System Robustness

Last updated: 2021/10/06, 20:25:47 EDT

Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021–2022 |@pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

These slides are brought to you by:

Sealie & Lambie Productions

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

(IVM) |8|

20f44

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

() ||

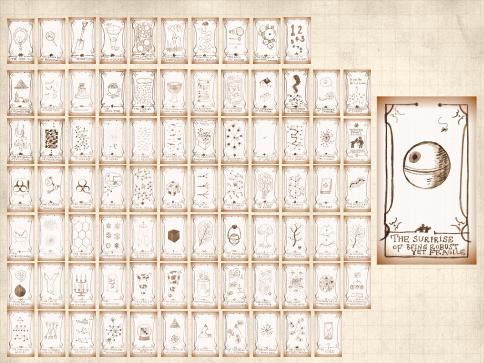
990 3 of 44

Outline

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

PoCS @pocsvox


System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

-

Many complex systems are prone to cascading catastrophic failure: exciting!!!

- Blackouts
- Disease outbreaks
- Vildfires
- C Earthquakes
- Organisms, individuals and societies
- C Ecosystems
- Cities
- Myths: Achilles.
- But complex systems also show persistent robustness (not as exciting but important...)
- Robustness and Failure may be a power-law story...

PoCS @pocsvox

System Robustness

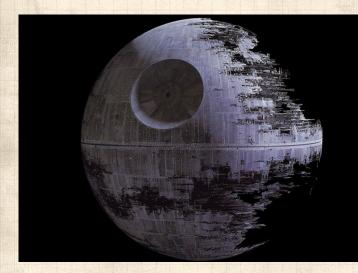
Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

Our emblem of Robust-Yet-Fragile:

System Robustness

Robustness


HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

990 8 of 44

"Trouble ..."

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

na @ 9 of 44

UVN S

A The handle:

any." [7]

System robustness may result from

The catchphrase: Robust yet Fragile

\lambda Idea: Explore systems optimized to perform under

'Highly Optimized Tolerance' (HOT)^[4, 5, 6, 10]

The people: Jean Carlson and John Doyle Great abstracts of the world #73: "There aren't

Evolutionary processes
 Engineering/Design

uncertain conditions.

PoCS @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

References

na @ 10 of 44

Features of HOT systems: ^[5, 6]

- High performance and robustness
- Designed/evolved to handle known stochastic environmental variability
- Fragile in the face of unpredicted environmental signals
- 🚳 Highly specialized, low entropy configurations
- Power-law distributions appear (of course...)

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

Dac 11 of 44

UVN SO

HOT combines things we've seen:

- le transformation
- 🙈 Constrained optimization
- Solution Need power law transformation between variables: $(Y = X^{-\alpha})$
- 🙈 Recall PLIPLO is bad...
- 🚳 MIWO is good: Mild In, Wild Out
- X has a characteristic size but Y does not

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

UVN SO

Forest fire example: ^[5]

- \mathfrak{S} Square $N \times N$ grid
- \clubsuit Sites contain a tree with probability ρ = density
- rightarrow Sites are empty with probability 1ho
- \clubsuit Fires start at location (i,j) according to some distribution P_{ij}
- Fires spread from tree to tree (nearest neighbor only)
- 🗞 Connected clusters of trees burn completely
- 🚳 Empty sites block fire
- Best case scenario: Build firebreaks to maximize average # trees left intact given one spark

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

Forest fire example: [5]

- 🚳 Build a forest by adding one tree at a time
- Test D ways of adding one tree
- D = design parameter
- \bigotimes Average over P_{ij} = spark probability
- D = 1: random addition
- $\bigotimes D = N^2$: test all possibilities

Measure average area of forest left untouched f(c) = distribution of fire sizes c (= cost)

 \clubsuit Yield = $Y = \rho - \langle c \rangle$

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

29 P 14 of 44

Specifics:

$$P_{ij} = P_{i;a_x,b_x} P_{j;a_y,b_y}$$

where

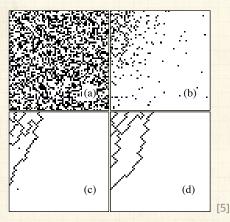
$$P_{i;a,b} \propto e^{-[(i+a)/b]^2}$$

In the original work, b_y > b_x
Distribution has more width in y direction.

PoCS @pocsvox

System Robustness

Robustness


HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

DQC 15 of 44

N = 64

(a) D = 1(b) D = 2(c) D = N(d) $D = N^2$

 P_{ij} has a Gaussian decay

Optimized forests do well on average (robustness)
 But rare extreme events occur (fragility)

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

UVN SO

HOT Forests

PoCS @pocsvox

System Robustness

Robustness

Self-Organized Criticality

HOT theory

COLD theory

References

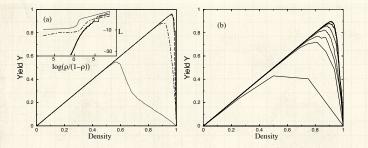
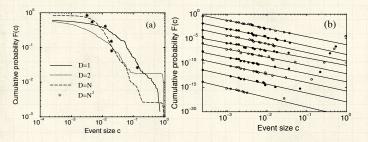


FIG. 2. Yield vs density $Y(\rho)$: (a) for design parameters D = 1 (dotted curve), 2 (dot-dashed), N (long dashed), and N^2 (solid) with N = 64, and (b) for D = 2 and $N = 2, 2^2, \dots, 2^7$ running from the bottom to top curve. The results have been averaged over 100 runs. The inset to (a) illustrates corresponding loss functions $L = \log[\langle f \rangle / (1 - \langle f \rangle)]$, on a scale which more clearly differentiates between the curves.

DQC 17 of 44

000

HOT Forests:


PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

 \Re Y = 'the average density of trees left unburned in a

configuration after a single spark hits.^{(5]}

FIG. 3. Cumulative distributions of events F(c): (a) at peak yield for D = 1, 2, N, and N^2 with N = 64, and (b) for $D = N^2$, and N = 64 at equal density increments of 0.1, ranging at $\rho = 0.1$ (bottom curve) to $\rho = 0.9$ (top curve).

Narrative causality:

PoCS @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

20 of 44

Random Forests

D = 1: Random forests = Percolation^[11]

- 🚳 Randomly add trees.
- \circledast Below critical density $\rho_{\rm c}$, no fires take off.
- Above critical density $\rho_{\rm c}$, percolating cluster of trees burns.
- Solution Only at ρ_c , the critical density, is there a power-law distribution of tree cluster sizes.
- 🗞 Forest is random and featureless.

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality

Random forests Self-Organized Criticality COLD theory Network robustness

References

na @ 22 of 44

UVN S

HOT forests nutshell:

- 🗞 Highly structured
- Solution Power law distribution of tree cluster sizes for a broad range of ρ , including below ρ_c .
- \clubsuit No specialness of ρ_c
- Forest states are tolerant
- 🚳 Uncertainty is okay if well characterized
- If P_{ij} is characterized poorly or changes too fast, failure becomes highly likely
- Growth is key to toy model which is both algorithmic and physical.
- HOT theory is more general than just this toy model.

PoCS @pocsvox

System Robustness

Robustness

Narrative causality

Random forests Self-Organized Criticality COLD theory Network robustness

References

na @ 23 of 44

UVN OO

HOT forests-Real data:

"Complexity and Robustness," Carlson & Dolye^[6]

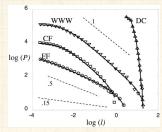


Fig. 1. Log-log (base 10) comparison of DC, WWW, CF, and FF data (symbol) with PLR models (oblication) (base) (ba

These are CCDFs (Eek: $P, \mathcal{P}(l \ge l_i)$)

PLR = probability-lossresource.

 $l_i = f(r_i)$ and $\sum r_i \leq R$. DC = Data Compression. Horror: log. Screaming: "The base! What is the base!? You monsters!" PoCS @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

HOT theory:

The abstract story, using figurative forest fires:

- Siven some measure of failure size y_i and correlated resource size x_i with relationship $y_i = x_i^{-\alpha}$, $i = 1, ..., N_{sites}$.
- Subject to a constraint on the x_i .
- 🚳 Minimize cost:

$$C = \sum_{i=1}^{N_{\rm sites}} {\rm Pr}(y_i) y_i$$

Subject to
$$\sum_{i=1}^{N_{\mathsf{sites}}} x_i = \mathsf{constant.}$$

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality

Random forests

Self-Organized Criticality COLD theory Network robustness

References

UVN SO

1. Cost: Expected size of fire:

$$C_{
m fire} \propto \sum_{i=1}^{N_{
m sites}} p_i a_i.$$

 a_i = area of *i*th site's region, and p_i = avg. prob. of fire at *i*th site over some time frame.

2. Constraint: building and maintaining firewalls. Per unit area, and over same time frame:

$$C_{
m firewalls} \propto \sum_{i=1}^{N_{
m sites}} a_i^{1/2} a_i^{-1}.$$

i We are assuming isometry.
 i In *d* dimensions, 1/2 is replaced by (*d*−1)/*d*

3. Insert question from assignment 7 🖸 to find:

$$\Pr(a_i) \propto a_i^{-\gamma}.$$

PoCS @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

Continuum version:

1. Cost function:

$$\langle C
angle = \int C(\vec{x}) p(\vec{x}) \mathsf{d}\vec{x}$$

where *C* is some cost to be evaluated at each point in space \vec{x} (e.g., $V(\vec{x})^{\alpha}$), and $p(\vec{x})$ is the probability an Ewok jabs position \vec{x} with a sharpened stick (or equivalent).

2. Constraint:

$$\int R(\vec{x}) \mathsf{d}\vec{x} = \mathsf{c}$$

where c is a constant.

laim/observation is that typically [4]

$$V(\vec{x}) \sim R^{-\beta}(\vec{x})$$

So For spatial systems with barriers: $\beta = d$.

PoCS @pocsvox

System Robustness

Robustness HOT theory Narrative causality

Random forests Self-Organized Criticality COLD theory Network robustness

References

DQ @ 27 of 44

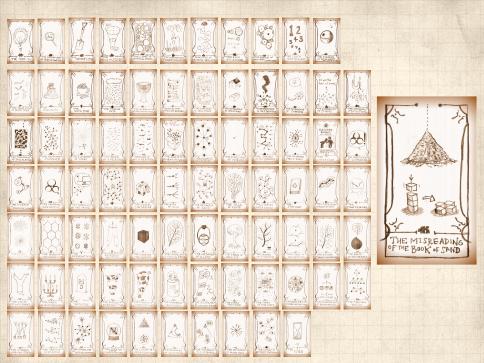
PoCS @pocsvox

System Robustness

The Emperor's Robust-Yet-Fragileness:

Robustness

HOT theory Narrative causality


Random forests Self-Organized Criticality COLD theory Network robustness

References

28 of 44

UVN S

SOC theory

SOC = Self-Organized Criticality

- Idea: natural dissipative systems exist at 'critical states';
- Analogy: Ising model with temperature somehow self-tuning;
- Power-law distributions of sizes and frequencies arise 'for free';
- Introduced in 1987 by Bak, Tang, and Weisenfeld^[3, 2, 8]: "Self-organized criticality - an explanation of 1/f noise" (PRL, 1987);
- Problem: Critical state is a very specific point;
- 🗞 Self-tuning not always possible;
- 🚳 Much criticism and arguing...

PoCS @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

Network robustness

"How Nature Works: the Science of Self-Organized Criticality" **3** C by Per Bak (1997). ^[2]

Avalanches of Sand and Rice ...

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests

Self-Organized Criticality COLD theory

Network robustness

References

na @ 32 of 44

UVN SO

"Complexity and Robustness" Carlson and Doyle, Proc. Natl. Acad. Sci., **99**, 2538–2545, 2002.^[6]

HOT versus SOC

- 🚳 Both produce power laws
- 🚳 Optimization versus self-tuning
- HOT systems viable over a wide range of high densities
- 🗞 SOC systems have one special density
- HOT systems produce specialized structures
- 🚳 SOC systems produce generic structures

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests

Self-Organized Criticality COLD theory Network robustness

HOT theory—Summary of designed tolerance^[6]

Table 1. Characteristics of SOC, HOT, and data

	Property	SOC	HOT and Data
1	Internal	Generic,	Structured,
	configuration	homogeneous,	heterogeneous,
		self-similar	self-dissimilar
2	Robustness	Generic	Robust, yet
			fragile
3	Density and yield	Low	High
4	Max event size	Infinitesimal	Large
5	Large event shape	Fractal	Compact
6	Mechanism for	Critical internal	Robust
	power laws	fluctuations	performance
7	Exponent α	Small	Large
8	α vs. dimension d	lphapprox (d-1)/10	lpha pprox 1/d
9	DDOFs	Small (1)	Large (∞)
10	Increase model	No change	New structures,
	resolution		new sensitivities
11	Response to	Homogeneous	Variable
	forcing		

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality

Self-Organized Criticality COLD theory Network robustness

References

990 34 of 44

COLD forests

Avoidance of large-scale failures

- Constrained Optimization with Limited Deviations^[9]
- 🗞 Weight cost of larges losses more strongly
- Increases average cluster size of burned trees...
- 🚳 ... but reduces chances of catastrophe
- Power law distribution of fire sizes is truncated

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality

COLD theory Network robustness

Cutoffs

Observed:

Power law distributions often have an exponential cutoff

 $P(x) \sim x^{-\gamma} e^{-x/x_c}$

where x_c is the approximate cutoff scale. May be Weibull distributions:

$$P(x) \sim x^{-\gamma} e^{-ax^{-\gamma+1}}$$

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality

COLD theory Network robustness

References

UVN OS

We'll return to this later on:

- 🚳 Network robustness.
- Albert et al., Nature, 2000: "Error and attack tolerance of complex networks"^[1]
- General contagion processes acting on complex networks.^[13, 12]
- 🚳 Similar robust-yet-fragile stories ...

PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

Network robustness

PoCS @pocsvox

System Robustness

The Emperor's Robust-Yet-Fragileness:

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

うへで 40 of 44

UVN S

References I

- [1] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. Nature, 406:378–382, 2000. pdf
- [2] P. Bak. How Nature Works: the Science of Self-Organized Criticality. Springer-Verlag, New York, 1997.
- [3] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality - an explanation of 1/f noise. Phys. Rev. Lett., 59(4):381–384, 1987. pdf
- J. M. Carlson and J. Doyle.
 Highly optimized tolerance: A mechanism for power laws in designed systems.
 Phys. Rev. E, 60(2):1412–1427, 1999. pdf

PoCS @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References II

 J. M. Carlson and J. Doyle.
 Highly optimized tolerance: Robustness and design in complex systems.
 Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf

[6] J. M. Carlson and J. Doyle. Complexity and robustness. Proc. Natl. Acad. Sci., 99:2538–2545, 2002. pdf

 J. Doyle.
 Guaranteed margins for LQG regulators.
 IEEE Transactions on Automatic Control, 23:756–757, 1978. pdf PoCS @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References III

[8] H. J. Jensen. Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems. Cambridge Lecture Notes in Physics. Cambridge University Press, Cambridge, UK, 1998.

[9] M. E. J. Newman, M. Girvan, and J. D. Farmer. Optimal design, robustness, and risk aversion. Phys. Rev. Lett., 89:028301, 2002.

[10] D. Sornette. Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 1st edition, 2003.

[11] D. Stauffer and A. Aharony. Introduction to Percolation Theory. Taylor & Francis, Washington, D.C., Second edition, 1992. PoCS @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

20 A 43 of 44

References IV

PoCS @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

[12] D. J. Watts and P. S. Dodds. Influentials, networks, and public opinion formation. Journal of Consumer Research, 34:441–458, 2007. pdf

[13] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf C

