Scaling—a Plenitude of Power Laws

Last updated: 2021/10/06, 20:25:28 EDT

Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021–2022 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Outline

Scaling-at-large

Allometry

Biology

Physics

People

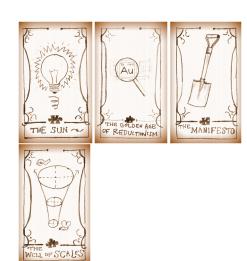
Money

Language

Technology

Specialization

References



PoCS @pocsvox Scaling

Scaling-at-large Allometry

Biology

People

Money Language

Specialization References

•9 q (> 1 of 104

PoCS @pocsvox Scaling

Scaling-at-large Allometry

Biology People

Money Language

Specialization References

◆) < (~ 2 of 104

PoCS Scaling

Scaling-at-large

Allometro Biology Physics

People Money

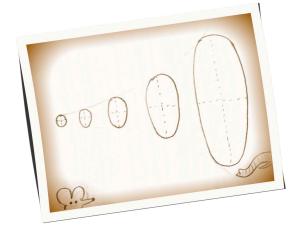
Language Specialization

References

um |S

•9 q ← 4 of 104

Archival object:



Scalingarama

General observation:

Systems (complex or not) that cross many spatial and temporal scales often exhibit some form of scaling.

Outline—All about scaling:

- Basic definitions.
- Examples.

In PoCS, Vol. 2:

- Advances in measuring your power-law relationships.
- Scaling in blood and river networks.
- The Unsolved Allometry Theoricides.

Definitions

A power law relates two variables x and y as follows:

$$y = cx^{\alpha}$$

- α is the scaling exponent (or just exponent)
- α can be any number in principle but we will find various restrictions.
- & c is the prefactor (which can be important!)

@pocsvox Scaling

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Specialization

References

.... |S

PoCS

Scaling

Allometro

Biology

Physics

People

Money

Language

Specialization

References

UM OS

PoCS

Scaling

Allometro

Biology

Physics

People

Money

Language Technology

Specialization

References

少 Q (~ 7 of 104

Scaling-at-large

@pocsvox

少 Q (~ 5 of 104

Scaling-at-large

Definitions

Looking at data

better.

\clubsuit The prefactor c must balance dimensions.

& Imagine the height ℓ and volume v of a family of shapes are related as:

$$\ell = c v^{1/4}$$

Using [·] to indicate dimension, then

$$[c] = [l]/[V^{1/4}] = L/L^{3/4} = L^{1/4}.$$

 $y = cx^{\alpha}$

 $\Rightarrow \log_b y = \alpha \log_b x + \log_b c$

with slope equal to α , the scaling exponent.

Much searching for straight lines on log-log or

 \clubsuit More on this later with the Buckingham π theorem.

•9 q (№ 8 of 104

PoCS @pocsvox Scaling

Scaling-at-large

Physics People

Language

Good practice: Always, always, always use base 10.

But: hands.¹And social pressure.

double-logarithmic plots.

Talk only about orders of magnitude (powers of

 $\log_{10} W = (1.23 \pm 0.01) \log_{10} G - (1.47 \pm 0.04)$

•9 q (→ 6 of 104 ¹Probably an accident of evolution—debated.

A beautiful, heart-warming example:

A G = volume ofgray matter: 'computing elements'

M = volume ofwhite matter: 'wiring'

Gray Matter Volume G (mm 3) from Zhang & Sejnowski, PNAS (2000) [38]

Scaling-at-large Allometro Biology

@pocsvo

Scaling

Physics

People Money

Language Technology Specialization References

Power-law relationships are linear in log-log space:

Allometro Biology

Money

Technology Specialization

UM O

少 q (~ 9 of 104

Why is $\alpha \simeq 1.23$?

Quantities (following Zhang and Sejnowski):

- $\mathcal{L} = \mathsf{Volume} \text{ of gray matter (cortex/processors)}$
- $\gg W =$ Volume of white matter (wiring)
- Rrightarrow T = Cortical thickness (wiring)
- S = Cortical surface area
- & L = Average length of white matter fibers
- p = density of axons on white matter/cortexinterface

A rough understanding:

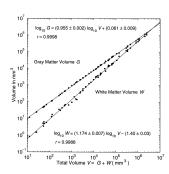
- $G \sim ST$ (convolutions are okay)
- $\Re W \sim \frac{1}{2}pSL$
- $G \sim L^3 \leftarrow$ this is a little sketchy...
- \Leftrightarrow Eliminate S and L to find $W \propto G^{4/3}/T$

Why is $\alpha \simeq 1.23$?

A rough understanding:

- \clubsuit We are here: $W \propto G^{4/3}/T$
- & Observe weak scaling $T \propto G^{0.10\pm0.02}$.
- $\@ifnextchar[{\@model{A}}{\@model{A}}$ Implies $S \propto G^{0.9} \to \text{convolutions fill space}$.
- $\Longrightarrow W \propto G^{4/3}/T \propto G^{1.23\pm0.02}$

Tricksiness:



- \Longrightarrow With V = G + W, some power laws must be approximations.
- Measuring exponents is a hairy business...

Disappointing deviations from scaling: @pocsvox Scaling

Scaling-at-large

Allometry

Biology

People

Money

Language

Specializatio

References

.... |S

PoCS

Scaling

Allometry

Biology

People

Language

Technology

Specialization

References

@pocsvox

Scaling-at-large

୬९℃ 11 of 104

- Per George Carlin 🖸
- 备 Yes, should be the median. #painful

Image from here ☑

The koala , a few roos short in the top paddock:

- Wery small brains
 Telative to body size.
- Wrinkle-free, smooth.
- Not many algorithms needed:
 - Only eat eucalyptus leaves (no water) (Will not eat leaves picked and presented to them)
 - Move to the next tree.
 - Sleep.
 - Defend themselves if needed (tree-climbing crocodiles, humans).
 - Occasionally make more koalas.

Good scaling:

General rules of thumb:

- A High quality: scaling persists over three or more orders of magnitude for each variable.
- A Medium quality: scaling persists over three or more orders of magnitude for only one variable and at least one for the other.
- & Very dubious: scaling 'persists' over less than an order of magnitude for both variables.

W | |

少 q (→ 12 of 104

PoCS @pocsvox Scaling

Unconvincing scaling:

Scaling-at-large Allometry Biology

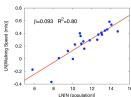
Physics People Money Language Specialization

References

III |

少 Q (№ 13 of 104

Average walking speed as a function of city population:



- Two problems: 1. use of natural log, and 2. minute varation in dependent variable.
- from Bettencourt et al. (2007) [4]; otherwise totally great-more later.

Definitions

Scale invariance

Our friend $y = cx^{\alpha}$:

备 then

8

@pocsvox

Scaling-at-large

Scaling

Allometro

Biology

Physics

People

Money

Language

Specialization

UM |OS

@pocsvox

Scaling-at-large

Scaling

Allometry

Biology

Physics

People

Money

Language

Technology

References

Specialization

夕 Q № 14 of 104

Power laws are the signature of scale invariance:

Scale invariant 'objects' look the 'same' when they are appropriately rescaled.

- Objects = geometric shapes, time series, functions, relationships, distributions,...
- & 'Same' might be 'statistically the same'
- To rescale means to change the units of measurement for the relevant variables

UM O

@pocsvox

Scaling-at-large

Allometro

Biology

Physics

People

Money

Language

Technology

Specialization

Scaling

少 Q № 17 of 104

PoCS @pocsvox Scaling

Scaling-at-large

Allometro Biology Physics People Money

Language Technology Specialization References

W |S

PoCS

Scaling

Scaling-at-large

Allometro

Biology

Physics

People

夕 Q № 18 of 104

 $\Rightarrow y' = cx'^{\alpha}$

 $r^{\alpha}y' = c(rx')^{\alpha}$

 $y = ce^{-\lambda rx'}$

If we rescale x as x = rx' and y as $y = r^{\alpha}y'$,

um |S

◆) Q (> 15 of 104

PoCS

Scaling-at-large Allometry Biology Physics

Scaling

People Money

> Language Specialization

References

Scale invariance

Compare with $y = ce^{-\lambda x}$:

If we rescale x as x = rx', then

Original form cannot be recovered.

Scale matters for the exponential.

 \Re For $x \gg x_0$, y is small, while for $x \ll x_0$, y is large.

More on $y = ce^{-\lambda x}$:

- \Re Say $x_0 = 1/\lambda$ is the characteristic scale.

2 9 0 19 of 104

Money Language

Specialization

References

Isometry:

Dimensions scale linearly with each other.

Allometry:

Dimensions scale nonlinearly.

Allometry: ☑

- Refers to differential growth rates of the parts of a living organism's body part or process.
- First proposed by Huxley and Teissier, Nature, 1936 "Terminology of relative growth" [15, 34]

Definitions

Isometry versus Allometry:

- & Iso-metry = 'same measure'
- Allo-metry = 'other measure'

We use allometric scaling to refer to both:

- 1. Nonlinear scaling of a dependent variable on an independent one (e.g., $y \propto x^{1/3}$)
- 2. The relative scaling of correlated measures (e.g., white and gray matter).

@pocsvox Scaling

Scaling-at-large

Allometry

Biology

People

Money

Language

Specializatio

References

W | |

PoCS

Scaling

@pocsvox

◆) < (> 20 of 104

The biggest living things (left). All the organisms are drawn to the same scale. 1, The largest flying bird (albatross); 2, the largest known animal (the blue whale), 3, the largest extinct land mammal (Baluchitherium) est extinct land mammal (Baluchitherium) with a human figure shown for scale; 4, the tallest living land animal (giraffe); 5, 7; one of the largest flying repliles (Pleanaodon); 8, the largest taying repliles (Pleanaodon); 8, the largest taying replile (Pleanaodon); 8, the largest taying replile (West African crocolide); 71, the largest taying replile (West African crocolide); 71, the largest extinct lixard; 72, the largest extinct lixard; 72, the largest extinct lixard; 72, bird largest extinct lixard (Aepoynora); 13, labels living lizard (Komodo dragon); 75, sheep; 76, the largest bride mollusic (Tridacan); 17; the largest fish (whale sharik); 18, horse; 91, the largest crustacean (Japanese spider) the largest rish (whale share), 78, horse, 79, the largest crustacean (Japanese spider crab); 20, the largest sea scorpion (Eurypterid); 27, large tarpon; 22, the largest lobster; 23, the largest mollusc (deep-water squid, Architeuthis); 24, ostrich; 25, the

The many scales of life:

p. 2. McMahon and Bonner^[26]

Medium-sized creatures (above), 1, Dog; 2, common herring; 3, the largest egg (Aepyornis); 4, song thrush with egg; 5, the smallest bird (hummingbird) with egg; 5, queen bee; 7, common cockroach; 8, the

brate (a tropical trog); 72, the largest frog (goliath frog); 73, common grass frog; 74, house mouse; 75, the largest land snail (Achatina) with egg; 76, common snail; 77, the largest beetle (goliath beetle); 78, human hand; 19, the largest starfish (Luidia) 20, the largest free-moving protozoan (an

lower 105 feet of the largest organism (giant sequoia), with a 100-foot larch su-

The many scales of life:

Scaling-at-large

Allometry Biology

People

Money Language

Specializatio

p. 3, McMahon and Bonner^[26] More on the **Elephant Bird**

here 🗹.

W | |

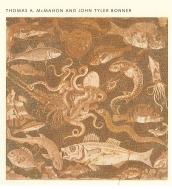
PoCS

@pocsvox Scaling

◆) q (→ 21 of 104

An interesting, earlier treatise on scaling:

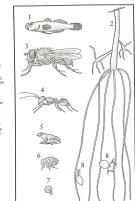
McMahon and Bonner, 1983^[26]

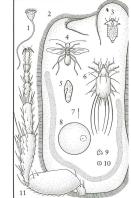


The many scales of life:

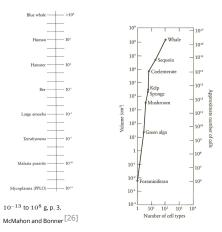
Specialization

3, McMahon and





Size range (in grams) and cell differentiation:



Scaling-at-large Allometro Biology Physics

@pocsvox

Scaling

People Money

Language Technology Specialization

References

UM O

•9 q (→ 26 of 104

PoCS @pocsvox Scaling

Scaling-at-large Allometry

Biology Physics

People Money Language

Specialization

References

WW |8 ◆) a (→ 27 of 104

PoCS

Scaling

Scaling-at-large

Allometry

Biology Physics People

Money

Language

Specialization

References

Non-uniform growth—arm length versus height:

2 • 75

6 • 75 12 • 75 25 • 75

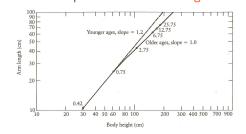
Good example of a break in scaling:

0 • 75

Non-uniform growth:

0 . 42

p. 32, McMahon and Bonner [26]



A crossover in scaling occurs around a height of 1

p. 32, McMahon and Bonner [26]

UNN O

少 Q № 28 of 104

Scaling-at-large Allometry

Biology

People

Money

Language

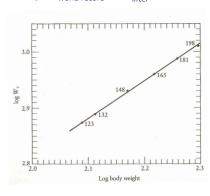
References

WW |

◆) q (~ 22 of 104

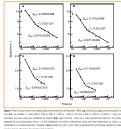
Bonner^[26]

Weightlifting: $M_{\text{world record}} \propto M_{\text{lifter}}^{2/3}$



Idea: Power \sim cross-sectional area of isometric lifters. p. 53, McMahon and Bonner [26]

"Scaling in athletic world records" 🗹 Savaglio and Carbone, Nature, **404**, 244, 2000. [33]



Eek: Small scaling regimes

the result after the 2156 Olympics."

with race time τ :

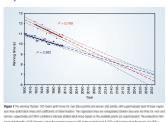
$$\langle s \rangle \sim \tau^{-\beta}$$

- Break in scaling at around $\tau \simeq 150\text{--}170 \text{ seconds}$
- Anaerobic-aerobic transition
- Roughly 1 km running
- Running decays faster than swimming

"Athletics: Momentous sprint at the 2156 Olympics?"

Tatem et al., Nature, **431**, 525-525, 2004. [35]

Linear extrapolation for the 100 metres:



PoCS @pocsvox Scaling

Scaling-at-large

Allometry

Biology

People

Money

Language

Specialization

References

.... |S

PoCS

Scaling

Allometry

Biology

People

Money

Language

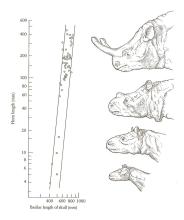
Specialization

@pocsvox

Scaling-at-large

◆9 Q № 29 of 104

Titanothere horns: $L_{\mathsf{horn}} \sim L_{\mathsf{skull}^4}$



p. 36, McMahon and Bonner [26]; a bit dubious.

Stories—The Fraction Assassin:²

1*bonk bonk*

PoCS @pocsvox Scaling

•9 a (№ 30 of 104

W | |

Scaling-at-large Allometry

Biology Physics

People Money Language Specializatio References

Animal power

Fundamental biological and ecological constraint:

 $P = c M^{\alpha}$

P =basal metabolic rate M =organismal body mass

 $P = c M^{\alpha}$

@pocsvox

Scaling-at-large

Allometry

Biology

Specialization

References

UIN O

@pocsvox

Scaling-at-large

Scaling

People

Money

Language

Specialization

References

UIM O

PoCS

Scaling

@pocsvox

Allometry

Biology

Physics

People

Money

Language

Specializatio

References

III |

少 Q (~ 34 of 104

Scaling-at-large

•9 q (→ 33 of 104

◆2 Q № 32 of 104

Scaling

Prefactor c depends on body plan and body temperature:

Physics	Birds	39– 41° <i>C</i>
People	Eutherian Mammals	36– 38° <i>C</i>
Money	Marsupials	34- 36° <i>C</i>
Language	Monotremes	30– 31° <i>C</i>
Technology		

W |S

@pocsvox

Scaling-at-large

Scaling

Allometry

Biology

Physics

People

Money

Language

Specialization

References

◆) Q (~ 35 of 104

PoCS @pocsvox Scaling

Scaling-at-large Allometry Biology Physics

People Money Language Specialization

What one might expect:

 $\alpha = 2/3$ because ...

Dimensional analysis suggests Allometry an energy balance surface law: Biology $P \propto S \propto V^{2/3} \propto M^{2/3}$

> cow). & Lognormal fluctuations:

> > Gaussian fluctuations in $\log P$ around $\log c M^{\alpha}$.

Assumes isometric scaling (not quite the spherical

Stefan-Boltzmann law for radiated energy:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sigma \varepsilon S T^4 \propto S$$

The prevailing belief of the Church of Quarterology:

 $\alpha = 3/4$

 $P \propto M^{3/4}$

Scaling-at-large Allometry

W |S

PoCS

Scaling

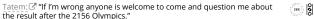
少 Q (~ 36 of 104

Biology Physics People Money

Language Specialization

References

Huh?

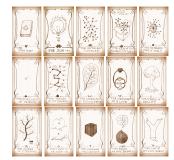


The prevailing belief of the Church of Quarterology:

Most obvious concern:

$$3/4 - 2/3 = 1/12$$

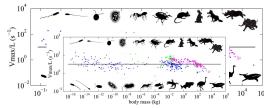
- An exponent higher than 2/3 points suggests a fundamental inefficiency in biology.
- Organisms must somehow be running 'hotter' than they need to balance heat loss.



Scaling-at-large

"How fast do living organisms move: Maximum speeds from bacteria to elephants and whales"

Meyer-Vernet and Rospars, American Journal of Physics, 83, 719-722, 2015. [28]



Related putative scalings:

Wait! There's more!:

- $\ \,$ number of capillaries $\propto M^{\,3/4}$
- \Leftrightarrow time to reproductive maturity $\propto M^{1/4}$
- \red{lambda} heart rate $\propto M^{-1/4}$
- $\red {
 m \&}$ cross-sectional area of aorta $\propto M^{3/4}$
- $\red{solution}$ population density $\propto M^{-3/4}$

UM O

@pocsvox

Scaling-at-large

Allometry

Biology

People

Money

Language

Specialization

References

Scaling

•9 q (≈ 38 of 104

PoCS @pocsvox Scaling

Scaling-at-large

Allometry

Biology

People

Money

Language

Specialization

References

W | |

PoCS

Scaling

•9 q (→ 39 of 104

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Specialization

Ecology—Species-area law: ☑

Allegedly (data is messy): [21, 19]

"An equilibrium theory of insular zoogeography"

MacArthur and Wilson, Evolution, 17, 373-387, 1963. [21]

Cancer:

 $N_{\rm species} \propto A^{\beta}$

"Variation in cancer risk among tissues can

be explained by the number of stem cell

According to physicists—on islands: $\beta \approx 1/4$.

Tomasetti and Vogelstein,

Science, **347**, 78-81, 2015. [36]

Also—on continuous land: $\beta \approx 1/8$.

divisions"

少 Q (~ 41 of 104 PoCS @pocsvox

Scaling

UIN S

PoCS

Scaling

@pocsvox

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Scaling-at-large

Allometry Biology Physics

People Money

Language Technology

References

Specializatio

um |S

◆) q (→ 42 of 104

PoCS Scaling

Scaling-at-large Allometry

Biology Physics People

Money

Specialization

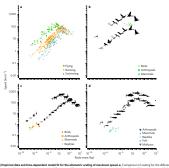
Language References

Insert question from assignment 2 2

"A general scaling law reveals why the largest animals are not the fastest"

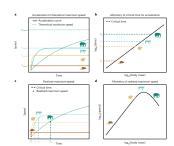
Hirt et al.,

Nature Ecology & Evolution, **1**, 1116, 2017. [12]



"A general scaling law reveals why the largest animals are not the fastest"

Hirt et al., Nature Ecology & Evolution, **1**, 1116, 2017. [12]



The great 'law' of heartbeats:

Assuming:

- $\red{solution}$ Average lifespan $\propto M^{\beta}$
- $\red{solution}$ Average heart rate $\propto M^{-\beta}$
- $\mbox{\ensuremath{\&}}$ Irrelevant but perhaps $\beta = 1/4$.

Then:

- Average number of heart beats in a lifespan \simeq (Average lifespan) \times (Average heart rate) $\propto M^{\dot{\beta}-\dot{\beta}}$ $\propto M^0$
- Number of heartbeats per life time is independent of organism size!
- & ≈ 1.5 billion....

W | 8 ◆) < ← 40 of 104 Roughly: $p \sim r^{2/3}$ where p = life time probability and r= rate of stem cell replication.

UM |S •9 q (→ 43 of 104

UNN O

2 9 0 46 of 104

Scaling-at-large Allometry Biology

Physics People

@pocsvox

Scaling-at-large

Scaling

Allometro

Biology

Physics

People

Money

Language Technology

Specialization

References

UM O

@pocsvox

Scaling-at-large

Scaling

Allometry

Biology

Physics

People

Money

Language

Specialization

References

WW |8

PoCS

Scaling

◆) < (~ 45 of 104

少 Q ← 44 of 104

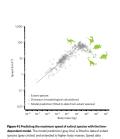
Money

Language

Specialization

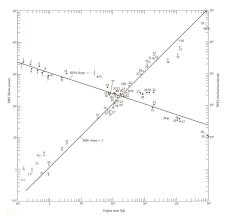
References

Theoretical story:



- Maximum speed increases with size: $v_{\mathsf{max}} = a M^b$
- Takes a while to get going: $v(t) = v_{\text{max}}(1 - e^{-kt})$
- $k \sim F_{\text{max}}/M \sim cM^{d-1}$ Literature: $0.75 \lesssim d \lesssim 0.94$
- Acceleration time = depletion time for anaerobic energy: $\tau \sim fM^g$ Literature: $0.76 \lesssim q \lesssim 1.27$
- $\qquad \qquad \& \quad v_{\rm max} = a M^b \left(1 e^{-h \, M^i} \right)$
- i = d 1 + g and h = cf
- & Literature search for for maximum speeds of running, flying and

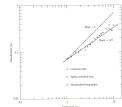
Engines:



BHP = brake horse power

The allometry of nails:

Observed: Diameter \propto Length^{2/3} or $d \propto \ell^{2/3}$.



Since $\ell d^2 \propto \text{Volume } v$:

- \red Diameter \propto Mass^{2/7} or $d \propto v^{2/7}$.
- & Length \propto Mass^{3/7} or $\ell \propto v^{3/7}$.
- Nails lengthen faster than they broaden (c.f. trees).

The allometry of nails: @pocsvox

A buckling instability?: Scaling-at-large

Scaling

Allometro

Biology

Physics

People

Money

Language

Specialization

.... |S

PoCS

Scaling

@pocsvox

Scaling-at-large

Allometry

Biology

Physics

People

Language

Specializatio

References

UM | 8

PoCS

Scaling

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Specialization

References

◆) q (→ 48 of 104

•2 • 47 of 104

- ♣ Physics/Engineering result <a>Columns buckle under a load which depends on d^4/ℓ^2 .
- & To drive nails in, posit resistive force \propto nail circumference = πd .
- \mathbb{A} Match forces independent of nail size: $d^4/\ell^2 \propto d$.
- \clubsuit Leads to $d \propto \ell^{2/3}$.
- Argument made by Galileo [11] in 1638 in "Discourses on Two New Sciences." ☑ Also, see
- Another smart person's contribution: Euler,
- Also see McMahon, "Size and Shape in Biology," Science, 1973. [25]

Rowing: Speed \propto (number of rowers)^{1/9}

No. of oarsmen	Modifying description	Length, I (m)	Beam, b (m)	l/b	Boat mass per oarsman [kg]	Time for 2000 m (min)			
						I	П	ш	JV
	Heavyweight	18.28	0.610	30.0	14.7	5.87	5.92	5.82	5.73
	Lightweight With coxswain	18.28 12.80	0.598	30.6 22.3	14.7 18.1				
	With coxswain	11.75	0.574	21.0	18.1	6.33	6.42	6.48	6.13
	Double scull	9.76	0.381	25.6	13.6	6,33	0.42	0.40	0.1.
	Pair-oared shell	9.76	0.356	27.4	13.6	6.87	6.92	6.95	6.77
	Single scall	7.93	0.293	27.0	16.3	7.16	7.25	7.28	7.17
15					0		1	9	
-									
13 -									
L									
Г									
-									
Г					1			- 1	1
10									

Very weak scaling and size variation but it's theoretically explainable ...

Physics: @pocsvox

Scaling in elementary laws of physics:

Inverse-square law of gravity and Coulomb's law:

$$F \propto \frac{m_1 m_2}{r^2} \quad \text{and} \quad F \propto \frac{q_1 q_2}{r^2}.$$

- Force is diminished by expansion of space away from source.
- \clubsuit The square is d-1=3-1=2, the dimension of a sphere's surface.
- We'll see a gravity law applies for a range of human phenomena.

Dimensional Analysis:

Scaling-at-large The Buckingham π theorem \square :3

"On Physically Similar Systems: Illustrations of the Use of Dimensional Equations" E. Buckingham, Phys. Rev., **4**, 345–376, 1914. [7]

As captured in the 1990s in the MIT physics library:

@pocsvo

Allometro

Biology

Physics

People

Money

Language

Technology

Specialization

•> < ○ 53 of 104

@pocsvox

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Specialization

References

Scaling

References

Scaling-at-large

Scaling

Dimensional Analysis:4

Scaling-at-large

Physics People Money Language

@pocsvox

Allometry

Biology

Physics

People

Money

Language

Technology

Specializatio

References

.... |S

PoCS

Scaling

@pocsvox

Allometry

Biology

•9 q (→ 50 of 104

Scaling

Specialization References

UIM O

PoCS

Scaling

@pocsvox

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Specialization

References

少 Q ← 51 of 104

Fundamental equations cannot depend on units:

unknown equation $f(q_1, q_2, \dots, q_n) = 0$.

& Geometric ex.: area of a square, side length ℓ : $A = \ell^2$ where $[A] = L^2$ and $[\ell] = L$.

 \Re Rewrite as a relation of $p \leq n$ independent dimensionless parameters \square where p is the number of independent dimensions (mass, length, time, luminous intensity ...):

$$F(\pi_1,\pi_2,\dots,\pi_p)=0$$

- \Re e.g., $A/\ell^2 1 = 0$ where $\pi_1 = A/\ell^2$.
- \Re Another example: $F = ma \Rightarrow F/ma 1 = 0$.
- Plan: solve problems using only backs of envelopes.

PoCS

Scaling

Allometro

Biology

Physics

People

Money

Language

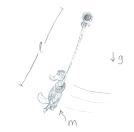
Specialization

References

Scaling-at-large

Example:

Simple pendulum:



Idealized mass/platypus swinging forever.

Four quantities:

- 1. Length ℓ,
 - 2. mass m_{\star}
 - 3. gravitational acceleration g, and
 - 4. pendulum's period τ .
- & Variable dimensions: $[\ell] = L$, [m] = M, $[g] = LT^{-2}$, and $[\tau] = T$.
- \mathbb{R} Turn over your envelopes and find some π 's.

p. 58-59, McMahon and Bonner [26]

UIN S ◆) < ← 49 of 104

少 Q № 52 of 104

UM S

•9 q (~ 55 of 104

A little formalism:

- Game: find all possible independent combinations of the $\{q_1,q_2,\dots,q_n\}$, that form dimensionless quantities $\{\pi_1, \pi_2, \dots, \pi_p\}$, where we need to figure out p (which must be < n).
- \Leftrightarrow Consider $\pi_i = q_1^{x_1} q_2^{x_2} \cdots q_n^{x_n}$.
- & We (desperately) want to find all sets of powers x_i that create dimensionless quantities.
- $\text{ Dimensions: want } [\pi_i] = [q_1]^{x_1} [q_2]^{x_2} \cdots [q_n]^{x_n} = 1.$
- For the platypus pendulum we have $[q_1] = L$, $[q_2] = M$, $[q_3] = LT^{-2}$, and $[q_4] = T$, with dimensions $d_1 = L$, $d_2 = M$, and $d_3 = T$.
- \mathfrak{So} : $[\pi_i] = L^{x_1} M^{x_2} (LT^{-2})^{x_3} T^{x_4}$.
- \Re We regroup: $[\pi_i] = L^{x_1+x_3}M^{x_2}T^{-2x_3+x_4}$.
- $x_1 + x_3 = 0$, $x_2 = 0$, and $-2x_3 + x_4 = 0$.
- Time for matrixology ...

Well, of course there are matrices:

Thrillingly, we have:

$$\mathbf{A}\vec{x} = \left[\begin{array}{ccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]$$

- \clubsuit A nullspace equation: $\mathbf{A}\vec{x} = \vec{0}$.
- Number of dimensionless parameters = Dimension of null space = n-r where n is the number of columns of **A** and r is the rank of **A**.
- \clubsuit Here: n=4 and $r=3 \to F(\pi_1)=0 \to \pi_1$ = const.
- \mathbb{A} In general: Create a matrix **A** where ijth entry is the power of dimension i in the ith variable, and solve by row reduction to find basis null vectors.
- \Re We (you) find: $\pi_1 = \ell/g\tau^2 = \text{const.}$ Upshot: $\tau \propto \sqrt{\ell}$. Insert question from assignment 2 2

"Scaling, self-similarity, and intermediate asymptotics" 3, 2

by G. I. Barenblatt (1996). [2]

G. I. Taylor, magazines, and classified secrets:

Self-similar blast wave:

- \Re Radius: [R] = L, Time: [t] = T, Density of air: $[\rho] = M/L^3$, Energy: $[E] = ML^2/T^2$.
- Four variables, three dimensions.
- One dimensionless variable: $E = \text{constant} \times \rho R^5/t^2$.
- \mathfrak{S} Scaling: Speed decays as $1/R^{3/2}$.

PoCS @pocsvox Scaling

Allometry

Biology

Physics

People

Money

Language

Technology

Specializatio

References

UM | 0

PoCS

Scaling

Allometry

Biology

Physics

People

Language

Specializatio

@pocsvox

Scaling-at-large

少 Q (~ 56 of 104

Scaling-at-large

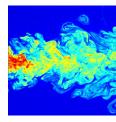
Sorting out base units of fundamental measurement:

SI base units were redefined in 2019:

- Now: kilogram is an artifact in Sèvres, France.
- Defined by fixing Planck's constant as $6.62607015 \times 10^{-34}$ $s^{-1} \cdot m^2 \cdot kg.^3$
- A Metre chosen to fix speed of light at 299,792,458 m·s $^{-1}$.
- Radiolab piece: ≤ kg

³Not without some arguing ...

Turbulence:



Big whirls have little whirls That heed on their velocity, And little whirls have littler whirls And so on to viscosity.

— Lewis Fry Richardson ☑

- Image from here ☑.
- A Jonathan Swift (1733): "Big fleas have little fleas upon their backs to bite 'em, And little fleas have lesser fleas, and so, ad infinitum." The Siphonaptera.

M M

@pocsvox Scaling

W | |

Scaling-at-large Biology

Physics People Money

Language Technology Specialization References

Aragón et al.,

J. Math. Imaging Vis., **30**, 275–283, 2008. [1]

- share the same luminance.
- "Van Gogh painted perfect turbulence" by Phillip Ball, July 2006.
- Apparently not observed in other famous painter's works or when van Gogh was stable.
- Oops: Small ranges and natural log used.

@pocsvox Scaling

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

.... |S

PoCS

Scaling

@pocsvox

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Specialization

References

.... |S

PoCS

Scaling

@pocsvox

◆9 Q ← 60 of 104

◆9 Q № 59 of 104

In 1941, Kolmogorov, armed only with dimensional analysis and an envelope figures this out: [18]

$$E(k) = C\epsilon^{2/3}k^{-5/3}$$

- & E(k) = energy spectrum function.
- & ϵ = rate of energy dissipation.

Advances in turbulence:

- $k = 2\pi/\lambda = wavenumber.$
- Energy is distributed across all modes, decaying with wave number.
- No internal characteristic scale to turbulence.
- Stands up well experimentally and there has been no other advance of similar magnitude.

"The Geometry of Nature": Fractals 🗹

- "Anomalous" scaling of lengths, areas, volumes relative to each other.
- The enduring question: how do self-similar geometries form?
- Robert E. Horton : Self-similarity of river (branching) networks (1945). [13]
- A Harold Hurst —Roughness of time series (1951). [14]
- Lewis Fry Richardson 2 Coastlines (1961).
- Benoît B. Mandelbrot ☑—Introduced the term "Fractals" and explored them everywhere, 1960s on. [22, 23, 24]

Scaling in Cities:

People Money

Language Technology Specialization

'Growth, innovation, scaling, and the pace of life in cities"

Bettencourt et al., Proc. Natl. Acad. Sci., 104, 7301-7306, 2007. [4]

Ouantified levels of

- Infrastructure
- Wealth
- Crime levels Disease
- Energy consumption

as a function of city size N (population).

@pocsvo

Scaling-at-large

Allometro

Biology

Physics

People

Money

Language

Technology

Specialization

References

Scaling

UM O 夕 Q № 62 of 104

PoCS @pocsvox Scaling

Scaling-at-large Allometry Biology

Physics

People Money Language

Technology Specialization

W | |

夕 Q ← 63 of 104

PoCS Scaling

Scaling-at-large Allometro Biology

Physics People

Money Language

Specialization References

Related: Radiolab's Elements on the Cold War, the Bomb Pulse, and the dating of cell age (33:30).

UM | 8 少 Q (→ 58 of 104

少 Q (~ 61 of 104

UNN O

2 9 0 64 of 104

dNote to self: Make millions with the "Fractal Diet"

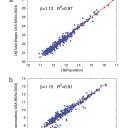


Table 1. Scaling exponents for urban indicators vs. city size

1.25

1.19 [1.14.1.22]

1.26 [1.18.1.43]

1.08 [1 03 1 11]

1.15 [1.06,1.23]

1 13 [1 03 1 23]

1.23 [1.18,1.29]

1.16

1.00 [0.99,1.01]

1.05

0.77

0.79

0.83 [0.74,0.92]

95% CI [1.25,1.29]

[1.22.1.27]

[1.29, 1.39]

[1.11,1.18]

[1.09,1.13]

[1.09,1.46]

[1.03,1.11]

[1.11, 1.18]

[0.99,1.02]

[0.94, 1.06]

[0.89.1.22]

[0.89,1.11]

[0.74,0.81]

[0.73.0.80]

[0.82,0.92]

Data sources are shown in SI Text. CI, confidence interval; Adj-R², adjusted R²; GDP, gross domestic product

0.76

0.92

0.77

0.93

0.91

0.94

0.89

0.99

0.91

0.96

0.93

0.94

Scaling in Cities:

New patents

Private R&D employment

Total electrical consumption

Household electrical consumption

Household electrical consumption

R&D establishments

R&D employment

Total bank denosit

New AIDS cases

Serious crimes

Total housing

Total employment

Gasoline stations

Length of electrical cables

Gasoline sales

GDP

GDP

Fig. 2. The pace of urban life

331

287

287

295

361

267

295

196

37

287

316

331

377

295

295

318

318

@pocsvox Scaling

Biology

People Money

Language

Specialization

"Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across cities" Bettencourt et al., PLoS ONE, **5**, e13541, 2010. [5]

Comparing city features across populations:

- Cities = Metropolitan Statistical Areas (MSAs)
- Story: Fit scaling law and examine residuals
- Does a city have more or less crime than expected when normalized for population?
- Same idea as Encephalization Quotient (EQ).

Biology Physics People

@pocsvox

Allometry

Scaling-at-large

Scaling

Money Language

Technology Specialization

scaling ($\beta = 0.99 \pm 0.02$)

"Statistical signs of social influence on suicides" 🗹

@pocsvo

Scaling-at-large

Scaling

Allometro

Biology

Physics

People

Money

Language

Technology

Specialization

References

Melo et al..

Non-simple scaling for death:

Scientific Reports, **4**, 6239, 2014. [27]

- Bettencourt et al.'s initial work suggested social phenomena would follow superlinear scaling (wealth, crime, disease)
- A Homicide, traffic, and suicide [10] all tied to social context in complex, different ways.
- For cities in Brazil, Melo et al. show:
 - Homicide appears to follow superlinear scaling $(\beta = 1.24 \pm 0.01)$
 - Traffic accident deaths appear to follow linear
 - Suicide appears to follow sublinear scaling.

U.S. 2001

U.S. 2001

U.S. 2002

U.S. 2003

U.S. 1997

China 2002

U.S. 2002

115 1996

China 2002

EU 1999-2003

Germany 2003

Germany 2002

U.S. 2002-2003

Germany 2002

U.S. 2003

U.S. 1990

U.S. 2001

China 2002

China 2002

U.S. 2001

U.S. 2001

Germany 2002

◆) Q (> 65 of 104

PoCS @pocsvox Scaling

.... |S

Scaling-at-large Allometro Biology

People

Language

Specializatio

W | | | |

PoCS

Scaling

◆) Q (> 66 of 104

Scaling-at-large

Allometry

Physics

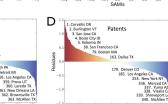
People

Language

Specializatio

References

Income



reference scale for ranking cities. a) A typical superlinear scaling law (solid line): Gross Metropolition; the slope of the solid line has exponent, β = 1.126 (95% CI [1.101,1.149]). b) Histogram show

W | |

20 a 0 € 68 of 1

PoCS Scaling

Scaling-at-large Allometry

People Money

Language Specialization

References

◆) q (> 69 of 104

PoCS

Scaling

Scaling-at-large Allometry

Biology Physics

People Money Language

Specializatio References

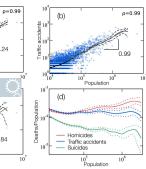


Figure 1 | Scaling relations for homicides, traffic accidents, and suicides for the year of 2009 in Brazil. The small circles show the total number of deaths (a) homicides (red), (b) traffic accidents (blue), and (c) suicides (green) vs the population of each city. Each graph represents only one urban indicator and the solid gray line indicate the best fit for a power-law relation, using OLS regression, between the average total number of deaths and the city size (population). To reduce the fluctuations we also performed a Nadaraya-Watson kernel regression 7.11. The dashed lines show the 95% confidence band for the Nadaraya-Watson kernel regression. The ordinary least-squares (OLS) 18 fit to the Nadaraya-Watson kernel regression applied to the data on homicides in (a) reveals an allometric exponent $\beta = 1.24 \pm 0.01$, with a 95% confidence interval estimated by bootstrap. This is compatible with previous results obtained for U.S.² that also indicate a super-linear scaling relation with population and an exponent $\beta = 1.16$. Using the same procedure, we find $\beta = 0.99 \pm 0.02$ and 0.84 ± 0.02 for the numbers of deaths in traffic accidents (b) and suicides (c), respectively. The values of the Pearson correlation coefficients ρ associated with these scaling relations are shown in each plot. This non-linear behavior observed for homicides and suicides certainly reflects the complexity of human social relations and strongly suggests that the the topology of the social network plays an important role on the rate of these events. (d) The solid lines show the Nadaraya-Watson kernel regression rate of deaths (total number of deaths divided by the population of a city) for each urban indicator, namely, homicides (red), traffic accidents (blue), and suicides (green). The dashed lines represent the 95% confidence bands. While the rate of fatal traffic accidents remains approximately invariant, the rate of homicides systematically increases, and the rate of suicides decreases with

us data

Scaling in Cities:

Intriguing findings:

- \clubsuit Global supply costs scale sublinearly with N $(\beta < 1)$.
 - Returns to scale for infrastructure.
- $\red{8}$ Total individual costs scale linearly with N ($\beta = 1$)
 - Individuals consume similar amounts independent of city size.
- & Social quantities scale superlinearly with N ($\beta > 1$)
 - Creativity (# patents), wealth, disease, crime, ...

Density doesn't seem to matter...

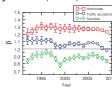
Surprising given that across the world, we observe two orders of magnitude variation in area covered by agglomerations of fixed populations.

A possible theoretical explanation?

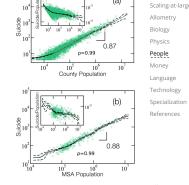
"The origins of scaling in cities" Luís M. A. Bettencourt, Science, **340**, 1438–1441, 2013. [3]

#sixthology

Dynamics (Brazil):



ares), deaths in trainic accidents (blue circles), and s ls). Time evolution of the power-law exponent β is al urban indicator in Brazil from 1992 to 2009. We c nent B for each

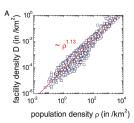


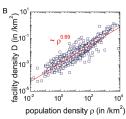
少 q (~ 73 of 104

少 Q № 70 of 104

少 Q ← 67 of 104

Density of public and private facilities:



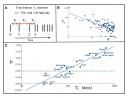


 $ho_{
m fac} \propto
ho_{
m pop}^{lpha}$

- & Left plot: ambulatory hospitals in the U.S.
- Right plot: public schools in the U.S.

"Pattern in escalations in insurgent and terrorist activity" Johnson et al.,

Science, **333**, 81–84, 2011. [16]



- & Escalation: $\tau_n \sim \tau_1 n^{-b}$
- &b = scaling exponent (escalation rate)
- & Interevent time τ_n between fatal attacks n-1 and n (binned by days)
- Learning curves organizations [37]
- More later on size distributions [9, 17, 6]

MONEY Ť

Explore the original zoomable and interactive version here: http://xkcd.com/980/2.

PoCS @pocsvox Scaling

Scaling-at-large

Allometry

Biology

People

Money

Language

Specialization

References

.... |S

PoCS

Scaling

Allometry

People

Language

Specialization

WW |8

PoCS

Physics

People

Money

Language

Specialization

References

@pocsvox Scaling

Scaling-at-large

•9 a (> 75 of 104

@pocsvox

Scaling-at-large

◆) < ↑ 74 of 104

Cleaning up the code that is English:

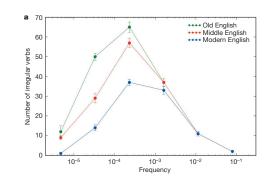
Irregular verbs

"Quantifying the evolutionary dynamics of language" 🖸 Lieberman et al.,

Nature, **449**, 713–716, 2007. [20]

- Exploration of how verbs with irregular conjugation gradually become regular over time.
- Comparison of verb Modern English.

Irregular verbs



- Universal tendency towards regular conjugation
- Rare verbs tend to be regular in the first place

@pocsvox Scaling

Scaling-at-large Allometry Biology Physics People

Language

Money

Specialization References

behavior in Old, Middle, and

Red = regularized

Irregular verbs

Table 1 | The 177 irregular verbs studi

10-4-10-3

10-6-10-5

& Estimates of half-life for regularization ($\propto f^{1/2}$)

come, do, fired, get, give, go, howe, any see, take, their, begin besit, brigg, to give, go, howe, dine, drine, est, fall gight, forget, grow, hasp, help, both, deve, let, let, let, gight, forget, grow, hasp, help, hold, deve, let, let, let, est, reach, rise, run, seek, self, shake, sit, sleep, speak, stand, bach, throw, understand, valle, win, work, write cance, these, climb, chiga, creep, dave, dig, dring, fee, foot, forw, ly, foot, feee, gird, keep, dave, dig, dring, fee, foot, foot, hy, foot, feee, gird, sleep, dave, dig, dring, sleep, sleep, sleep, dave, dig, dring, sleep, sleep, dave, dig, dring, sleep, sleep, sleep, dave, dig, dring, sleep, sleep,

UIN O

Scaling

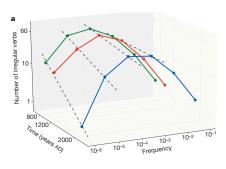
Scaling-at-large Allometry Biology

People Money

Language Specializatio

References

◆) Q (> 78 of 104



- "Wed" is next to go.
- -ed is the winning rule...

38,800 14,400 5,400

2 000

夕 Q ← 81 of 104

PoCS Scaling

> Scaling-at-large Allometro

Biology Physics People

Money

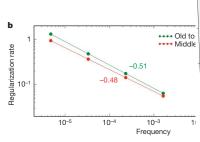
Language

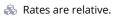
Specialization References

Projecting back in time to proto-Zipf story of many tools.

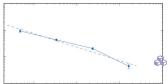
10-4 10-3 10-2

Frequency





The more common a verb is, the mo is to change.



少 Q № 79 of 104

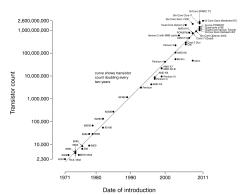
•9 a (№ 76 of 104

•9 q (№ 82 of 104

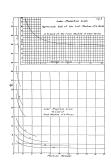
800 1200

/2000 ·

Microprocessor Transistor Counts 1971-2011 & Moore's Law



"Factors affecting the costs of airplanes" T. P. Wright, Journal of Aeronautical Sciences, 10, 302-328, 1936. ^[37]



made: [37]

Scaling laws for technology production:

 y_t = stuff unit cost; x_t = total amount of stuff made.

Wright's Law, cost decreases as a power of total stuff

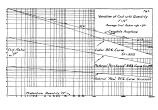
Sahal's observation that Moore's law gives rise to Wright's law if stuff production grows exponentially: [32] $x_t \propto e^{gt}.$

 $y_t \propto x_t^{-w}$.

with doubling of transistor density every two years: [30]

 $y_{t} \propto e^{-mt}$.

Nagy et al., PLoS ONE, 2013. [31]



- Power law decay of cost with number of planes produced.
- "The present writer started his studies of the variation of cost with quantity in 1922."

Scaling

PoCS

@pocsvox

少 Q ← 83 of 104

PoCS

Scaling

@pocsvox

Allometry

Biology

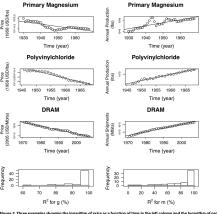
Physics

People

Language

Technology

Scaling-at-large



PoCS

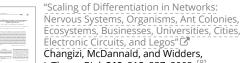
Scaling

@pocsvox

.... |S

◆9 Q C № 86 of 104

Scaling of Specialization:



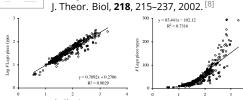


Fig. 3. Log-log (base 10) (eff) and semi-log (right) plots of the number of Lego piece types s. the total number of parts in Lego structures (or = 93)). To help to distinguish the data points, logarithmic values were perturbed by adding a random number in the interval [-0.05, 0.05], and non-logarithmic values were perturbed by adding a random number in the interval [-1, 1].

@pocsvox

Scaling-at-large

Scaling

Allometro

Biology

Physics

People

Money

Language

Technology

References

Specialization

•9 q (№ 89 of 104

PoCS @pocsvox Scaling

Scaling-at-large

Allometry Biology

Physics

People

Money

Language

Specialization

≥ Industry: Chemical Hardware Energy Other 0.8 m/g

Figure 4. An illustration that the combination of exponentially increasing production and exponen equivalent to Wrights baw. The value of the Wright parameter wis plotted against the prediction m/g based on the exponent of cost reduction and g the exponent of the increase in cumulative production. doi:10.1371/journal.pone.00526990.

Size range (in grams) and cell differentiation:

$C \sim N^{1/d}$, $d \ge 1$:

- & C = network differentiation = # node types.
- \mathbb{A} N = network size = # nodes.

2012 wired.com write-up

- d = combinatorial degree.
- & Low d: strongly specialized parts.
- A High d: strongly combinatorial in nature, parts are reused.
- & Claim: Natural selection produces high d systems.
- Claim: Engineering/brains produces low d systems.

W | |

•9 of 104

PoCS Scaling

Scaling-at-lar
Allometry
Biology
Physics
People

Money Language

Specialization References

"Statistical Basis for Predicting Technological Progress"

Physics

Money

Technology

Specialization

References

um |S

Scaling Scaling-at-large

.... |S

PoCS

@pocsvox

◆) q (→ 84 of 104

Allometry Biology

People

Language

 10^{-13} to 10^{8} g, p. 3,

Number of cell types

Scaling-at-large Allometry Biology Physics People Money Language Specialization

PoCS

Scaling

W | 8

2.72 6.00 5.24 0.481

0.747

0.971 0.964 0.786 0.748 0.832 0.789 0.749 0.685

UVM

少 Q (~ 91 of 104

Sahal + Moore gives Wright with w = m/g. McMahon and Bonner [26] •9 q (№ 88 of 104 ◆) q (~ 85 of 104

Shell of the nut:

- Scaling is a fundamental feature of complex systems.
- Basic distinction between isometric and allometric scaling.
- & Powerful envelope-based approach: Dimensional analysis.
- "Oh yeah, well that's just dimensional analysis" said the [insert your own adjective] physicist.
- Tricksiness: A wide variety of mechanisms give rise to scalings, both normal and unusual.

References I

- [1] J. L. Aragón, G. G. Naumis, M. Bai, M. Torres, and Turbulent luminance in impassioned van Gogh paintings. J. Math. Imaging Vis., 30:275–283, 2008. pdf
- G. I. Barenblatt. Scaling, self-similarity, and intermediate asymptotics, volume 14 of Cambridge Texts in Applied Mathematics. Cambridge University Press, 1996.
- L. M. A. Bettencourt. The origins of scaling in cities. Science, 340:1438–1441, 2013. pdf

References II

- [4] L. M. A. Bettencourt, J. Lobo, D. Helbing, Kühnhert, and G. B. West. Growth, innovation, scaling, and the pace of life in
 - Proc. Natl. Acad. Sci., 104(17):7301-7306, 2007. pdf 🖸
- [5] L. M. A. Bettencourt, J. Lobo, D. Strumsky, and

Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across cities.

PLoS ONE, 5:e13541, 2010. pdf

J. C. Bohorquez, S. Gourley, A. R. Dixon, M. Spagat, and N. F. Johnson. Common ecology quantifies human insurgency. Nature, 462:911–914, 2009. pdf

References III @pocsvox

Scaling

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

.... |S

@pocsvox

Scaling

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

.... |S

PoCS

@pocsvox Scaling

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specializatio

References

.... |S

◆) < (~ 94 of 104

•9 a (№ 93 of 104

◆) < (> 92 of 104

Scaling-at-large

- [7] E. Buckingham. On physically similar systems: Illustrations of the use of dimensional equations. Phys. Rev., 4:345–376, 1914. pdf ☑
- M. A. Changizi, M. A. McDannald, and D. Widders. Scaling of differentiation in networks: Nervous systems, organisms, ant colonies, ecosystems, businesses, universities, cities, electronic circuits, and Legos. J. Theor. Biol, 218:215–237, 2002. pdf
- A. Clauset, M. Young, and K. S. Gleditsch. On the Frequency of Severe Terrorist Events. Journal of Conflict Resolution, 51(1):58-87, 2007. pdf 🖸

References IV

- Scaling-at-large [10] E. Durkheim. Suicide: A study in sociology. Free Press, 2005. Reissue edition (February 1, 1997).
 - [111] G. Galilei. Dialogues Concerning Two New Sciences. Kessinger Publishing, 2010. Translated by Henry Crew and Alfonso De Salvio.
 - [12] M. R. Hirt, W. Jetz, B. C. Rall, and U. Brose. A general scaling law reveals why the largest animals are not the fastest. Nature Ecology & Evolution, 1:1116, 2017. pdf ☑

References V

- [13] R. E. Horton.
- Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology. Bulletin of the Geological Society of America, 56(3):275-370, 1945. pdf
- [14] H. E. Hurst. Long term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116:770-808, 1951.
- [15] J. S. Huxley and G. Teissier. Terminology of relative growth. Nature, 137:780-781, 1936. pdf

References VI

@pocsvox

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

@pocsvox

Language

Technology

References

Specialization

Scaling

少 Q № 95 of 104

Scaling-at-large

Scaling

- [16] N. Johnson, S. Carran, J. Botner, K. Fontaine, N. Laxague, P. Nuetzel, J. Turnley, and B. Tivnan. Pattern in escalations in insurgent and terrorist Science, 333:81-84, 2011. pdf
- [17] N. F. Johnson, M. Spagat, J. A. Restrepo, O. Becerra, J. C. Bohorguez, N. Suarez, E. M. Restrepo, and R. Zarama. Universal patterns underlying ongoing wars and terrorism, 2006. pdf
- [18] A. N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large revnolds numbers. Proceedings of the USSR Academy of Sciences,

References VII

30:299-303, 1941.

- Scaling-at-large [19] S. Levin. Allometry The problem of pattern and scale in ecology. Biology Ecology, 73(6):1943-1967, 1992. Physics . pdf People Money
 - [20] E. Lieberman, J.-B. Michel, J. Jackson, T. Tang, and M. A. Nowak. Quantifying the evolutionary dynamics of language. Nature, 449:713–716, 2007. pdf
 - [21] R. H. MacArthur and E. O. Wilson. An equilibrium theory of insular zoogeography. Evolution, 17:373-387, 1963. pdf

UIM O

少 Q ← 96 of 104

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

UM |S

Scaling

PoCS References VIII

- [22] B. B. Mandelbrot.
- How long is the coast of britain? statistical self-similarity and fractional dimension. Science, 156(3775):636-638, 1967. pdf
 - [23] B. B. Mandelbrot. Fractals: Form, Chance, and Dimension. Freeman, San Francisco, 1977.
 - [24] B. B. Mandelbrot. The Fractal Geometry of Nature. Freeman, San Francisco, 1983.
 - [25] T. McMahon. Size and shape in biology. Science, 179:1201-1204, 1973. pdf

@pocsvo

Scaling-at-large

Scaling

Allometro

Biology

Physics

People

Money

Language

Technology

Specialization

References

少 Q ← 98 of 104

PoCS @pocsvox Scaling

Scaling-at-large Allometry Biology Physics People Money

Language Technology Specialization References

UM O

◆) < (~ 99 of 104

PoCS Scaling

Scaling-at-large Allometry Biology Physics People

Money Language Technology

Specialization

References

•2 9 0 100 of 104

•9 q (→ 97 of 104

References IX

- [26] T. A. McMahon and J. T. Bonner. On Size and Life. Scientific American Library, New York, 1983.
- [27] H. P. M. Melo, A. A. Moreira, É. Batista, H. A. Makse, and J. S. Andrade. Statistical signs of social influence on suicides. Scientific Reports, 4:6239, 2014. pdf
- [28] N. Meyer-Vernet and J.-P. Rospars. How fast do living organisms move: Maximum speeds from bacteria to elephants and whales. American Journal of Physics, pages 719–722, 2015. pdf ☑

References X

- [29] I.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, T. G. B. Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak, and E. A. Lieberman. Quantitative analysis of culture using millions of digitized books. Science, 2010. pdf
- [30] G. E. Moore. Cramming more components onto integrated circuits. Electronics Magazine, 38:114-117, 1965.
- [31] B. Nagy, J. D. Farmer, Q. M. Bui, and J. E. Trancik. Statistical basis for predicting technological progress. PloS one, 8(2):e52669, 2013. pdf ✓

PoCS @pocsvox Scaling

Scaling-at-large

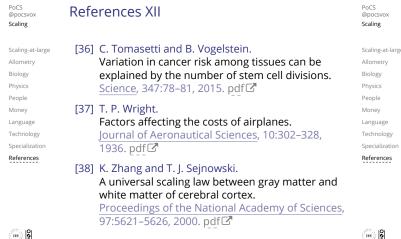
Allometry Biology Physics People

Money Language Technology Specialization

References

References XI

- [32] D. Sahal. A theory of progress functions. AIIE Transactions, 11:23-29, 1979.
- [33] S. Savaglio and V. Carbone. Scaling in athletic world records. Nature, 404:244, 2000. pdf
- [34] A. Shingleton. Allometry: The study of biological scaling. Nature Education Knowledge, 1:2, 2010.
- [35] A. J. Tatem, C. A. Guerra, P. M. Atkinson, and S. I. Hay. Athletics: Momentous sprint at the 2156 Olympics? Nature, 431(7008):525-525, 2004. pdf



少 Q ← 101 of 104

@pocsvox Scaling

Scaling-at-large Allometry Biology Physics People Money Language

> Specialization References

◆) q (→ 102 of 104

少 q (~ 103 of 104

◆) Q (> 104 of 104