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Random network generator for N = 3:

<o Getyour own exciting generator here (4.

<= As N , polyhedral die rapidly becomes a ball...
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Random networks AR

Random
Networks
Nutshell

Pure random
networks

Consider set of all networks with N labelled nodes &&=
and m edges.

Standard random network = o
one randomly chosen network from this set. Random

Networks

To be clear: each network is equally probable.

Degree distributions

How to build in practice

Sometimes equiprobability is a good assumption,
but it is always an assumption.

Known as Erd&s-Rényi random networks or ER
graphs.
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Random

Number of possible edges: Networks
Nutshell
N N(N —1
0 S m S = ¥ Pure random
2 2 networks

Definitions

Limit of m = 0: empty graph.
Limit of m = (§): complete or fully-connected 54
graph. el

Networks
Number of possible networks with N labelled c
nodes:

plS ) | thdiN 1)

Given m edges, there are ((gﬂ)) different possible
networks.

Crazy factorial explosion for 1 « m « (g).

Real world: links are usually costly so real
networks are almost always sparse.



https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/

Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.

Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
j. @ # 7, and connect if unconnected; repeat until
all m edges are allocated.

Best for adding relatively small numbers of links
(most cases).

1 and 2 are effectively equivalent for large N.
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Random networks

For method 1, # links is probablistic:

mwzp(f)zpiwuv—n

So the expected or average degree is

_2(m)
S
= ZpAN(V=1) = Zpi (N —1)=p(N -1

Which is what it should be...

If we keep (k) constant thenp x 1/N — 0 as
N — 0.
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Random networks: examples aForliy
Nebigtis
Nutshell

Pure random

Example realizations of random networks e i
Ni= 500 Rl
Vary m, the number of edges from 100 to 1000. S He e
Average degree (k) runs from 0.4 to 4.

Look at full network plus the largest component.
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Random networks: examples for N=500

m =500 m = 1000
st (k) =2 (k) =4

m =280 ™
(k)y=1.12 (k)
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Random networks: largest components

%?Oo_g (k)=0.92

m =100 m =250
(k)=0.4 (k) =

m =240

(k)=0.96

m =260
(k) =104

m =280 m =500 m = 1000

(s le (ky=2 (k)=4
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m =250 sree distributions
ky=1

m =250 m =250 o Gensra\ized

E)=1 (k)=1 5 Random

(k) ZZ>__2150 Networks

Configuration model

m =250 v to build in practice
(ky=1 Motifs
Strange friends

Largest component
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Giant component crosis
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Clustering in random networks:

For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient:
3 x #triangles
27 #triples

! Recall: C,, = probability that
Ci two friends of a node are
also friends.
'( P ECy Or: C, = probability that a
2 ,,r) triple is part of a triangle.
1 For standard random
' networks, we have simply
; that
(L3 G —
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Clustering in random networks:

So for large random
networks (N — o0),
clustering drops to zero.

Key structural feature of
random networks is that
they locally look like

No small loops.

pure branching networks
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Recall P, = probability that a randomly selected Nutshell
node has degree k.
Consider method 1 for constructing random o

Definitions

networks: each possible link is realized with
probability p.

Now consider one node: there are'N — 1 choose ¥ "
ways the node can be connected to k of the other ks
N — 1 nodes.
Each connection occurs with probability p, each
non-connection with probability (1 — p).

Therefore have a binomial distribution (3"

B o (Nk_l)p%—p)N—l—k.
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Our degree distribution:

RO = e p) =T

What happens as N — oc?

We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — cc.

But we want to keep (k) fixed...

So examine limit of P(k; p, N) when p — 0 and
N — oo with (k) = p(N — 1) = constant.

k N-1-k L
Pk p;iND-o2 <kk:>' (1 BE N<k_>1> B (k) (k)

This is a Poisson distribution (£ with mean (k).
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Poisson basics:
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A>0

=283

Classic use: probability
that an event occurs &
times in a given time
period, given an
average rate of
occurrence.

e.g.

phone calls/minute,
horse-kick deaths.

‘Law of small numbers'
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Poisson basics:

The variance of degree distributions for random
networks turns out to be very important.

Using calculation similar to one for finding (k) we
find the second moment to be:

(k2) = (k) + (k).
Variance is then

0 = (k%) = (B)2 = ()% + () = (k)2 = ().

So standard deviation ¢ is equal to \/ (k).

Note: This is a special property of Poisson
distribution and can trip us up...
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PoCS

General random networks AL

Random
3 Networks
So... standard random networks have a Poisson Nutshell
degree distribution
Generalize to arbitrary degree distribution P,. T

Definitions

Also known as the configuration model. ! ot oricaly
Can generalize construction method from ER S

Degree distributions

random networks. Generalized
3 = Random
Assign each node a weight w from some Networks
. . . . . .ope Configuration model
distribution P,, and form links with probability Fowtola

P(link between i and j) o< w,;w,.

But we'll be more interested in
1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.

2. Examining mechanisms that lead to networks with
certain degree distributions.
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Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.

P, x kaifork = L

Set P, = 0 (no isolated nodes).

Vary exponent v between 2.10 and 2.91.

Again, look at full network plus the largest
component.

Apart from degree distribution, wiring is random.
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Random networks: examples for N=1000 oo
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y=21 =219 ¥=2.28 v=237 ~ =2.46 Generalized
(k) =3.448 (k) =2.986 (k) =2.306 (k) =2.504 (k) =1.856 Random
Networks

Configuration model

ouild in practice

e friends

62 (k) =1.386 (k) =1.49

Ty e L S S
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Random networks: largest components o orsiis
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y=21 ~=2.19 ~=2.28 ~ =237 ~ =2.46 Generalized
(k) =3.448 (k) =2.986 (k) =2.306 (k) =2.504 (k) =1.856 Random
Networks
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Models AR

Random
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Nutshell

Pure random
networks
Definitions

How to build theoretically

al examples.

Arbitrary degree distribution P,.

e distributions

Deg

Create (unconnected) nodes with degrees Generalzed
anaom

sampled from P,. Networks

Wire nodes together randomly. Howsotu npreccs

Create ensemble to test deviations from
randomness.
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Random
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|dea: start with a soup of unconnected nodes with
stubs (half-edges): e o

De!
Ho

heoretically
>0r les
Degree distributions
2 Generalized
Random
Networks

II 1 Y\T/+ IIII Randomly select stubs

(not nodes!) and
connect them.

il SRl g
F- Tl 1] & s

P AR e
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Building random networks: First rewiring

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A §© & =<

Being careful: we can't change the degree of any
node, so we can't simply move links around.

Simplest solution: randomly rewire two edges at a

time.
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General random rewiring algorithm @rociox

Random
1 12 Networks
Nutshell

il

Randomly choose two edges. :

P
(Or choose problem edge and ek
arandom edge) Defiitons

Check to make sure edges are
disjoint.

Generalized
Random
Networks
Config ation model

Rewire one end of each edge.
Node degrees do not change.

Works if e, is a self-loop or
repeated edge.

Same as finding on/off/on/off
4-cycles. and rotating them.
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Sampling random networks @pocsvox
Networks
Nutshell

Pure random
networks
Definitions

H

Use rewiring algorithm to remove all self and
repeat loops. gree

o build theoretically

Degree distributions

Generalized
Random
Networks

on model

Id in practice

Randomize network wiring by applying rewiring
algorithm liberally.
Rule of thumb: # Rewirings ~ 10 x # edges [“).

P R L S S
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Random sampling

Problem with only joining up stubs is failure to
randomly sample from all possible networks.

Example from Milo et al. (2003) 4

(@)

1 configuration

(b)

90 configurations

9% frequency of occurrence

Eo ansm s et ontapinid]
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Sampling random networks crosis

Random
Networks
Nutshell

Pure random
networks

What if we have P, instead of V,.? peons
Must now create nodes before start of the

construction algorithm. o
I Generalized
Generate N nodes by sampling from degree Random
Networks

distribution P;,. Cottgraton hods

How to build in practice

Easy to do exactly numerically since k is discrete.

Note: not all P, will always give nodes that can be
wired together.

P i Wt e ety o
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Idea of motifs !’} introduced by Shen-Orr, Alon et 7
al. in 2002. o o

Defir

Looked at gene expression within full context of 2
transcriptional regulation networks.

Degree distributions

Specific example of Escherichia coli. Generalized

Random

Directed network with 577 interactions (edges) heaia o
and 424 operons (nodes). :

Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,,.

Looked for certain subnetworks (motifs) that
appeared more or less often than expected
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Network motifs

feedforward loop

crp

araC

|

araBAD

6 8 10 12 14 16 18 20

output Z /—1

6 8 10 12 14 16 18 20
time

Z only turns on in response to sustained activity in

X.

Turning off X rapidly turns off Z.
Analogy to elevator doors.
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Network motifs 5
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single input module (SIM)
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M :

How to build in practice

TR~ L

argCBH
argD
arge
argF
argl

Master switch.
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dense overlapping regulons (DOR) e

networks
Definitio

How to build theoretica

X1 X2 X3

Generalized
Random
Networks

How to build in practice
Motifs

rcsA
nhaR

ftsQAZ
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Definitions

How to build theoretically

Note: selection of motifs to test is reasonable but
nevertheless ad-hoc. Generalzed
For more, see work carried out by Wigginsetal. at """
Columbia. i

Strange

T S L
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The edge-degree distribution: crosis

Random
The degree distribution P, is fundamental for our N
description of many complex networks
Again: P, is the degree of randomly chosen node. Pure random

networks

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define @, to be the probability the node at a random
end of a randomly chosen edge has degree k. Generalized

Random
Networks

Now choosing nodes based on their degree (i.e., size): i

Normalized form:
kP, kP,

Qk = Z;?:O ]f/Pk/: <l€> 5

Big deal: Rich-get-richer mechanism is built into this
selection process.

T S L S
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Probability of randomly Random
selecting a node of degree k pe

by choosing from nodes:
Pl 7 3/7' P2 = 2/7' P3 = 1/7' Pure random
P6 == 1/7 networks

Probability of landing on a

node of degree k after
randomly selecting an edge o=,
and then randomly choosing Random
one direction to travel: Networks
Q, =3/16,Q, = 4/16,

Qs =3/16, Qg = 6/16.
Probability of finding #
outgoing edges = k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

R, =3/16 R, = 4/16,

R, =3/16, R5 = 6/16.

Deg

Ty S L S
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The edge-degree distribution: @pocsvox

Random
Networks
Nutshell

For random networks, @, is also the probability
that a friend (neighbor) of a random node has & Pure ranidom

networks

friends.
Useful variant on Q,:

R, = probability that a friend of a random node Generalized

andom
has k other friends. Eelwmgs E
(k+1)Pyyy (k+1)Priq s

Ry,

SRR e R

Equivalent to friend having degree k + 1.

Natural question: what's the expected number of
other friends that one friend has?

Y R P S
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The edge-degree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is

:ZkRk:Zk(k+ ) Pri1
k=0 k=0 (k)

1 o0
Z k(k+1)Py_ 4
k=1

i 2
e <k7> I;((k+1) (k+1)> Pk+1
(where we have sneakily matched up indices)
1 o0

===% (73 —3)F; (usingf=k+1)
j=

—~
=B
=)
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The edge-degree distribution: @pocsvox

Random
Networks

Note: our result, (k) , = (1@ ((k%) — (k)), is true for  nNutshel
all random networks, independent of degree
distribution. Pure random

networks
De

For standard random networks, recall

(k) = (k)2 + (B). g

Generalized
Random
Therefore: e
1
(k) g = 0] ((k)? + (k) — (k) = (k)
Again, neatness of results is a special property of j¢
the Poisson distribution. ﬁ il

So friends on average have (k) other friends, and
(k) + 1 total friends...

Y R e
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The edge-degree distribution: aForliy
In fact, R, is rather special for pure random EZEV%E;%S
networks ... i
SUbStitUting Pure random

(kY s
B el it
into
Rk = % Serwderahzed
Networks
we have
g ED@ED ] 0 G EE
(ky (k+1)! (kY (EA-TIR!
(B
Te = Pk
0|
#samesies. o

Y R e
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Two reasons why this matters

Average # friends of friends per node is

(ea) = (k) X (k) = <k>$ ((B2) — (k) = (K2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k5) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... > °!

4. See also: class size paradoxes (nod to: Gelman)
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Two reasons why this matters aroin

Random
Networks
Nutshell

A node’s average # of friends: (k) e

<k2> networks

(k)

Definitions

Friend's average # of friends:

Comparison:
(2EE Gai ARRE e R
<,I€> T <k> <]€>2 A8 <k> <]€>2 b <k> (1 5 <l{7>2) > <k> !\(lftworks -

So only if everyone has the same degree
(variance= ¢2 = 0) can a node be the same as its
friends.

Intuition: for random networks, the more
connected a node, the more likely it is to be
chosen as a friend.

' o~ CCoNE A


https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/

“Generalized friendship paradox in

ANEL VB
e
(@)

o

)

(o

(@)

:

2

3:

&N

Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. %]

Your friends really are mensters #winners:’
Go on, hurt me: Friends have more coauthors,
citations, and publications.

Other horrific studies: your connections on
Twitter have more followers than you, your sexual
partners more partners than you, ...

The hope: Maybe they have more enemies and
diseases too.

'Some press here (£ [MIT Tech Review].
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(k)  is key to understanding how well random
networks are connected together. o Gl

e.g., we'd like to know what's the size of the largest ..
component within a network.

As N — oo, does our network have a giant Cehartined

Random

component? Networks

Defn: Component = connected subnetwork of bl o
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — 0.

Note: Component = Cluster
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Structure of random networks AL

Random
Networks
Nutshell

A giant component exists if when we follow a

random edge, we are likely to hit a node with at PUlSrndq

networks
least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.

Generalized

All of this is the same as requiring (k) 5 > 1. Random

Networks
Giant component condition (or percolation
condition):

(k?) — (k)
(k)

Again, see that the second moment is an essential
part of the story.

Equivalent statement: (k?) > 2(k)

(k)r = =
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Spreading on Random Networks @pocsvox
Random
5 Networks
For random networks, we know local structure is Nutshell
pure branching.
Successful spreading is - contingent on single oS
edges infecting nodes. R
Success Failure;
Generalized
Random
Networks
> Bl Configuration model

build in practice
Str friends
Largest component

Focus on binary case with edges and nodes either
infected or not.

First big question: for a given network and
contagion process, can global spreading from a
single seed occur?

P R S
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Global spreading condition

We need to find: "

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.

= kP,
R= Z o (k—1) e B,
=0 (k) i i
= S # outgoing Prob. of
prob. of infected infection
connecting to edges

a degree k node

=, kP,
+> Lo 0 a1 B

k=0 (k) # outgoing Prob. of
infected no infection
edges
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Global spreading condition

Our global spreading condition is then:

e/ oy o)
R= £
2®

.<k_1).Bk1>1

Case 1-Rampant spreading: If B,; =1 then

B AN s 5y P N L i
R_I;)<k> (k—1) o =

Good: This is just our giant component condition
again.
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Global spreading condition

Case 2—Simple disease-like: If B,,; =8 <1 then

diRle o
_,;0 (k)

—1l)ef>1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component
case but critical value of (k) is increased.

Aka bond percolation (.

Resulting degree distribution P, :

Pk_6k2(> BERR
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Random
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Recall (k2) = (k)2 + (k).

Determine condition for giant component: hebabin

(k%) = (k) _ (k)2 + (k) — (k)
(k) g = & — (k)
4 (k) (k)

Generalized

Random

Networks
Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.
Fine example of a continuous phase transition (4,

We say (k) = 1 marks the critical point of the
system.
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()
(k2 =c> k2 e
k=1 Definitions

ow to build theoretically

oo o
g SUQi’Yd.’L’ Degree distributions
Generalized
=%

Random

So giant component always exists for these kinds
of networks.

Cutoff scaling is k=3 if v > 3 then we have to look
harder at (k) .

How about Py, = dy,, ?

Y R Y


https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/

PoCS

Giant component @pocsvox

Random
Networks
Nutshell

Define S, as the size of the largest component.
Pure random

Consider an infinite ER random network with average retwerld
degree (k). ol

Let's find S; with a back-of-the-envelope argument.

Define ¢ as the probability that a randomly chosen A
node does not belong to the largest component. Networks

Conf

Simple connection: 6 =1 — 5;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

So

5= i P,6*
k=0

Substitute in Poisson distribution...

Y R Y L
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Giant component crosis

Random
Networks
Nutshell

Carrying on:

Pure random

[e3s) oo k
5= Pt =3 gk e
| Sivto b teoredal
k=0 k=0 k! ke
i k Dry,u'(\(x ibutions
e = (k) <<k>5> Generalized
= k" Random
k=0 ! Networks

— e (k)elk)d — o—(k)(1-0)

Now substitute in § = 1 — S; and rearrange to
obtain:
Sl — 1 o ei<k>sl

Y R e
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Random
Networks
Nutshell

We can figure out some limits and details for

Pure random

Sl =1- €7<k>sl. networks

Definitions

First, we can write (k) in terms of S;:

1

< > I Generalized

5’1 s Sl Random

Networks
As (kY —» 0,5, — 0.
As (k) — 00, §; — 1.
Notice that at (k) = 1, the critical point, S; = 0.
Only solvable for S; > 0 when (k) > 1.
Really a transcritical bifurcation. ¢!
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Random
Networks
Nutshell

Our dirty trick only works for ER random networks.

. P d
The problem: We assumed that neighbors have etworkais

the same probability § of belonging to the largest
component.
Generalized

But we know our friends are different from us...
Works for ER random networks because L
(k) = (k)R-

We need a separate probability 6" for the chance
that an edge leads to the giant (infinite)
component.

Degree distributions

We can sort many things out with sensible
probabilistic arguments...

More detailed investigations will profit from a spot
of Generatingfunctionology. !
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