Allotaxonometry

Last updated: 2022/08/27, 23:54:10 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 300, 303, & 394, 2022-2023 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Outline

A plenitude of distances

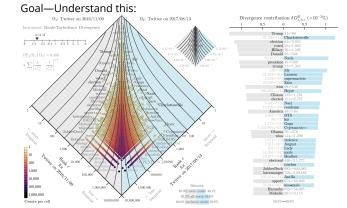
Rank-turbulence divergence

Probability-turbulence divergence

Explorations

References

◆) < (→ 2 of 65



PoCS @pocsvox Site (papers, examples, code): Allotaxonometry

http://compstorylab.org/allotaxonometry/

A plenitude of Rank-turbulence

divergence Probabilityturbulence divergence Explorations References

.... |S

@pocsvox

少 Q ← 1 of 65 PoCS

Allotaxonometry

A plenitude of

Rank-turbulence

distances

divergence

Probability-

divergence

Explorations

References

Foundational papers:

"Allotaxonometry and rank-turbulence divergence: A universal instrument for comparing complex systems" Dodds et al., 2020. [5]

"Probability-turbulence divergence: A tunable allotaxonometric instrument for comparing heavy-tailed categorical distributions"

Dodds et al., , 2020. [6]

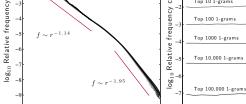
Basic science = Describe + Explain:

- Dashboards of single scale instruments helps us understand, monitor, and control systems.
- Archetype: Cockpit dashboard for flying a plane
- Okay if comprehendible.
- Complex systems present two problems for dashboards:
 - 1. Scale with internal diversity of components: We need meters for every species, every company, every word.
 - 2. Tracking change: We need to re-arrange meters on the fly.
- Goal—Create comprehendible, dynamically-adjusting, differential dashboards showing two pieces:1
 - 1. 'Big picture' map-like overview,
 - 2. A tunable ranking of components.

¹See the lexicocalorimeter ☑

Baby names, much studied: [12]

How to build a dynamical dashboard that helps sort through a massive number of interconnected time series?



suggests it is not"

Dewhurst, Reagan, Danforth, Reagan, and Danforth. Journal of Computational Science, 21, 24-37, 2017. [14]

"Is language evolution grinding to a halt? The

scaling of lexical turbulence in English fiction

Pechenick, Danforth, Dodds, Alshaabi, Adams,

Α Top 1-gram (comma) Top 10 1-grams

@pocsvox regimes: [18] Allotaxonometry

A plenitude of

Rank-turbulence divergence Probabilitydivergence

Explorations References

UIN S

PoCS @pocsvox

Allotaxonometry A plenitude of

distances Rank-turbulence divergence Probabilitydivergence Explorations

References

少∢<a>↑ 7 of 65

distances

For language, Zipf's law has two scaling

 log_{10} Rank r

$$f \sim \left\{ \begin{array}{l} r^{-\alpha} \mbox{ for } r \ll r_{\rm b}, \\ r^{-\alpha'} \mbox{ for } r \gg r_{\rm b}, \end{array} \right. \label{eq:force}$$

When comparing two texts, define Lexical turbulence as flux of words across a frequency threshold:

$$\phi \sim \left\{ egin{array}{l} f_{
m thr}^{-\mu} \ {
m for} \ f_{
m thr} \ll f_{
m b}, \ f_{
m thr}^{-\mu'} \ {
m for} \ f_{
m thr} \gg f_{
m b}, \end{array}
ight.$$

Estimates: $\mu \simeq 0.77$ and $\mu' \simeq 1.10$, and $f_{\rm b}$ is the scaling break point.

$$\phi \sim \left\{ \begin{array}{l} r^{\nu} = r^{\alpha \mu'} \text{ for } r \ll r_{\rm b}, \\ r^{\nu'} = r^{\alpha' \mu} \text{ for } r \gg r_{\rm b}. \end{array} \right.$$

Estimates: Lower and upper exponents $\nu \simeq 1.23$ and

В

@pocsvox

Allotaxonometry

A plenitude of

Rank-turbulence

distances

divergence

Probability-

turbulence

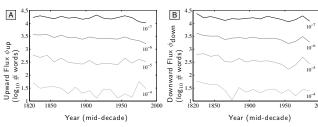
divergence

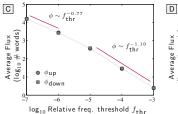
Explorations

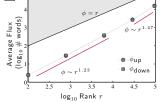
References

Year (mid-decade)

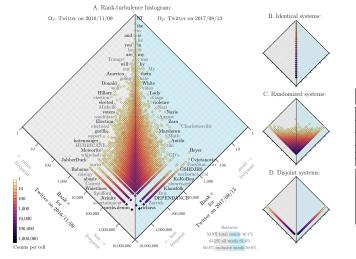
少 q (~ 6 of 65 $\nu' \simeq 1.47$.



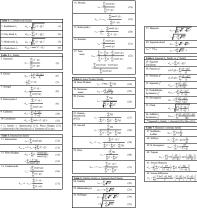




少 Q (~ 9 of 65



Quite the festival:



PoCS @pocsvox	
Allotaxonome	try

distances

divergence

 $= \max \left(\sum_{i} \frac{(P_i - Q_i)^i}{P_i} \sum_{i} \frac{(P_i - Q_i)^i}{Q_i} \right)$

•9 q (> 14 of 65

@pocsvox Allotaxonometry

divergence

divergence

(5) $\sum_{i=1}^{d} (P_i + Q_i)$ 6. Gower $d_{gow} = \frac{1}{d} \sum_{i=1}^{d} \frac{|P_i - Q_i|}{R}$ (6) $= \frac{1}{d} \sum_{i}^{d} |P_i - Q_i|$ (7) 7. Soergel $\sum_{i=1}^{d} |P_i - Q_i|$ $\sum_{i=1}^{d} \max(P_i, Q_i)$ $\sum_{i=1}^{d} |P_i - Q_i|$ (9) $\sum_{i=1}^{d} \min(P_i, Q_i)$ $d_{Con} = \sum_{i=1}^{d} \frac{|P_i - Q_i|}{P_i + Q_i}$ (10) $d_{Lor} = \sum_{i} \ln(1 + |P_i - Q_i|)$ (11)

Table 1. L_p Minkov	vski family	
1. Euclidean L ₂	$d_{Eac} = \sqrt{\sum_{i=1}^{d} P_i - Q_i ^2}$	(1)
2. City block L_1	$d_{CB} = \sum_{i=1}^{d} P_i - Q_i $	(2)
. Minkowski L _p	$d_{Mk} = \sqrt{\sum_{i=1}^{d} P_i - Q_i ^p}$	(3)
	1	

 Chebysnev L_∞ 	W. Chris - 11111/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	(-
Table 2. L ₁ family		
5. Sørensen	$d_{uv} = \frac{\sum_{i=1}^{d} P_i - Q_i }{\frac{d}{d}}$	(5)
	$\sum_{i}(P_{i}+Q_{i})$	

6. Gower	$d_{gow} = \frac{1}{d} \sum_{i=1}^{d} \frac{ P_i - Q_i }{R}$	(6)
	$= \frac{1}{d} \sum_{i=1}^{d} P_i - Q_i $	(7)
7. Soergel	$d_{sg} = \frac{\sum_{i=1}^{d} P_i - Q_i }{\sum_{i=1}^{d} \max(P_i, Q_i)}$	(8)
8. Kulczynski d	$d_{kd} = \frac{\sum_{i=1}^{d} P_i - Q_i }{\sum_{i=1}^{d} \min(P_i, Q_i)}$	(9)
9. Canberra	$d_{Con} = \sum_{i=1}^{d} \frac{ P_i - Q_i }{P_i + Q_i}$	(10)
10. Lorentzian	$d_{Lor} = \sum_{i=1}^{d} \ln(1 + P_i - Q_i)$	(11)

DOCSVOX

◆) q (> 15 of 65

(3)	distances
(4)	Rank-turbulenc
	divergence

turbulence divergence
Explorations

	$d_{nor} = \frac{\frac{d+1}{d}}{\sum_{i} (P_i + Q_i)}$	(5)	divergence
	7(41 - 21)		Exploratio
5. Gower	$d_{gow} = \frac{1}{d} \sum_{i=1}^{d} \frac{ P_i - Q_i }{R_i}$	(6)	References
	$= \frac{1}{d} \sum_{i=1}^{d} P_i - Q_i $	(7)	
7. Soergel	$d_{ig} = \frac{\sum_{i=1}^{d} P_i - Q_i }{\sum_{i=1}^{d} \max(P_i, Q_i)}$	(8)	
3. Kulczynski d	$d_{bd} = \frac{\sum_{i=1}^{d} P_i - Q_i }{\sum_{i=1}^{d} \min(P_i, Q_i)}$	(9)	
P. Canberra	$d_{Can} = \sum_{i=1}^{d} \frac{ P_i - Q_i }{P_i + Q_i}$	(10)	
0. Lorentzian	$d_{Lor} = \sum_{i=1}^{d} \ln(1 + P_i - Q_i)$	(11)	(m) 8

Jensen-Shannon divergence (JSD): [9, 7, 13, 1]

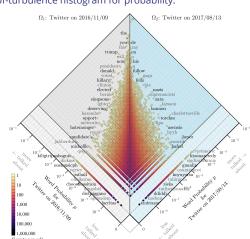
 $D^{JS}(P_1 || P_2)$ $= \tfrac{1}{2} D^{\mathsf{KL}} \left(P_1 \ \Big\| \ \tfrac{1}{2} \left[P_1 + P_2 \right] \right) + \tfrac{1}{2} D^{\mathsf{KL}} \left(P_2 \ \Big\| \ \tfrac{1}{2} \left[P_1 + P_2 \right] \right)$ $=\frac{1}{2}\sum_{\tau \in R_{1,2;\alpha}} \left(p_{1,\tau} {\log_2 \frac{p_{1,\tau}}{\frac{1}{2}\left[p_{1,\tau} + p_{2,\tau}\right]}} + p_{2,\tau} {\log_2 \frac{p_{2,\tau}}{\frac{1}{2}\left[p_{1,\tau} + p_{2,\tau}\right]}} \right)$

- Involving a third intermediate averaged system means JSD is now finite: $0 \le D^{JS}(P_1 || P_2) \le 1$.
- & Generalized entropy divergence: [2]

$$\begin{split} D_{\alpha}^{\text{AS2}}\left(P_{1} \parallel P_{2}\right) &= \\ \frac{1}{\alpha(\alpha-1)} \sum_{\tau \in R_{1,2;\alpha}} \left[\left(p_{\tau,1}^{1-\alpha} + p_{\tau,2}^{1-\alpha}\right) \left(\frac{p_{\tau,1} + p_{\tau,2}}{2}\right)^{\alpha} - \left(p_{\tau,1} + p_{\tau,2}\right) \right] \end{split} \tag{4}$$

ჟqॡ 18 of 65

Zipf-turbulence histogram for probability:



So, so many ways to compare probability distributions:

Divergences: Flexible and Robust Measures of Similarities"

Entropy, **12**, 1532-1568, 2010. [2]

probability density functions"

"Comprehensive survey on

Cichocki and Amari,

Sung-Hyuk Cha,

families

1, 300–307, 2007. ^[1] & Comparisons are distances, divergences,

"Families of Alpha- Beta- and Gamma-

distance/similarity measures between

International Journal of Mathematical

Models and Methods in Applied Sciences,

@pocsvox Allotaxonometry

A plenitude of distances divergence

Probabilityturbulence divergence

For sorting, many comparisons give the same ordering.

difference

We want two main

1. A measure of

systems

difference between

2. A way of sorting which

contribute to that

types/species/words

things:

A few basic building blocks:

 $|P_i - Q_i|$ (dominant)

 $\mod \operatorname{max}(P_i, Q_i)$ $min(P_i, Q_i)$

 P_iQ_i

 $|P_{i}^{1/2} - Q_{i}^{1/2}|$ (Hellinger)

UM | 8 •9 a (→ 12 of 65

PoCS @pocsvox Allotaxonometry

A plenitude of

Rank-turbulence divergence Probability-

divergence Explorations Information theoretic sortings are more opaque

No tunability

similarities, inner products, fidelities ... A worry: Subsampled distributions with very

heavy tails & 60ish kinds of comparisons grouped into 10

•9 a (№ 13 of 65

A plenitude of

Probabilityturbulence divergence

 $d_{Eac} = \sqrt{\sum_{i}^{d} |P_i - Q_i|^2}$

 $d_{CB} = \sum_{i} |P_i - Q_i|$

 $d_{Mk} = p \sum_{i}^{d} |P_i - Q_i|^p$

 $d_{Club} = \max |P_i - Q_i|$

2. City block L₁

Minkowski L_n

4. Chebyshev L_{∞}

Table 2. L_1 family

III | | |

A plenitude of distances

Probability

References

* L₁ family ⊃ {Intersectoin (13), Wave Hedges (15),

少 Q (№ 16 of 65

Shannon's Entropy:

 $H(P) = \langle \log_2 \frac{1}{p_\tau} \rangle = \sum_{\tau \in R_{1,2,\sigma}} p_\tau \log_2 \frac{1}{p_\tau}$

Kullback-Liebler (KL) divergence:

 $D^{\mathsf{KL}}\left(P_{2} \parallel P_{1}\right) = \left\langle \log_{2} \frac{1}{p_{2,\tau}} - \log_{2} \frac{1}{p_{1,\tau}} \right\rangle_{P_{2}}$ $= \sum_{\tau \in R_{1,2,\alpha}} p_{2,\tau} \left[\log_2 \frac{1}{p_{2,\tau}} - \log_2 \frac{1}{p_{1,\tau}} \right]$ $= \sum_{\tau \in R_{1,2;\alpha}} p_{2,\tau} \log_2 \frac{p_{1,\tau}}{p_{2,\tau}}.$ (2)

Problem: If just one component type in system 2 is not present in system 1, KL divergence = ∞ .

Solution: If we can't compare a spork and a platypus directly, we create a fictional spork-platypus hybrid.

New problem: Re-read solution.

UM O 少 Q № 17 of 65

@pocsvox

distances

Probability-

turbulence

divergence

References

Allotaxonometry

@pocsvox Allotaxonometry

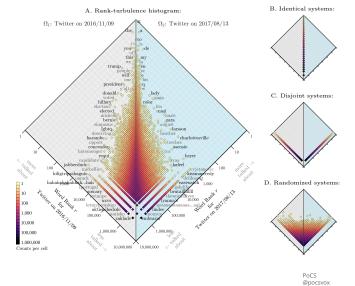
distances

divergence

divergence

References

Produces JSD when $\alpha \to 0$.



Exclusive types:

- & We call types that are present in one system only 'exclusive types'.
- & When warranted, we will use expressions of the form $\Omega^{(1)}$ -exclusive and $\Omega^{(2)}$ -exclusive to indicate to which system an exclusive type belongs.

Desirable rank-turbulence divergence features:

- 1. Rank-based.
- 2. Symmetric.
- 3. Semi-positive: $D_{\alpha}^{\mathsf{R}}(\Omega_1 \mid\mid \Omega_2) \geq 0$.
- 4. Linearly separable, for interpretability.
- 5. Subsystem applicable: Ranked lists of any principled subset may be equally well compared (e.g., hashtags on Twitter, stock prices of a certain sector, etc.).
- 6. Zipfophilic: Able to handle systems with rank-ordered component size distribution that are heavy-tailed.
- 7. Scalable: Allow for sensible comparisons across system sizes.
- 8. Tunable.
- 9. Story-finding: Features 1-8 combine to show which component types are most 'important'

Some good things about ranks:

- Working with ranks is intuitive
- Affords some powerful statistics (e.g., Spearman's rank correlation coefficient)
- Can be used to generalize beyond systems with probabilities

A start:

Allotaxonometry

A plenitude of

divergence

divergence

References

UM | 8

PoCS

◆) q (~ 21 of 65

Allotaxonometry

A plenitude of

Rank-turbulence

divergence

divergence

Explorations

•9 q (→ 22 of 65

Rank-turbulence

$$\left| \frac{1}{r_{\tau,1}} - \frac{1}{r_{\tau,2}} \right|$$
 (5)

- Inverse of rank gives an increasing measure of 'importance'
- High rank means closer to rank 1
- We assign tied ranks for components of equal 'size'
- & Issue: Biases toward high rank components

We introduce a tuning parameter:

$$\left| \frac{1}{\left[r_{\tau,1} \right]^{\alpha}} - \frac{1}{\left[r_{\tau,2} \right]^{\alpha}} \right|^{1/\alpha} . \tag{6}$$

- $As \alpha \rightarrow 0$, high ranked components are increasingly dampened
- For words in texts, for example, the weight of common words and rare words move increasingly closer together.
- $As \alpha \to \infty$, high rank components will dominate.
- For texts, the contributions of rare words will vanish.

Trouble:

 \clubsuit The limit of $\alpha \to 0$ does not behave well for

$$\left| \frac{1}{\left[r_{\tau,1} \right]^{\alpha}} - \frac{1}{\left[r_{\tau,2} \right]^{\alpha}} \right|^{1/\alpha}.$$

The leading order term is:

$$\left(1 - \delta_{r_{\tau,1} r_{\tau,2}} \right) \alpha^{1/\alpha} \left| \ln \frac{r_{\tau,1}}{r_{\tau,2}} \right|^{1/\alpha}, \tag{7}$$

which heads toward ∞ as $\alpha \to 0$.

- Oops.
- But the insides look nutritious:

$$\left|\ln \frac{r_{\tau,1}}{r_{\tau,2}}\right|$$

is a nicely interpretable log-ratio of ranks.

Some reworking: @pocsvox Allotaxonometry

distances

divergence Probability

turbulence

divergence

Explorations

References

@pocsvox

Allotaxonometry

A plenitude of

Rank-turbulence

distances

divergence

Probability

divergence

References

UN S

PoCS

•> q (→ 24 of 65

Allotaxonometry

A plenitude of

Rank-turbulence

distances

divergence

Probability

divergence

Explorations

References

 $\delta D_{\alpha,\tau}^{\mathrm{R}}(R_1 \bigm|\hspace{-0.1cm}\mid R_2) \propto \frac{\alpha+1}{\alpha} \left| \frac{1}{\left[r_{\tau,1}\right]^{\alpha}} - \frac{1}{\left[r_{\tau,2}\right]^{\alpha}} \right|^{1/\zeta}$

Keeps the core structure.

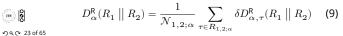
& Large α limit remains the same.

 $\alpha \to 0$ limit now returns log-ratio of ranks.

& Next: Sum over τ to get divergence.

Still have an option for normalization.

Rank-turbulence divergence:



@pocsvox

distances

divergence

turbulence

divergence

Exploration

References

Allotaxonometry

少 q (26 of 65

@pocsvox Allotaxonometry

A plenitude of

distances

divergence Probability

divergence Exploration

References

Take a data-driven rather than analytic approach

Normalization:

- to determining $\mathcal{N}_{1,2:\alpha}$.
 - $\ensuremath{\mathfrak{X}}$ Compute $\mathcal{N}_{1,2;\alpha}$ by taking the two systems to be disjoint while maintaining their underlying Zipf distributions.
 - \Leftrightarrow Ensures: $0 \le D_{\alpha}^{\mathsf{R}}(R_1 \parallel R_2) \le 1$

Rank-turbulence divergence:

Limits of 0 and 1 correspond to the two systems having identical and disjoint Zipf distributions.

UM O

•9 a (№ 27 of 65

PoCS

Allotaxonometry

A plenitude of distances

divergence

divergence

 $D_{\alpha}^{\mathrm{R}}(R_1 \mid\mid R_2) = \frac{1}{\mathcal{N}_{1.2:\alpha}} \frac{\alpha+1}{\alpha} \sum_{\tau \in R_{+-}} \left| \frac{1}{\left\lceil r_{\tau,1} \right\rceil^{\alpha}} - \frac{1}{\left\lceil r_{\tau,2} \right\rceil^{\alpha}} \right|$

Summing over all types, dividing by a normalization

prefactor $\mathcal{N}_{1,2:\alpha}$ we have our prototype:

•9 a (№ 25 of 65

少 q (~ 28 of 65

General normalization:

- \mathbb{R} lif the Zipf distributions are disjoint, then in $\Omega^{(1)}$'s merged ranking, the rank of all $\Omega^{(2)}$ types will be $r = N_1 + \frac{1}{2}N_2$, where N_1 and N_2 are the number of distinct types in each system.
- Similarly, $\Omega^{(2)}$'s merged ranking will have all of $\Omega^{(1)}$'s types in last place with rank $r = N_2 + \frac{1}{2}N_1$.
- A The normalization is then:

$$\begin{split} \mathcal{N}_{1,2;\alpha} &= \frac{\alpha+1}{\alpha} \sum_{\tau \in R_1} \left| \frac{1}{\left[r_{\tau,1}\right]^{\alpha}} - \frac{1}{\left[N_1 + \frac{1}{2}N_2\right]^{\alpha}} \right|^{1/(\alpha+1)} \\ &+ \frac{\alpha+1}{\alpha} \sum_{\tau \in R_1} \left| \frac{1}{\left[N_2 + \frac{1}{2}N_1\right]^{\alpha}} - \frac{1}{\left[r_{\tau,2}\right]^{\alpha}} \right|^{1/(\alpha+1)}. \end{split} \tag{11}$$

 $D_0^{\mathrm{R}}(R_1 \, \| \, R_2) = \sum_{\tau \in R_{1,2;\alpha}} \delta D_{0,\tau}^{\mathrm{R}} = \frac{1}{\mathcal{N}_{1,2;0}} \sum_{\tau \in R_{1,2;\alpha}} \left| \ln \frac{r_{\tau,1}}{r_{\tau,2}} \right|,$

 $\mathcal{N}_{1,2;0} = \sum_{\tau \in R} \left| \ln \frac{r_{\tau,1}}{N_1 + \frac{1}{2}N_2} \right| + \sum_{\tau \in R} \left| \ln \frac{r_{\tau,2}}{\frac{1}{2}N_1 + N_2} \right|.$

Largest rank ratios dominate.

Probability-turbulence divergence:

$$D_{\alpha}^{\mathrm{P}}(P_1 \mid\mid P_2) = \frac{1}{\mathcal{N}_{1,2;\alpha}^{\mathrm{P}}} \frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1,2;\alpha}} \left| \; \left[\; p_{\tau,1} \right]^{\alpha} - \left[\; p_{\tau,2} \right]^{\alpha} \; \right|^{1/(\alpha+1)}. \tag{16}$$

- \Re For the unnormalized version ($\mathcal{N}_{1,2:\alpha}^{\mathsf{P}}$ =1), some troubles return with 0 probabilities and $\alpha \to 0$.
- \Re Weep not: $\mathcal{N}_{1,2;\alpha}^{\mathsf{P}}$ will save the day.

Limit of α =0 for probability-turbulence divergence

Normalization:

$$\mathcal{N}_{1,2;lpha}^{\mathrm{P}}
ightarrowrac{1}{lpha}\left(N_{1}+N_{2}
ight).$$
 (19)

Because the normalization also diverges as $1/\alpha$, the divergence will be zero when there are no exclusive types and non-zero when there are exclusive types.

Allotaxonometry

divergence

@pocsvox

Probability-turbuler divergence

Explorations References

UM O

@pocsvox Allotaxonometry

Probability-turbule divergence

 $D_0^{\mathrm{P}}(P_1 \, \| \, P_2) = \frac{1}{(N_1 + N_2)} \sum_{\tau \in R_{\tau, \tau, \tau}} \left(\delta_{p_{\tau, 1}, 0} + \delta_{0, p_{\tau, 2}} \right).$

Combine these cases into a single expression:

- \Leftrightarrow The term $\left(\delta_{p_{\tau,1},0} + \delta_{0,p_{\tau,2}}\right)$ returns 1 if either $p_{\tau,1}=0$ or $p_{\tau,2}=0$, and 0 otherwise when both $p_{\tau,1} > 0$ and $p_{\tau,2} > 0$.
- Ratio of types that are exclusive to one system relative to the total possible such types,

少 Q (№ 35 of 65

divergence

Explorations

References

UM O

PoCS

Allotaxonometry

A plenitude of distances

divergence

Explorations

References

Probability-turbuler divergence

present in one system is zero in the other, and the sum can be split between the two systems' types:

$$\mathcal{N}_{1,2;\alpha}^{\mathrm{p}} = \frac{\alpha+1}{\alpha} \sum_{\tau \in R_1} \left[p_{\tau,1} \right]^{\alpha/(\alpha+1)} + \frac{\alpha+1}{\alpha} \sum_{\tau \in R_2} \left[p_{\tau,2} \right]^{\alpha/(\alpha+1)} \tag{17}$$

Normalization:

With no matching types, the probability of a type

$$\mathcal{N}_{1,2;\alpha}^{\mathsf{p}} = \frac{\alpha+1}{\alpha} \sum_{\tau \in R_1} \left[p_{\tau,1} \right]^{\alpha/(\alpha+1)} + \frac{\alpha+1}{\alpha} \sum_{\tau \in R_2} \left[p_{\tau,2} \right]^{\alpha/(\alpha+1)} \tag{17}$$

.... |S

@pocsvox

divergence

turbulence

divergence

Explorations

.... |S

@pocsvox

divergence

Explorations

少 Q (№ 29 of 65

Allotaxonometry

•9 q (→ 30 of 65

PoCS Allotaxonometry

divergence

Limit of α =0 for probability-turbulence divergence

 \Re if both $p_{\tau,1} > 0$ and $p_{\tau,2} > 0$ then

$$\lim\nolimits_{\alpha\rightarrow0}\!\frac{\alpha+1}{\alpha}\;\Big|\;\big[\,p_{\tau,1}\big]^{\alpha}-\big[\,p_{\tau,2}\big]^{\alpha}\;\Big|^{1/(\alpha+1)}=\left|\ln\frac{p_{\tau,2}}{p_{\tau,1}}\right|. \tag{18}$$

 \clubsuit But if $p_{\tau,1} = 0$ or $p_{\tau,2} = 0$, limit diverges as $1/\alpha$.

Allotaxonometry A plenitude of

W |S

PoCS

•> q (→ 33 of 65

@pocsvox

Allotaxonometry

A plenitude of distances

divergence

Explorations

Probability-turbuler

Rank-turbulence divergence Probability-turbuler

Type contribution ordering for the limit of α =0

- In terms of contribution to the divergence score, all exclusive types supply a weight of $1/(N_1 + N_2)$. We can order them by preserving their ordering as $\alpha \to 0$, which amounts to ordering by descending probability in the system in which they appear.
- And while types that appear in both systems make no contribution to $D_0^{\mathsf{P}}(P_1 \parallel P_2)$, we can still order them according to the log ratio of their probabilities.
- The overall ordering of types by divergence contribution for α =0 is then: (1) exclusive types by descending probability and then (2) types appearing in both systems by descending log ratio.

Limit of $\alpha \to \infty$:

Limit of $\alpha \to 0$:

where

$$\begin{split} &D_{\infty}^{\mathrm{R}}(R_1 \, \| \, R_2) = \sum_{\tau \in R_{1,2;\alpha}} \delta D_{\infty,\,\tau}^{\mathrm{R}} \\ &= \frac{1}{\mathcal{N}_{1,2;\infty}} \sum_{\tau \in R_{1,2;\alpha}} \left(1 - \delta_{r_{\tau,1} r_{\tau,2}}\right) \max_{\tau} \left\{\frac{1}{r_{\tau,1}}, \frac{1}{r_{\tau,2}}\right\}. \end{split} \tag{14}$$

where

$$\mathcal{N}_{1,2;\infty} = \sum_{\tau \in R_1} \frac{1}{r_{\tau,1}} + \sum_{\tau \in R_2} \frac{1}{r_{\tau,2}}. \tag{15} \label{eq:15}$$

Highest ranks dominate.

III |

•9 q (→ 31 of 65

UIN S •9 q (→ 34 of 65 III |

少 q (~ 37 of 65

Limit of $\alpha = \infty$ for probability-turbulence divergence

$$D_{\infty}^{\mathrm{P}}(P_1 \, \| \, P_2) = \frac{1}{2} \sum_{\tau \in R_{1,2;\infty}} \left(1 - \delta_{p_{\tau,1},p_{\tau,2}} \right) \max \left(p_{\tau,1}, p_{\tau,2} \right) \tag{21}$$

Connections for PTD:

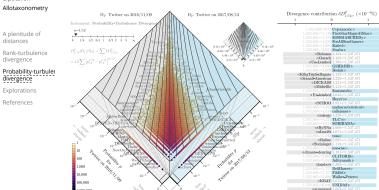
distance [11].

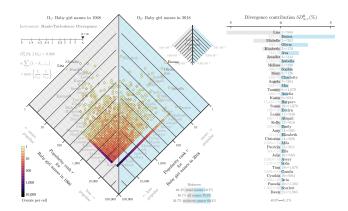
constructions.

 $\alpha = \infty$: Motyka distance [3].

 $\& \ \alpha=0$: Similarity measure Sørensen-Dice coefficient $^{[4,\ 16,\ 10]},\ F_1$ score of a test's accuracy $^{[17,\ 15]}.$

$$\mathcal{N}_{1,2;\infty}^{\mathrm{P}} = \sum_{\tau \in R_{1,2;\infty}} \left(\ p_{\tau,1} + p_{\tau,2} \ \right) = 1 + 1 = 2. \tag{22}$$





(III)

PoCS @pocsvox Allotaxonometry

Rank-turbulence divergence

Explorations References

◆) < (> 38 of 65

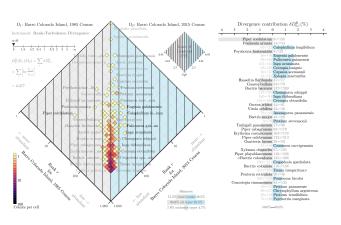
PoCS @pocsvox Allotaxonometry

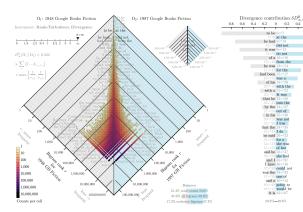
A plenitude of distances

Probability-turbuler divergence

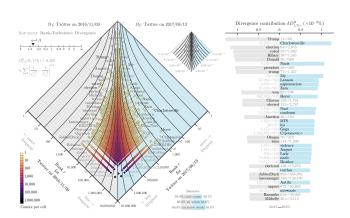
Rank-turbulence divergence

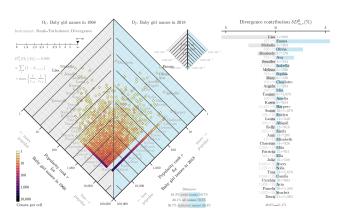
Explorations

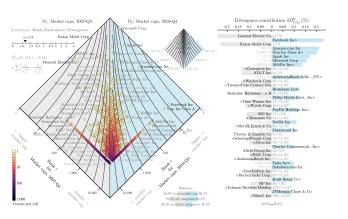




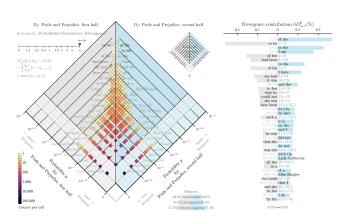
◆) q (→ 39 of 65

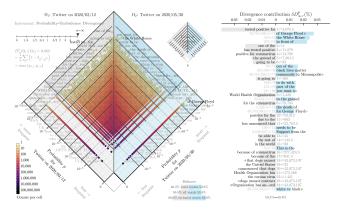


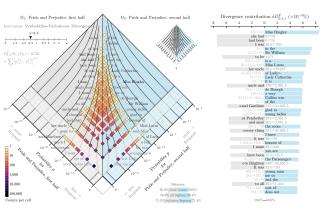


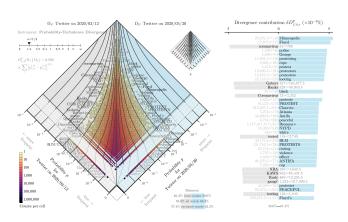


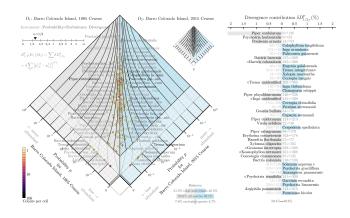
Effect of subsampling: Pocs @pocsvox Allotaxonometry A plenitude of distances Rank-turbulence divergence Probability-turbulence divergences N=31 N=100 N=316 N=1,000 N=10,000 N=31,022 Explorations References References Divergence contribution \$\frac{\text{D}}{\text{Fig.}}_{\text{s.f.}} \text{ (v.10}^{-3}\text{ (v.10}^{-3}\text{

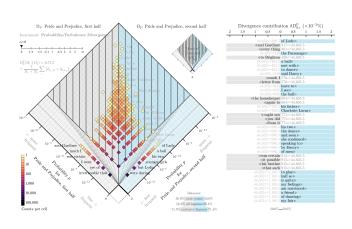


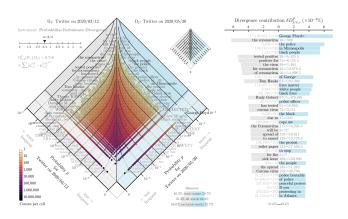












Flipbooks:

Twitter:

instrument-flipbook-1-rank-div.pdf⊞ instrument-flipbook-2-probability-div.pdf⊞ instrument-flipbook-3-gen-entropy-div.pdf⊞

Market caps:

instrument-flipbook-4-marketcaps-6years-rank-div.pdf⊞

Baby names:

instrument-flipbook-5-babynames-girls-50years-rank-div.pdf目instrument-flipbook-6-babynames-boys-50years-rank-div.pdf目

Google books:

instrument-flipbook-7-google-books-onegrams-rank-div.pdf⊟ instrument-flipbook-8-google-books-bigrams-rank-div.pdf⊟ instrument-flipbook-9-google-books-trigrams-rank-div.pdf⊟

Flipbooks:

Pride and Prejudice, 1-grams Pride and Prejudice, 2-grams Pride and Prejudice, 3-grams Twitter, 1-grams ⊞ Twitter, 2-grams⊞ Twitter, 3-grams⊞ Barro Colorado Island

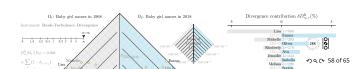
Code:

https://gitlab.com/compstorylab/allotaxonometer

Claims, exaggerations, reminders:

largely unexamined (e.g., JSD)

- Needed for comparing large-scale complex systems: Comprehendible, dynamically-adjusting,
- differential dashboards Many measures seem poorly motivated and
- A Of value: Combining big-picture maps with ranked lists
- & Maybe one day: Online tunable version of rank-turbulence divergence (plus many other instruments)



References I

[1] S.-H. Cha. Comprehensive survey on distance/similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Sciences, 1:300–307, 2007. pdf 🖸

- [2] A. Cichocki and S.-i. Amari. Families of Alpha- Beta- and Gammadivergences: Flexible and robust measures of similarities. Entropy, 12:1532–1568, 2010. pdf
- [3] M.-M. Deza and E. Deza. Dictionary of Distances. Elsevier, 2006.

References II

@pocsvox

Allotaxonometry

A plenitude of

Rank-turbulence

distances

divergence

Probability-

turbulence

divergence

Explorations

References

UM | 8

PoCS

@pocsvox

◆) < (> 57 of 65

Allotaxonometry

A plenitude of

Rank-turbulence

distances

divergence

Probability-

divergence

Explorations

[4] L. R. Dice. Measures of the amount of ecologic association between species. Ecology, 26:297-302, 1945.

[5] P. S. Dodds, J. R. Minot, M. V. Arnold, T. Alshaabi, J. L. Adams, D. R. Dewhurst, T. J. Gray, M. R. Frank, A. J. Reagan, and C. M. Danforth. Allotaxonometry and rank-turbulence divergence: A universal instrument for comparing complex systems, 2020. Available online at https://arxiv.org/abs/2002.09770.pdf

References III

P. S. Dodds, J. R. Minot, M. V. Arnold, T. Alshaabi, J. L. Adams, D. R. Dewhurst, A. J. Reagan, and C. M. Danforth. Probability-turbulence divergence: A tunable allotaxonometric instrument for comparing heavy-tailed categorical distributions, 2020. Available online at http://arxiv.org/abs/2008.13078.pdf

D. M. Endres and J. E. Schindelin. A new metric for probability distributions. IEEE Transactions on Information theory, 2003. pdf 🖸

References IV

PoCS

@pocsvox

Allotaxonometry

A plenitude of

Rank-turbulence

distances

divergence

Probability-

turbulence

divergence

Explorations

References

UM |OS

@pocsvox

◆9 Q ← 59 of 65

Allotaxonometry

A plenitude of

Rank-turbulence

distances

divergence

Probability

turbulence

divergence

Explorations

References

III | | |

PoCS

@pocsvox

•9 q (→ 60 of 65

Allotaxonometry

A plenitude of

Rank-turbulence

distances

divergence

Probability

divergence

Explorations

References

[8] E. Hellinger. Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen. Journal für die reine und angewandte Mathematik (Crelles Journal), 1909(136):210-271, 1909. pdf

[9] J. Lin. Divergence measures based on the Shannon IEEE Transactions on Information theory, 37(1):145−151, 1991. pdf 🗹

[10] J. Looman and J. B. Campbell. Adaptation of Sørensen's k (1948) for estimating unit affinities in prairie vegetation. Ecology, 41(3):409-416, 1960. pdf

UM O

PoCS

@pocsvox

distances

divergence

Probability-

turbulence

divergence

Explorations

References

Allotaxonometry

Rank-turbulence

◆) q (~ 62 of 65

References V

[11] K. Matusita et al. Decision rules, based on the distance, for problems of fit, two samples, and estimation. The Annals of Mathematical Statistics, 26(4):631-640, 1955. pdf

[12] R. Munroe. How To: Absurd Scientific Advice for Common Real-World Problems. Penguin, 2019.

[13] F. Osterreicher and I. Vajda. A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics,

PoCS @pocsvox Allotaxonometry

A plenitude of

Rank-turbulence divergence Probabilityturbulence

distances

divergence Explorations

References

UM O

夕 Q № 63 of 65 PoCS

Allotaxonometry

A plenitude of

Rank-turbulence

distances

divergence

Probability-

divergence

Exploration

References

55(3):639-653, 2003.

pdf 🖸

[16] T. Sorensen. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons.

References VI

[14] E. A. Pechenick, C. M. Danforth, and P. S. Dodds. Is language evolution grinding to a halt? The scaling of lexical turbulence in English fiction suggests it is not. Journal of Computational Science, 21:24-37, 2017.

[15] Y. Sasaki. The truth of the *f*-measure, 2007.

少 Q № 64 of 65

少 Q (№ 61 of 65

Videnski Selskab Biologiske Skrifter, 5:1-34, 1948.

References VII

[17] C. J. Van Rijsbergen.

Information retrieval.

Butterworth-Heinemann, 2nd edition, 1979.

[18] J. R. Williams, J. P. Bagrow, C. M. Danforth, and P. S. Dodds.

Text mixing shapes the anatomy of rank-frequency distributions.

Physical Review E, 91:052811, 2015. pdf ☑

PoCS @pocsvox Allotaxonometry

A plenitude of distances

distances Rank-turbulence divergence

Probabilityturbulence divergence

Explorations

References

•9 q № 65 of 65