probability-
turbulence divergence

Explorations
References

Shannon's Entropy:

$$
\begin{equation*}
H(P)=\left\langle\log _{2} \frac{1}{p_{\tau}}\right\rangle=\sum_{\tau \in R_{1,2 ; \alpha}} p_{\tau} \log _{2} \frac{1}{p_{\tau}} \tag{1}
\end{equation*}
$$

Kullback-Liebler (KL) divergence:

$$
\begin{align*}
& D^{\mathrm{KL}}\left(P_{2} \| P_{1}\right)=\left\langle\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right\rangle_{P_{2}} \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau}\left[\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right] \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau} \log _{2} \frac{p_{1, \tau}}{p_{2, \tau}} \tag{2}
\end{align*}
$$

Problem: If just one component type in system 2 is not present in system 1,KL divergence $=\infty$.

The PoCSverse Allotaxonometry 19 of 67
A plenitude of distān̄ēs

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
References

Shannon's Entropy:

$$
\begin{equation*}
H(P)=\left\langle\log _{2} \frac{1}{p_{\tau}}\right\rangle=\sum_{\tau \in R_{1,2 ; \alpha}} p_{\tau} \log _{2} \frac{1}{p_{\tau}} \tag{1}
\end{equation*}
$$

Kullback-Liebler (KL) divergence:

$$
\begin{align*}
& D^{\mathrm{KL}}\left(P_{2} \| P_{1}\right)=\left\langle\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right\rangle_{P_{2}} \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau}\left[\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right] \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau} \log _{2} \frac{p_{1, \tau}}{p_{2, \tau}} \tag{2}
\end{align*}
$$

The PoCSverse Allotaxonometry 19 of 67
A plenitude of distān̄ēs

Rank-turbulence divergence

Probability
turbulence

Problem: If just one component type in system 2 is not present in system 1, KL divergence $=\infty$.
Solution: If we can't compare a spork and a platypus directly, we create a fictional spork-platypus hybrid.

Shannon's Entropy:

$$
\begin{equation*}
H(P)=\left\langle\log _{2} \frac{1}{p_{\tau}}\right\rangle=\sum_{\tau \in R_{1,2 ; \alpha}} p_{\tau} \log _{2} \frac{1}{p_{\tau}} \tag{1}
\end{equation*}
$$

Kullback-Liebler (KL) divergence:

$$
\begin{align*}
& D^{\mathrm{KL}}\left(P_{2} \| P_{1}\right)=\left\langle\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right\rangle_{P_{2}} \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau}\left[\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right] \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau} \log _{2} \frac{p_{1, \tau}}{p_{2, \tau}} \tag{2}
\end{align*}
$$

Problem: If just one component type in system 2 is not present in system 1, KL divergence $=\infty$.
Solution: If we can't compare a spork and a platypus directly, we create a fictional spork-platypus hybrid.
Rew problem: Re-read solution.

Jensen-Shannon divergence (JSD): ${ }^{[9,7,13,1]}$

$$
\begin{align*}
& D^{\mathrm{JS}}\left(P_{1} \| P_{2}\right) \\
& =\frac{1}{2} D^{\mathrm{KL}}\left(P_{1} \| \frac{1}{2}\left[P_{1}+P_{2}\right]\right)+\frac{1}{2} D^{\mathrm{KL}}\left(P_{2} \| \frac{1}{2}\left[P_{1}+P_{2}\right]\right) \\
& =\frac{1}{2} \sum_{\tau \in R_{1,2 ; \alpha}}\left(p_{1, \tau} \log _{2} \frac{p_{1, \tau}}{\frac{1}{2}\left[p_{1, \tau}+p_{2, \tau}\right]}+p_{2, \tau} \log _{2} \frac{p_{2, \tau}}{\frac{1}{2}\left[p_{1, \tau}+p_{2, \tau}\right]}\right) \tag{3}
\end{align*}
$$

Involving a third intermediate averaged system means JSD is now finite: $0 \leq D^{\mathrm{S}}\left(P_{1} \| P_{2}\right) \leq 1$.

Jensen-Shannon divergence (JSD): $[9,7,13,1]$

$$
\begin{align*}
& D^{\mathrm{JS}}\left(P_{1} \| P_{2}\right) \\
& =\frac{1}{2} D^{\mathrm{KL}}\left(P_{1} \| \frac{1}{2}\left[P_{1}+P_{2}\right]\right)+\frac{1}{2} D^{\mathrm{KL}}\left(P_{2} \| \frac{1}{2}\left[P_{1}+P_{2}\right]\right) \\
& =\frac{1}{2} \sum_{\tau \in R_{1,2 ; \alpha}}\left(p_{1, \tau} \log _{2} \frac{p_{1, \tau}}{\frac{1}{2}\left[p_{1, \tau}+p_{2, \tau}\right]}+p_{2, \tau} \log _{2} \frac{p_{2, \tau}}{\frac{1}{2}\left[p_{1, \tau}+p_{2, \tau}\right]}\right) \tag{3}
\end{align*}
$$

8. Involving a third intermediate averaged system means JSD is now finite: $0 \leq D^{\mathrm{S}}\left(P_{1} \| P_{2}\right) \leq 1$.
\& Generalized entropy divergence: [2]

$$
D_{\alpha}^{\mathrm{AS} 2}\left(P_{1} \| P_{2}\right)=
$$

$$
\begin{equation*}
\frac{1}{\alpha(\alpha-1)} \sum_{\tau \in R_{1,2 ; \alpha}}\left[\left(p_{\tau, 1}^{1-\alpha}+p_{\tau, 2}^{1-\alpha}\right)\left(\frac{p_{\tau, 1}+p_{\tau, 2}}{2}\right)^{\alpha}-\left(p_{\tau, 1}+p_{\tau, 2}\right)\right] \tag{4}
\end{equation*}
$$

Produces JSD when $\alpha \rightarrow 0$.

Exclusive types:

\& We call types that are present in one system only 'exclusive types'.
When warranted, we will use expressions of the form $\Omega^{(1)}$-exclusive and $\Omega^{(2)}$-exclusive to indicate to which system an exclusive type belongs.

Desirable rank-turbulence divergence features:

1. Rank-based.

The PoCSverse Allotaxonometry 24 of 67

A plenitude of distances

Rank-turbulence
divergēn̄ē
Probability
turbulence
divergence
Explorations
References

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.

The PoCSverse Allotaxonometry 24 of 67

A plenitude of distances

Rank-turbulence
divergēn̄ē
Probability
turbulence
divergence
Explorations
References

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.
4. Linearly separable, for interpretability.

The PoCSverse Allotaxonometry 24 of 67

A plenitude of
distances
Rank-turbulence
divergēn̄ē
Probability
turbulence
divergence
Explorations
References

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any principled subset may be equally well compared (e.g., hashtags on Twitter, stock prices of a certain sector, etc.).

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any principled subset may be equally well compared (e.g., hashtags on Twitter, stock prices of a certain sector, etc.).
6. Zipfophilic: Able to handle systems with rank-ordered component size distribution that are heavy-tailed.

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any principled subset may be equally well compared (e.g., hashtags on Twitter, stock prices of a certain sector, etc.).
6. Zipfophilic: Able to handle systems with rank-ordered component size distribution that are heavy-tailed.
7. Scalable: Allow for sensible comparisons across system sizes.

Desirable rank-turbulence divergence features:

1. Rank-based.
2. Symmetric.
3. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any principled subset may be equally well compared (e.g., hashtags on Twitter, stock prices of a certain sector, etc.).
6. Zipfophilic: Able to handle systems with rank-ordered component size distribution that are heavy-tailed.
7. Scalable: Allow for sensible comparisons across system sizes.
8. Tunable.
9. Rank-based.
10. Symmetric.
11. Semi-positive: $D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$.
12. Linearly separable, for interpretability.
13. Subsystem applicable: Ranked lists of any principled subset may be equally well compared (e.g., hashtags on Twitter, stock prices of a certain sector, etc.).
14. Zipfophilic: Able to handle systems with rank-ordered component size distribution that are heavy-tailed.
15. Scalable: Allow for sensible comparisons across system sizes.
16. Tunable.
17. Story-finding: Features $1-8$ combine to show which component types are most 'important'

Some good things about ranks:

The PoCSverse
Allotaxonometry
25 of 67
A plenitude of distances

Rank-turbulence divergēnce

Probability
turbulence
divergence
Explorations
References

Some good things about ranks:

Working with ranks is intuitive

Some good things about ranks:

Working with ranks is intuitive

Affords some powerful statistics (e.g., Spearman's rank correlation coefficient)

Some good things about ranks:

Affords some powerful statistics (e.g., Spearman's rank correlation coefficient)
Can be used to generalize beyond systems with probabilities

Some good things about ranks:

Working with ranks is intuitive
Affords some powerful statistics (e.g., Spearman's rank correlation coefficient)
Can be used to generalize beyond systems with probabilities

The PoCSverse
Allotaxonometry 25 of 67
A plenitude of distances

Rank-turbulence divergēncē

Probability-
turbulence
divergence
Explorations
References
A start:

$$
\begin{equation*}
\left|\frac{1}{r_{\tau, 1}}-\frac{1}{r_{\tau, 2}}\right| \tag{5}
\end{equation*}
$$

8
Inverse of rank gives an increasing measure of 'importance'
High rank means closer to rank 1
We assign tied ranks for components of equal 'size'

Some good things about ranks:

Working with ranks is intuitive
Affords some powerful statistics (e.g., Spearman's rank correlation coefficient)
. Can be used to generalize beyond systems with probabilities

A start:

$$
\begin{equation*}
\left|\frac{1}{r_{\tau, 1}}-\frac{1}{r_{\tau, 2}}\right| \tag{5}
\end{equation*}
$$

8
Inverse of rank gives an increasing measure of 'importance'

- High rank means closer to rank 1

We assign tied ranks for components of equal 'size'Issue: Biases toward high rank components

The PoCSverse Allotaxonometry 26 of 67

We introduce a tuning parameter:

$$
\left|\frac{1}{[r,]^{\alpha}}-\frac{1}{\left[r_{r, r}\right]^{\alpha}}\right|^{1 / a} .
$$

A plenitude of distances

Rank-turbulence dīvergēncee
(6)

Probability turbulence divergence

Explorations
References

We introduce a tuning parameter:

$$
\begin{equation*}
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha} . \tag{6}
\end{equation*}
$$

The PoCSverse Allotaxonometry 26 of 67
A plenitude of distances

Rank-turbulence divergēn̄e

As $\alpha \rightarrow 0$, high ranked components are increasingly dampened

We introduce a tuning parameter:

$$
\begin{equation*}
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha} . \tag{6}
\end{equation*}
$$

Probability-
turbulence
divergence
Explorations
As $\alpha \rightarrow 0$, high ranked components are increasingly dampened
For words in texts, for example, the weight of common words and rare words move increasingly closer together.

We introduce a tuning parameter:

$$
\begin{equation*}
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha} \tag{6}
\end{equation*}
$$

Probability-
turbulence
divergence
Explorations
As $\alpha \rightarrow 0$, high ranked components are increasingly dampened
For words in texts, for example, the weight of common words and rare words move increasingly closer together.
As $\alpha \rightarrow \infty$, high rank components will dominate.

We introduce a tuning parameter:

$$
\begin{equation*}
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha} \tag{6}
\end{equation*}
$$

As $\alpha \rightarrow 0$, high ranked components are increasingly dampened
For words in texts, for example, the weight of common words and rare words move increasingly closer together.
8 As $\alpha \rightarrow \infty$, high rank components will dominate.
. For texts, the contributions of rare words will vanish.

Trouble:

- The limit of $\alpha \rightarrow 0$ does not behave well for

$$
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha} .
$$

The PoCSverse Allotaxonometry 27 of 67
A plenitude of distances

Rank-turbulence divergēn̄ē

Probability
turbulence
divergence
Explorations
References

$$
\begin{equation*}
\left(1-\delta_{r_{\tau, 1} r_{\tau, 2}}\right) \alpha^{1 / \alpha}\left|\ln \frac{r_{\tau, 1}}{r_{\tau, 2}}\right|^{1 / \alpha}, \tag{7}
\end{equation*}
$$

which heads toward ∞ as $\alpha \rightarrow 0$.

Trouble:

- The limit of $\alpha \rightarrow 0$ does not behave well for

$$
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha} .
$$

The PoCSverse Allotaxonometry 27 of 67
A plenitude of distances

Rank-turbulence divergēn̄ē

Probability
turbulence
divergence
Explorations
References

$$
\begin{equation*}
\left(1-\delta_{r_{\tau, 1} r_{\tau, 2}}\right) \alpha^{1 / \alpha}\left|\ln \frac{r_{\tau, 1}}{r_{\tau, 2}}\right|^{1 / \alpha}, \tag{7}
\end{equation*}
$$

which heads toward ∞ as $\alpha \rightarrow 0$.
Oops.

The limit of $\alpha \rightarrow 0$ does not behave well for

$$
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha}
$$

The PoCSverse
Allotaxonometry 27 of 67
A plenitude of distances

Rank-turbulence divergēncē

Probability
turbulence
divergence
The leading order term is:

$$
\begin{equation*}
\left(1-\delta_{r_{\tau, 1} r_{\tau, 2}}\right) \alpha^{1 / \alpha}\left|\ln \frac{r_{\tau, 1}}{r_{\tau, 2}}\right|^{1 / \alpha} \tag{7}
\end{equation*}
$$

which heads toward ∞ as $\alpha \rightarrow 0$.
Oops.
But the insides look nutritious:

$$
\left|\ln \frac{r_{\tau, 1}}{r_{\tau, 2}}\right|
$$

Some reworking:

$$
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)}
$$

The PoCSverse Allotaxonometry 28 of 67

A plenitude of distances

Rank-turbulence divergēncee
(8)

Probability-
turbulence
divergence
Explorations
References

Some reworking:

$$
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)}
$$

The PoCSverse Allotaxonometry 28 of 67
A plenitude of distances

Keeps the core structure.

Rank-turbulence
divergence
(8)

- divergence ---

Probability-
turbulence
divergence
Explorations
References

Some reworking:

$$
\begin{equation*}
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)} \tag{8}
\end{equation*}
$$

The PoCSverse Allotaxonometry 28 of 67
A plenitude of distances

Rank-turbulence
divergence

Keeps the core structure.
Large α limit remains the same.

Some reworking:

$$
\begin{equation*}
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)} \tag{8}
\end{equation*}
$$

The PoCSverse Allotaxonometry 28 of 67
A plenitude of distances

Rank-turbulence
divergence

Keeps the core structure.
Large α limit remains the same.
$\alpha \rightarrow 0$ limit now returns log-ratio of ranks.

Some reworking:

$$
\begin{equation*}
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)} \tag{8}
\end{equation*}
$$

Keeps the core structure.

The PoCSverse Allotaxonometry 28 of 67

A plenitude of
distances
Rank-turbulence
divergence
Probability-
turbulence
divergence
Explorations
References

Large α limit remains the same.
$\alpha \rightarrow 0$ limit now returns log-ratio of ranks.
Next: Sum over τ to get divergence.

Some reworking:

$$
\begin{equation*}
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)} \tag{8}
\end{equation*}
$$

Keeps the core structure.
R Large α limit remains the same.

- $\alpha \rightarrow 0$ limit now returns log-ratio of ranks.

Next: Sum over τ to get divergence.
Still have an option for normalization.

Some reworking:

$$
\begin{equation*}
\delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \propto \frac{\alpha+1}{\alpha}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)} \tag{8}
\end{equation*}
$$ Allotaxonometry 28 of 67

A plenitude of distances

Rank-turbulence

Keeps the core structure.
Large α limit remains the same.
$\alpha \rightarrow 0$ limit now returns log-ratio of ranks.
Next: Sum over τ to get divergence.
Still have an option for normalization.

Rank-turbulence divergence:

$$
\begin{equation*}
D_{\alpha}^{\mathrm{R}}\left(R_{1} \| R_{2}\right)=\frac{1}{\mathcal{N}_{1,2 ; \alpha}} \sum_{\tau \in R_{1,2 ; \alpha}} \delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \tag{9}
\end{equation*}
$$

Normalization:

Take a data-driven rather than analytic approach to determining $\mathcal{N}_{1,2 ; \alpha}$.

Normalization:

Rake a data-driven rather than analytic approach to determining $\mathcal{N}_{1,2 ; \alpha}$.
Compute $\mathcal{N}_{1,2 ; \alpha}$ by taking the two systems to be disjoint while maintaining their underlying Zipf distributions.

Normalization:

Rake a data-driven rather than analytic approach to determining $\mathcal{N}_{1,2 ; \alpha}$.
Compute $\mathcal{N}_{1,2 ; \alpha}$ by taking the two systems to be disjoint while maintaining their underlying Zipf distributions.

- Ensures: $0 \leq D_{\alpha}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \leq 1$

Normalization:

R Take a data-driven rather than analytic approach to determining $\mathcal{N}_{1,2 ; \alpha}$.
\& Compute $\mathcal{N}_{1,2 ; \alpha}$ by taking the two systems to be disjoint while maintaining their underlying Zipf distributions.
Ensures: $0 \leq D_{\alpha}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \leq 1$
Limits of 0 and 1 correspond to the two systems having identical and disjoint Zipf distributions.

Rank-turbulence divergence:

Summing over all types, dividing by a normalization prefactor $\mathcal{N}_{1,2 ; \alpha}$ we have our prototype:

Probability-
turbulence
divergence
Explorations
References

$$
D_{\alpha}^{\mathrm{R}}\left(R_{1} \| R_{2}\right)=\frac{1}{\mathcal{N}_{1,2 ; \alpha}} \frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1,2 ; \alpha}}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)}
$$

(10)

General normalization:
lif the Zipf distributions are disjoint, then in $\Omega^{(1)}$'s merged ranking, the rank of all $\Omega^{(2)}$ types will be $r=N_{1}+\frac{1}{2} N_{2}$, where N_{1} and N_{2} are the number of distinct types in each system.

General normalization:

S lif the Zipf distributions are disjoint, then in $\Omega^{(1)}$'s merged ranking, the rank of all $\Omega^{(2)}$ types will be $r=N_{1}+\frac{1}{2} N_{2}$, where N_{1} and N_{2} are the number of distinct types in each system.
Similarly, $\Omega^{(2)}$'s merged ranking will have all of $\Omega^{(1)}$'s types in last place with rank $r=N_{2}+\frac{1}{2} N_{1}$.

General normalization:

\& lif the Zipf distributions are disjoint, then in $\Omega^{(1)}$'s merged ranking, the rank of all $\Omega^{(2)}$ types will be $r=N_{1}+\frac{1}{2} N_{2}$, where N_{1} and N_{2} are the number of distinct types in each system.
Similarly, $\Omega^{(2)}$'s merged ranking will have all of $\Omega^{(1)}$'s types in last place with rank $r=N_{2}+\frac{1}{2} N_{1}$.

The PoCSverse Allotaxonometry 31 of 67

A plenitude of distances

Rank-turbulence divergēnce

Probability-
turbulence
divergence
Explorations
References

The normalization is then:

$$
\begin{aligned}
\mathcal{N}_{1,2 ; \alpha} & =\frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1}}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[N_{1}+\frac{1}{2} N_{2}\right]^{\alpha}}\right|^{1 /(\alpha+1)} \\
& +\frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1}}\left|\frac{1}{\left[N_{2}+\frac{1}{2} N_{1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha+1)} .
\end{aligned}
$$

The PoCSverse Allotaxonometry 32 of 67

A plenitude of distances

Rank-turbulence divergēn̄ē
$D_{0}^{\mathrm{R}}\left(R_{1} \| R_{2}\right)=\sum_{\tau \in R_{1,2 ; \alpha}} \delta D_{0, \tau}^{\mathrm{R}}=\frac{1}{\mathcal{N}_{1,2 ; 0}} \sum_{\tau \in R_{1,2 ; \alpha}}\left|\ln \frac{r_{\tau, 1}}{r_{\tau, 2}}\right|$,
Probability-
turbulence divergence

Explorations
References
where

$$
\begin{equation*}
\mathcal{N}_{1,2 ; 0}=\sum_{\tau \in R_{1}}\left|\ln \frac{r_{\tau, 1}}{N_{1}+\frac{1}{2} N_{2}}\right|+\sum_{\tau \in R_{2}}\left|\ln \frac{r_{\tau, 2}}{\frac{1}{2} N_{1}+N_{2}}\right| . \tag{13}
\end{equation*}
$$

Largest rank ratios dominate.

Limit of $\alpha \rightarrow \infty$:

$$
\begin{aligned}
& D_{\infty}^{\mathrm{R}}\left(R_{1} \| R_{2}\right)=\sum_{\tau \in R_{1,2 ; \alpha}} \delta D_{\infty, \tau}^{\mathrm{R}} \\
& =\frac{1}{\mathcal{N}_{1,2 ; \infty}} \sum_{\tau \in R_{1,2 ; \alpha}}\left(1-\delta_{r_{\tau, 1} r_{\tau, 2}}\right) \max _{\tau}\left\{\frac{1}{r_{\tau, 1}}, \frac{1}{r_{\tau, 2}}\right\} .
\end{aligned}
$$

The PoCSverse Allotaxonometry 33 of 67
A plenitude of distances

Rank-turbulence divergēnce

Probability-
turbulence
divergence
Explorations
References
where

$$
\begin{equation*}
\mathcal{N}_{1,2 ; \infty}=\sum_{\tau \in R_{1}} \frac{1}{r_{\tau, 1}}+\sum_{\tau \in R_{2}} \frac{1}{r_{\tau, 2}} . \tag{15}
\end{equation*}
$$

Highest ranks dominate.

Probability-turbulence divergence:

$$
D_{\alpha}^{\mathrm{P}}\left(P_{1} \| P_{2}\right)=\frac{1}{\mathcal{N}_{1,2 ; \alpha}^{p}} \frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1,2 ; \alpha}}\left|\left[p_{\tau, 1}\right]^{\alpha}-\left[p_{\tau, 2}\right]^{\alpha}\right|^{1 /(\alpha+1)} .
$$

(16)
\& For the unnormalized version ($\mathcal{N}_{1,2 ; \alpha}^{P}=1$), some troubles return with 0 probabilities and $\alpha \rightarrow 0$.
Weep not: $\mathcal{N}_{1,2 ; \alpha}^{P}$ will save the day.

Normalization:

With no matching types, the probability of a type present in one system is zero in the other, and the sum can be split between the two systems' types:

$$
\mathcal{N}_{1,2 ; \alpha}^{\mathrm{P}}=\frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1}}\left[p_{\tau, 1}\right]^{\alpha /(\alpha+1)}+\frac{\alpha+1}{\alpha} \sum_{\tau \in R_{2}}\left[p_{\tau, 2}\right]^{\alpha /(\alpha+1)}
$$

(17)

Limit of $\alpha=0$ for probability-turbulence divergence

if both $p_{\tau, 1}>0$ and $p_{\tau, 2}>0$ then

$$
\lim _{\alpha \rightarrow 0} \frac{\alpha+1}{\alpha}\left|\left[p_{\tau, 1}\right]^{\alpha}-\left[p_{\tau, 2}\right]^{\alpha}\right|^{1 /(\alpha+1)}=\left|\ln \frac{p_{\tau, 2}}{p_{\tau, 1}}\right| .
$$

But if $p_{\tau, 1}=0$ or $p_{\tau, 2}=0$, limit diverges as $1 / \alpha$.

Limit of $\alpha=0$ for probability-turbulence divergence

 Normalization:$$
\begin{equation*}
\mathcal{N}_{1,2 ; \alpha}^{\mathrm{p}} \rightarrow \frac{1}{\alpha}\left(N_{1}+N_{2}\right) . \tag{19}
\end{equation*}
$$

Because the normalization also diverges as $1 / \alpha$, the divergence will be zero when there are no exclusive types and non-zero when there are exclusive types.

A plenitude of
distances
Rank-turbulence divergence

Probability-turbule divergēnce

Explorations
References
\& The term $\left(\delta_{p_{\tau, 1}, 0}+\delta_{0, p_{\tau, 2}}\right)$ returns 1 if either $p_{\tau, 1}=0$ or $p_{\tau, 2}=0$, and 0 otherwise when both $p_{\tau, 1}>0$ and $p_{\tau, 2}>0$.
Ratio of types that are exclusive to one system relative to the total possible such types,

Type contribution ordering for the limit of $\alpha=0$

\& In terms of contribution to the divergence score, all exclusive types supply a weight of $1 /\left(N_{1}+N_{2}\right)$. We can order them by preserving their ordering as $\alpha \rightarrow 0$, which amounts to ordering by descending probability in the system in which they appear.

A plenitude of

And while types that appear in both systems make no contribution to $D_{0}^{\mathrm{P}}\left(P_{1} \| P_{2}\right)$, we can still order them according to the log ratio of their probabilities.
The overall ordering of types by divergence contribution for $\alpha=0$ is then: (1) exclusive types by descending probability and then (2) types appearing in both systems by descending log ratio.

Limit of $\alpha=\infty$ for probability-turbulence divergence

$D_{\infty}^{\mathrm{P}}\left(P_{1} \| P_{2}\right)=\frac{1}{2} \sum_{\tau \in R_{1,2 ; \infty}}\left(1-\delta_{p_{\tau, 1}, p_{\tau, 2}}\right) \max \left(p_{\tau, 1}, p_{\tau, 2}\right)$
The PoCSverse Allotaxonometry 40 of 67

A plenitude of distances

Rank-turbulence divergence

Probability-turbule divergēnce

Explorations
(21)
where

$$
\begin{equation*}
\mathcal{N}_{1,2 ; \infty}^{\mathrm{P}}=\sum_{\tau \in R_{1,2 ; \infty}}\left(p_{\tau, 1}+p_{\tau, 2}\right)=1+1=2 . \tag{22}
\end{equation*}
$$

Connections for PTD:

$\alpha=0$: Similarity measure Sørensen-Dice coefficient ${ }^{[4,16,10]}, F_{1}$ score of a test's accuracy ${ }^{[17,15]}$.

Rank-turbulence divergence

Probability-turbule divergence
$\alpha=1 / 2$: Hellinger distance ${ }^{[8]}$ and Mautusita distance ${ }^{[11]}$.

- $\alpha=1$: Many including all $L^{(p)}$-norm type constructions.
$\alpha=\infty$: Motyka distance ${ }^{[3]}$.

Ω_{1} : Market caps, 2007-Q4 Instrument: Rank-Turbulence Divergence
 Co America Corp Cisco Sysfems the The Cocol Colla

1,000
Counts per cell
Ω_{2} : Market caps, 2018-Q4
Microsoft Corp

- ohnson \& Johnsone
JPMorgan

$$
\begin{array}{r}
\text { JPMorgan Chase \& Co } \\
\text { Amazon.com Inc } \\
\text { UnitedHealth Groun Inc }
\end{array}
$$

UnitedHealth Group Inc
\qquad

Bacing Co
Home Depot Inc
Amgen Inc

Accenture ple

Facebook Inc
Visa Inc Class A

AbbVie Inc Broadcom Ltd
Charter Commanj ati...Inc
HCA Holdłogs In
Avangrid Inc
Wayfair Inc
HealthEquity Inc 100
39.8% total market cap 60.2%
78.8% all companies $61-5 \%$
48.8% exclusive companies 34.4%

Divergence contribution $\delta D_{1 / 3, \tau}^{\mathrm{R}}(\%)$

0.2	0.15	0.1	0.05	0	0.05	0.1	0.15	0.2

General Electric Co $2 \rightleftharpoons 78$

- 085 Facebook Inc \downarrow

Exxon Mobil Corp $1 \rightleftharpoons 9$
Amazon.com Inc
Visa Inc Class A \triangleright
Apple Inc
Microsoft Corp
AbbVie Inc \triangleright
\triangleleft Genentech Inc $31 \rightleftharpoons 4,187$
AT\&T Inc $4 \rightleftharpoons 19$
\checkmark Wachovia Corp Anheuser-Busch InBe.../NV $>$
\triangleleft Twenty-First Century Fox $40 \rightleftharpoons 4,187$
Broadcom LtdD
Berkshire Hathaway ...s B $38 \rightleftharpoons 2,331$
Philip Morris Inter...Inc $>$
\triangleleft Time Warner Inc $47 \rightleftharpoons 4,187$
 PayPal Holdings Inc \triangleright
AIG Inc $17 \rightleftharpoons 159$
\triangleleft Monsanto Co $54=4,187$
\triangleleft Merrill Lynch \& Co $66 \rightleftharpoons 4,187$

- $214=24$ Mastercard Inc

Procter \& Gamble Co $5 \rightleftharpoons 15$
4 Schering-Plough Corp $74 \rightleftharpoons 4,187$
4 Alcon Inc $76 \rightleftharpoons 4,187$
Charter Communicati...Inc \triangleright
Altria Group Inc $12 \rightleftharpoons 52$
\triangleleft EMC Corp $83 \rightleftharpoons 4,187$
\triangleleft Anheuser-Busch Inc. $87 \rightleftharpoons 4,187$
Tesla Inc \triangleright
Salesforce.com Inc
\measuredangle DowDuPont Inc $91 \rightleftharpoons 4,187$ 4 Barrick Gold Corp. $95=4,187$

Kraft Heinz Co \triangleright
HP Inc $26=162$
4 Lehman Brothers Holding $103 \rightleftharpoons 4,187$
JPMorgan Chase \& Co
\measuredangle Yahoo! Inc $109 \rightleftharpoons 4,187$
$49.6 \% \quad 50.4 \%$

Effect of subsampling:

The PoCSverse Allotaxonometry 49 of 67

A plenitude of distances

Rank-turbulence divergence

Probability turbulence divergence

Explorations
References

$N=100$
$N=316$
$N=1,000$
$N=10,000$
$N=31,622$

$N=316$

$N=10,000$

$N=316$

$N=1000$

Ω_{1} : Pride and Prejudice, first half
Instrument: Probability-Turbulence Divergeng $\alpha=3 / 4$
\longmapsto,

Ω_{2} : Pride and Prejudice, second half

Divergence contribution $\delta D_{3 / 4, \tau}^{\mathrm{P}}\left(\times 10^{-3} \%\right)$
\qquad
she Miss Bingley
she had $9 \rightleftharpoons 29$
had been $6 \rightleftharpoons 16$
I was $36.5=334$
in the Sir William
to be $1=3$
Miss Lucas
her uncle $201 \rightleftharpoons 20,087$
of Lady \triangleright
Lady Catherine
7 it is
uncle and $176 \rightleftharpoons 2,981.5$
a very
Collins was
of the
\triangleleft and Gardiner $317 \rightleftharpoons 44,665.5$
glad to young ladies
at Pemberley $201=2,981.5$
and aunt $201=2,981.5$
\checkmark every thing the room
\checkmark every thing $381 \rightleftharpoons 44,665.5$

I have

it was $10 \rightleftharpoons 20$ honour of
I must $89 \rightleftharpoons 448$
have been $15.5=35.5$
-4have 448 the Parsonage D
\triangleleft to Brighton $430 \rightleftharpoons 44,665.5$
It was $32.5 \rightleftharpoons 93$
4604=142. young man

me to

20.5 and the
to all $201 \rightleftharpoons 1,444$
sort of
$282=87$ does not
$50.0 \%-50.0 \%$

Divergence contribution $\delta D_{3 / 4, \tau}^{\mathrm{P}}\left(\times 10^{-4} \%\right)$
\qquad

George Floyd
the coronavirus $10=806$

```
                                    the police
                                    in Minneapolis
                                    black people
```

tested positive $26 \rightleftharpoons 6,425$.
positive for $31 \rightleftharpoons 6,125$,
the virus $28 \rightleftharpoons 1,404$
for coronavirus $45 \rightleftharpoons 13,978.5$
of coronavirus $50 \rightleftharpoons 14,998$. 5

Tom Hanks of George
$62 \rightleftharpoons 192,366$
white people
black lives
Rudy Gobert $97 \rightleftharpoons 1,478,89$ police officer has tested police office corona virus $73 \rightleftharpoons 3,111$ the black
due to $37 \rightleftharpoons 245$
the Coronavirus $117 \rightleftharpoons 13.204 .5$
will be $8=27$
spread of $119 \rightleftharpoons 10,611$
to cancel $128 \rightleftharpoons 13,725.5$
toilet paper $132 \approx 17.650 .5$ $132 \rightleftharpoons 17,650.5$ to stop
for the $5=$
sick leave $169,159,890$
$205=42$ the people
the spread $135=11,282$
Corona virus $158=39,796$ police brutality of police peaceful protest If you protesting in in Atlanta
$51.6 \%-48.4 \%$
Ω_{1} : Twitter on 2020/03/12 Instrument: Probability-Turbulence Divergenge

$$
\begin{aligned}
& \text { bless and stay } \\
& \text { iimpo commit }
\end{aligned}
$$

$$
\begin{aligned}
& \text { him fo co } \\
& \text { WHO. let ghe }
\end{aligned}
$$

$\Omega_{2}:$ Twitter on 2020/05/30
you want to
the White House
needs to be
If you are
the death of
front of the
to the ground
the same reason
them to stop
stand in ...ity
She says she
black liv...ter
before th...ice

Kannah mo...and
of George Floyd
will.repr.. you

Counts per cell

0,000,000
100,000

Divergence contribution $\delta D_{\infty, \tau}^{\mathrm{P}}(\%)$
$\begin{array}{lllllll}0.03 & 0.02 & 0.01 & 0 & 0.01 & 0.02 & 0.03\end{array}$
tested positive for $1 \rightleftharpoons 4,975$.

> of George Floyd
> the White House
> in front of
one of the $2 \rightleftharpoons 4$
has tested positive $3 \rightleftharpoons 11,879$
positive for coronavirus $4 \rightleftharpoons 14,798$
the spread of $5 \rightleftharpoons 7,264.5$
going to be $6 \rightleftharpoons 33$

out of the

 community in Minneapolisp
is going to $7=108$

to do with
part of the
World Health Organization $8 \rightleftharpoons 1,420$
to the ground
for the coronavirus $9 \rightleftharpoons 78,795$ for George Floyd \triangleright
positive for the $10 \rightleftharpoons 53,912$

$$
\text { due to the } 11 \rightleftharpoons 603
$$

has announced that $12 \rightleftharpoons 22,783.5$

needs to be

Support from the
be able to $13 \rightleftharpoons 45$
the rest of $14 \rightleftharpoons 143.5$
in the world $15=30$

This is the

because of coronavirus $16 \approx 277,424.5$ because of the $17 \rightleftharpoons 631.5$
4 that dogs cannot $18 \rightleftharpoons 43,073,107$
the United States $19=22$
\triangleleft announced that dogs $20 \rightleftharpoons 43,073,107$ Health Organization has $21 \rightleftharpoons 172,568$
the corona virus $22 \rightleftharpoons 1,421$
4 dogs cannot contract $23 \rightleftharpoons 43,073,107$ \triangleleft Organization has an...ced $24 \rightleftharpoons 43,073,107$ white vs black D
$50.4 \%-49.6 \%$
Ω_{1} : Barro Colorado Island, 1985 Census Instrument: Probability-Turbulence Divergenge $\alpha=1 / 3$ $\begin{array}{lllllllllll} & 0 & 1 / 4 & 1 / 2 & 3 / 4 & 1 & 3 / 2 & 2 & 3 & 5 & \infty\end{array}$ $D_{1 / 3}^{\mathrm{p}}\left(\Omega_{1} \| \Omega_{2}\right)=\sum_{i} \delta D_{1 / 3, \tau}^{\mathrm{p}}$

$$
=4 \sum_{\tau}\left|p_{\tau, 2}^{1 / 3}-p_{\tau, 2}^{1 / 3}\right|^{3 / 4}
$$

$\Omega_{2}:$ Barro Colorado Island, 2015 Census

Divergence contribution $\delta D_{1 / 3, \tau}^{\mathrm{P}}(\%)$

2	1.5	1	0.5	0	0.5	1	1.5	2

Piper cordulatum $9 \rightleftharpoons 138$
Psychotria horizontalis $8 \rightleftharpoons 23$
Poulsenia armata $14 \rightleftharpoons 53$

Calophyllum longifolium
 Inga acuminata
 Palicourea guianensis

Bactris barronis $137 \rightleftharpoons 269$
$<$ Bactris coloradonis $185 \rightleftharpoons 308$
Eugenia galalonensis
Trema integerrima>
Xylopia macrantha
Cecropia insignis
\triangleleft Trema unidentified $209 \rightleftharpoons 308$
Inga thibaudiana
Chamguava schippii
Piper playablancanum $140 \rightleftharpoons 230$
\triangle Inga unidentified $215 \rightleftharpoons 308$
Cecropia obtusifolia
Protium stevensonii

Guarea bullata $34 \approx 70$

Cupania seemannii
Piper culebranum $123 \rightleftharpoons 21$.
Virola sebifera $22 \rightleftharpoons 40$
Cespedesia spathulata
Piper cabagranum 98 $\rightleftharpoons 170$
Erythrina costaricensis $103 \rightleftharpoons 178$
Hasseltia floribunda $37 \rightleftharpoons 77$
Xylosma oligandra $97 \rightleftharpoons 165$
\checkmark Geonoma interrupta $228=308$
\triangleleft Koanophyllon wetmorei $231 \rightleftharpoons 308$
Conostegia cinnamomea $85 \rightleftharpoons 135$
Bactris coloniata $116 \rightleftharpoons 188$
Solanum asperumb
Psychotria graciliflora
3 Anaxagorea panamensis
4 Psychotria tenuifolia 241 $=308$
Garcinia recondita
Psychotria limonensis
Aegiphila panamensis $143 \rightleftharpoons 215$

Pourouma bicolor

Flipbooks：

Twitter：
 instrument－flipbook－1－rank－div．pdf䀠
 instrument－flipbook－2－probability－div．pdf
 instrument－flipbook－3－gen－entropy－div．pdf 䀠 $^{\text {ind }}$

，Market caps：

instrument－flipbook－4－marketcaps－6years－rank－div．pdf䀠
8 Baby names：
instrument－flipbook－5－babynames－girls－50years－rank－div．pdf䀠 instrument－flipbook－6－babynames－boys－50years－rank－div．pdf目

R Google books：
instrument－flipbook－7－google－books－onegrams－rank－div．pdf䀠 instrument－flipbook－8－google－books－bigrams－rank－div．pdf instrument－flipbook－9－google－books－trigrams－rank－div．pdff

Flipbooks：

Pride and Prejudice， 1 －grams
Pride and Prejudice，2－grams
Pride and Prejudice， 3 －grams 眼 $^{\text {a }}$
Twitter， 1 －grams
Twitter，2－grams 䀠 2
Twitter，3－grams
Barro Colorado İsland 䀠

Code:

Probability
turbulence divergence
https://gitlab.com/compstorylab/allotaxonometer

Claims, exaggerations, reminders:
Needed for comparing large-scale complex systems: Comprehendible, dynamically-adjusting, differential dashboards

The PoCSverse Allotaxonometry 60 of 67

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
References

Claims, exaggerations, reminders:

Needed for comparing large-scale complex systems:
Comprehendible, dynamically-adjusting, differential dashboards

Many measures seem poorly motivated and largely unexamined (e.g., JSD)

The PoCSverse Allotaxonometry 60 of 67

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence divergence

Explorations
References

Claims, exaggerations, reminders:

Needed for comparing large-scale complex systems:
Comprehendible, dynamically-adjusting, differential dashboards

Many measures seem poorly motivated and largely unexamined (e.g., JSD)

The PoCSverse Allotaxonometry 60 of 67

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence

Explorations
References

Of value: Combining big-picture maps with ranked lists

Claims, exaggerations, reminders:

Needed for comparing large-scale complex

The PoCSverse
Allotaxonometry 60 of 67

A plenitude of distances

Rank-turbulence divergence

Probability
turbulence
divergence
Explorations
References
\& Of value: Combining big-picture maps with ranked lists
B
Maybe one day: Online tunable version of rank-turbulence divergence (plus many other instruments)

Instrument: Rank-Turbulence Divergence

$D_{\infty}^{\mathrm{R}}\left(\Omega_{1}-\Omega_{2}\right)=0.926$
Ω_{2} : Baby girl names in 2018

References I

[1] S.-H. Cha.
Comprehensive survey on distance/similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Sciences, 1:300-307, 2007. pdf(
[2] A. Cichocki and S.-i. Amari.
Families of Alpha- Beta- and Gammadivergences: Flexible and robust measures of similarities.
Entropy, 12:1532-1568, 2010. pdf[
[3] M.-M. Deza and E. Deza.
Dictionary of Distances.
Elsevier, 2006.

References II

[4] L. R. Dice.
Measures of the amount of ecologic association between species.
Ecology, 26:297-302, 1945.
The PoCSverse Allotaxonometry 62 of 67
A plenitude of distances

Rank-turbulence divergence

Probability-
turbulence divergence

Explorations
[5] P. S. Dodds, J. R. Minot, M. V. Arnold, T. Alshaabi, J. L. Adams, D. R. Dewhurst, T. J. Gray, M. R. Frank, A. J. Reagan, and C. M. Danforth.

Allotaxonometry and rank-turbulence divergence: A universal instrument for comparing complex systems, 2020.
Available online at
https://arxiv.org/abs/2002.09770. pdf®

References III

The PoCSverse Allotaxonometry 63 of 67
A plenitude of distances
[6] P. S. Dodds, J. R. Minot, M. V. Arnold, T. Alshaabi, J. L. Adams, D. R. Dewhurst, A. J. Reagan, and C. M. Danforth.
Probability-turbulence divergence: A tunable allotaxonometric instrument for comparing heavy-tailed categorical distributions, 2020.
Available online at http://arxiv.org/abs/2008.13078. pdf[^
[7] D. M. Endres and J. E. Schindelin.
A new metric for probability distributions. IEEE Transactions on Information theory, 2003. pdf(ك

Rank-turbulence divergence

Probabilityturbulence divergence

References IV

[8] E. Hellinger.
Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen. Journal für die reine und angewandte Mathematik (Crelles Journal), 1909(136):210-271, 1909. pdf[3
[9] J. Lin.
Divergence measures based on the Shannon entropy.
IEEE Transactions on Information theory,
37(1):145-151, 1991. pdf[^
[10] J. Looman and J. B. Campbell.
Adaptation of Sørensen's k (1948) for estimating unit affinities in prairie vegetation.
Ecology, 41(3):409-416, 1960. pdf[3

References V

[11] K. Matusita et al.
Decision rules, based on the distance, for problems of fit, two samples, and estimation.
The Annals of Mathematical Statistics, 26(4):631-640, 1955. pdf[]
[12] R. Munroe.
How To: Absurd Scientific Advice for Common
Real-World Problems.
Penguin, 2019.
[13] F. Osterreicher and I. Vajda.
A new class of metric divergences on probability spaces and its applicability in statistics.
Annals of the Institute of Statistical Mathematics, 55(3):639-653, 2003.

References VI

[14] E. A. Pechenick, C. M. Danforth, and P. S. Dodds. Is language evolution grinding to a halt? The scaling of lexical turbulence in English fiction suggests it is not.
Journal of Computational Science, 21:24-37, 2017. pdf[
[15] Y. Sasaki.
The truth of the f-measure, 2007.
[16] T. Sorensen.
A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Videnski Selskab Biologiske Skrifter, 5:1-34, 1948.

References VII

The PoCSverse Allotaxonometry 67 of 67
A plenitude of distances

Rank-turbulence divergence

Probability-
turbulence
divergence
Explorations
References
[18] J. R. Williams, J. P. Bagrow, C. M. Danforth, and
P. S. Dodds.

Text mixing shapes the anatomy of rank-frequency distributions.
Physical Review E, 91:052811, 2015. pdf[^

[^0]: ${ }^{1}$ See the lexicocalorimeter [6

