Mechanisms for Generating Power-Law Size Distributions, Part 3

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

UVM
|ọ|
っのल 1 of 56

These slides are brought to you by:

Sealie \& Lambie Productions

Rich-Get-Richer Mechanism

Simon's Model Analysis
Words
Catchphrases
First Mover Advantage
References

っのल 2 of 56

These slides are also brought to you by:

Special Guest Executive Producer

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
\square On Instagram at pratchett_the_cat ${ }^{\top}$

vum : $\left\lvert\, \begin{gathered}0 \\ 0\end{gathered}\right.$

っのल 3 of 56

Outline

Rich-Get-Richer Mechanism
 Simon's Model
 Analysis
 Words
 Catchphrases
 First Mover Advantage

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage

References

UVM $=\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っの® 4 of 56

The Boggoracle Speaks:

Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

uvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Aggregation:

Random walks represent additive aggregation
. Mechanism: Random addition and subtraction

- Compare across realizations, no competition.

Next: Random Additive/Copying Processes involving Competition.
Widespread: Words, Cities, the Web, Wealth, Productivity (Lotka), Popularity (Books, People, ...)
Competing mechanisms (trickiness)

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

Pre-Zipf's law observations of Zipf's law

. 1910s: Word frequency examined re Stenography[(or shorthand or brachygraphy or tachygraphy), Jean-Baptiste Estoup [${ }^{[6]}$.

- 1910s: Felix Auerbach © pointed out the Zipfitude of city sizes in
"Das Gesetz der Bevölkerungskonzentration" ("The Law of Population Concentration") ${ }^{[1]}$.
(1924: G. Udny Yule ${ }^{[15]}$:
\# Species per Genus (offers first theoretical mechanism)
(s. 1926: Lotka ${ }^{[9]}$:
\# Scientific papers per author (Lotka's law)

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
words
Catchphrases
First Mover Advantage

っのฝ 9 of 56

Theoretical Work of Yore:

1949: Zipf's "Human Behaviour and the Principle of Least-Effort" is published. ${ }^{[16]}$
1953: Mandelbrot ${ }^{[10]}$:
Optimality argument for Zipf's law; focus on language.

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage

B 1955: Herbert Simon ${ }^{[14, ~ 16]:}$
Zipf's law for word frequency, city size, income, publications, and species per genus.
1965/1976: Derek de Solla Price ${ }^{[4,13]}$:
Network of Scientific Citations.
1999: Barabasi and Albert ${ }^{[2]}$:
The World Wide Web, networks-at-large.

Rich－Get－Richer
Mechanism
Simon＇s Model
Analysis
Words
Catchphrases
First Mover Advantage
References Management，Sociology
Coined＇bounded rationality＇and＇satisficing＇ Nearly 1000 publications（see Google Scholar［＇）
An early leader in Artificial Intelligence， Information Processing，Decision－Making， Problem－Solving，Attention Economics， Organization Theory，Complex Systems，And Computer Simulation Of Scientific Discovery．
 1978 Nobel Laureate in Economics （his Nobel bio is here［］）．

Essential Extract of a Growth Model:

Random Competitive Replication (RCR):

1. Start with 1 elephant (or element) of a particular flavor at $t=1$
2. At time $t=2,3,4, \ldots$, add a new elephant in one of two ways:

- With probability ρ, create a new elephant with a new flavor
= Mutation/Innovation
(- With probability $1-\rho$, randomly choose from all existing elephants, and make a copy.
= Replication/Imitation
- Elephants of the same flavor form a group

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

Random Competitive Replication:

Example: Words appearing in a language

Consider words as they appear sequentially.
With probability ρ, the next word has not previously appeared = Mutation/Innovation

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage

With probability $1-\rho$, randomly choose one word from all words that have come before, and reuse this word
= Replication/Imitation

Note: This is a terrible way to write a novel.

For example:

Fundamental Rich-get-Richer story;
Competition for replication between individual elephants is random;
B
Competition for growth between groups of matching elephants is not random;
Selection on groups is biased by size;
R Random selection sounds easy;
Possible that no great knowledge of system needed (but more later ...).

Your free set of tofu knives:
Related to Pólya's Urn Model [${ }^{\text {B }}$, a special case of problems involving urns and colored balls $[$. .

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

vvM

つの® 15 of 56

Random Competitive Replication:

Some observations:

Steady growth of system: +1 elephant per unit time.
Steady growth of distinct flavors at rate ρ
Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage

We can incorporate

1. Elephant elimination
2. Elephants moving between groups
3. Variable innovation rate ρ
4. Different selection based on group size (But mechanism for selection is not as simple...)

"The Self-Organizing Economy" an by Paul Krugman (1996). ${ }^{\text {[8] }}$

Ch. 3: An Urban Mystery, p. 46

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
"...Simon showed-in a completely impenetrable exposition!-that the exponent of the power law distribution should be ..." ${ }^{1,2}$

${ }^{1}$ Krugman's book was handed to the Deliverator by a certain Álvaro Cartea many years ago at the Santa Fe Institute Summer School.
${ }^{2}$ Let's use π for probability because π 's not special, right guys?

Random Competitive Replication:

Definitions:

8. $k_{i}=$ size of a group i

* $N_{k, t}=$ \# groups containing k elephants at time t.

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage

Basic question: How does $N_{k, t}$ evolve with time?

First: $\sum_{k} k N_{k, t}=t=$ number of elephants at time t

Random Competitive Replication:

$P_{k}(t)=$ Probability of choosing an elephant that belongs to a group of size k :
(8 $N_{k, t}$ size k groups
\& $\Rightarrow k N_{k, t}$ elephants in size k groups
\& t elephants overall

$$
P_{k}(t)=\frac{k N_{k, t}}{t} .
$$

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

uvm $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
๑ด® 20 of 56

Random Competitive Replication:

$N_{k, t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated:
$N_{k, t+1}=N_{k, t}-1$ Happens with probability $(1-\rho) k N_{k, t} / t$
2. An elephant belonging to a group with $k-1$ elephants is replicated:
$N_{k, t+1}=N_{k, t}+1$
Happens with probability $(1-\rho)(k-1) N_{k-1, t} / t$

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

Random Competitive Replication:

Special case for $N_{1, t}$:

1. The new elephant is a new flavor:
$N_{1, t+1}=N_{1, t}+1$
Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
Happens with probability ρ
2. A unique elephant is replicated:
$N_{1, t+1}=N_{1, t}-1$
Happens with probability $(1-\rho) N_{1, t} / t$

Random Competitive Replication:

Putting everything together:

For $k>1$:
Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
$\left\langle N_{k, t+1}-N_{k, t}\right\rangle=(1-\rho)\left((+1)(k-1) \frac{N_{k-1, t}}{t}+(-1) k \frac{N_{k, t}}{t}\right)_{\text {efererences }}^{\substack{\text { aidhonemes }}}$

For $k=1$:

$$
\left\langle N_{1, t+1}-N_{1, t}\right\rangle=(+1) \rho+(-1)(1-\rho) 1 \cdot \frac{N_{1, t}}{t}
$$

Random Competitive Replication:

Assume distribution stabilizes: $N_{k, t}=n_{k} t$
(Reasonable for t large)
Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References
Numbers of elephants now fractional
Okay over large time scales

For later: the fraction of groups that have size k is n_{k} / ρ since

$$
\frac{N_{k, t}}{\rho t}=\frac{n_{k} t}{\rho t}=\frac{n_{k}}{\rho} .
$$

Random Competitive Replication:

$$
\left\langle N_{k, t+1}-N_{k, t}\right\rangle=(1-\rho)\left((k-1) \frac{N_{k-1, t}}{t}-k \frac{N_{k, t}}{t}\right)
$$

becomes

$$
\begin{gathered}
n_{k}(t+1)-n_{k} t=(1-\rho)\left((k-1) \frac{n_{k-1} t}{t}-k \frac{n_{k} t}{t}\right) \\
n_{k}(t+1-t)=(1-\rho)\left((k-1) \frac{n_{k-1} t}{t}-k \frac{n_{k} t}{t}\right) \\
\Rightarrow n_{k}=(1-\rho)\left((k-1) n_{k-1}-k n_{k}\right) \\
\Rightarrow n_{k}(1+(1-\rho) k)=(1-\rho)(k-1) n_{k-1}
\end{gathered}
$$

Rich-Get-Richer Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

UVM $\left|\begin{array}{l}\text { On } \\ 0\end{array}\right|$
๑ด® 25 of 56

Random Competitive Replication:

$$
\frac{n_{k}}{n_{k-1}}=\frac{(k-1)(1-\rho)}{1+(1-\rho) k}
$$

R Interested in k large (the tail of the distribution)
R Can be solved exactly.
Insert question from assignment 4 ©

* For just the tail: Expand as a series of powers of $1 / k$
Insert question from assignment 4 ©
We (okay, you) find

$$
\begin{gathered}
n_{k} \propto k^{-\frac{(2-\rho)}{(1-\rho)}}=k^{-\gamma} \\
\gamma=\frac{(2-\rho)}{(1-\rho)}=1+\frac{1}{(1-\rho)}
\end{gathered}
$$

Rich-Get-Richer Mechanism Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

vum $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
っのल 26 of 56

Micro-to-Macro story with ρ and γ measurable.

$$
\gamma=\frac{(2-\rho)}{(1-\rho)}=1+\frac{1}{(1-\rho)}
$$

Observe $2<\gamma<\infty$ for $0<\rho<1$.
8
For $\rho \simeq 0$ (low innovation rate):

$$
\gamma \simeq 2
$$

\& 'Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.

- For $\rho \simeq 1$ (high innovation rate):

$$
\gamma \simeq \infty
$$

All elephants have different flavors.

- Upshot: Tunable mechanism producing a family of universality classes.

Recall Zipf's law: $s_{r} \sim r^{-\alpha}$ ($s_{r}=$ size of the r th largest group of elephants)

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage

- $\gamma=2$ corresponds to $\alpha=1$

We (roughly) see Zipfian exponent ${ }^{[16]}$ of $\alpha=1$ for many real systems: city sizes, word distributions,

8
Corresponds to $\rho \rightarrow 0$, low innovation.
8 Still, other quite different mechanisms are possible...
8
Must look at the details to see if mechanism makes sense... more later.

What about small k ?:

$$
\left\langle N_{1, t+1}-N_{1, t}\right\rangle=\rho-(1-\rho) 1 \cdot \frac{N_{1, t}}{t}
$$

As before, set $N_{1, t}=n_{1} t$ and drop expectations B

$$
\begin{gathered}
n_{1}(t+1)-n_{1} t=\rho-(1-\rho) 1 \cdot \frac{n_{1} t}{t} \\
n_{1}=\rho-(1-\rho) n_{1}
\end{gathered}
$$

Rearrange:

$$
\begin{gathered}
n_{1}+(1-\rho) n_{1}=\rho \\
n_{1}=\frac{\rho}{2-\rho}
\end{gathered}
$$

Rich-Get-Richer Mechanism Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

$$
\text { So... } \quad N_{1, t}=n_{1} t=\frac{\rho t}{2-\rho}
$$

Recall number of distinct elephants $=\rho t$ ．
Fraction of distinct elephants that are unique （belong to groups of size 1）：

$$
\frac{1}{\rho t} N_{1, t}=\frac{1}{\rho t} \frac{\rho t}{2-\rho}=\frac{1}{2-\rho}
$$

（also＝fraction of groups of size 1）
For ρ small，fraction of unique elephants $\sim 1 / 2$
s
Roughly observed for real distributions
ρ increases，fraction increases

Can show fraction of groups with two elephants

Rich－Get－Richer
Mechanism
Simon＇s Model
Analysis
Words
Catchphrases
First Mover Advantage

Rich-Get-Richer Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

uvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

っaع 31 of 56

Words:

From Simon ${ }^{[14]}$:

Estimate $\rho_{\text {est }}=\#$ unique words/\# all words
Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage

For Joyce's Ulysses: $\rho_{\text {est }} \simeq 0.115$

N_{1} (real)	N_{1} (est)	N_{2} (real)	N_{2} (est)
16,432	15,850	4,776	4,870

Evolution of catch phrases:

- Yule's paper (1924) ${ }^{[15]}$:
"A mathematical theory of evolution, based on the
conclusions of Dr J. C. Willis, F.R.S."
Simon's paper (1955) ${ }^{[14]}$:
"On a class of skew distribution functions" (snore)
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data-particularly data describing sociological, biological and economic phenomena. Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

Evolution of catch phrases:

Derek de Solla Price:
First to study network evolution with these kinds of models.
Citation network of scientific papers
\& Price's term: Cumulative Advantage
\& Idea: papers receive new citations with probability proportional to their existing \# of citations
Directed network
. Two (surmountable) problems:

1. New papers have no citations
2. Selection mechanism is more complicated

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

Evolution of catch phrases:

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References (Wait! There's more....)
but from him that hath not, that also which he seemeth to have shall be taken away. And cast the worthless servant into the outer
darkness; there men will weep and gnash their And cast the worthless servant into the outer
darkness; there men will weep and gnash their teeth."
(Hath = suggested unit of purchasing power.) Matilda effect: [] women's scientific achievements are often overlooked
Studied careers of scientists and found credit flowed disproportionately to the already famous
From the Gospel of Matthew:
"For to every one that hath shall be given...

Evolution of catch phrases:

Merton was a catchphrase machine:

1. Self-fulfilling prophecy
2. Role model
3. Unintended (or unanticipated) consequences

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
4. Focused interview \rightarrow focus group
5. Obliteration by incorporation © (includes above examples from Merton himself)

And just to be clear...
Merton's son, Robert C. Merton, won the Nobel Prize for Economics in 1997.

Evolution of catch phrases:

Barabasi and Albert ${ }^{[2]}$-thinking about the Web
Independent reinvention of a version of Simon and Price's theory for networks
\& Another term: "Preferential Attachment"
Considered undirected networks (not realistic but avoids 0 citation problem)
\& Still have selection problem based on size (non-random)
Solution: Randomly connect to a node (easy) ...
\& ...and then randomly connect to the node's friends (also easy)
. "Scale-free networks" = food on the table for physicists

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

UVM $\left\lvert\, \begin{aligned} & \text { O } \\ & 5 \\ & 0\end{aligned}\right.$

Another analytic approach: ${ }^{[5]}$

. Focus on how the nth arriving group typically grows.
Analysis gives:

$$
S_{n, t} \sim \begin{cases}\frac{1}{\Gamma(2-\rho)}\left[\frac{1}{t}\right]^{-(1-\rho)} & \text { for } n=1 \\ \rho^{1-\rho}\left[\frac{n-1}{t}\right]^{-(1-\rho)} & \text { for } n \geq 2\end{cases}
$$

First mover is a factor $1 / \rho$ greater than expected. Because ρ is usually close to 0 , the first element is truly an elephant in the room.
Appears that this has been missed for 60 years ...

"Simon's fundamental rich-get-richer model entails a dominant first-mover advantage" $\overline{ }$ © Dodds et al., Physical Review E, 95, 052301, 2017. ${ }^{[5]}$
A. $\rho=0.1$

C. $\rho=0.001$

PoCS
@pocsvox
Power-Law
Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

Alternate analysis:

Evolution of the nth arriving group's size:

$$
\left\langle S_{n, t+1}-S_{n, t}\right\rangle=\left(1-\rho_{t}\right) \cdot \frac{S_{n, t}}{t} \cdot(+1) .
$$

\&or $t \geq t_{n}^{\text {init }}$, fix $\rho_{t}=\rho$ and shift t to $t-1$:

$$
S_{n, t}=\left[1+\frac{(1-\rho)}{t-1}\right] S_{n, t-1}
$$

where $S_{n, \text { init }_{n}^{\text {in }}}=1$.

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage

Betafication ensues:

$$
\begin{gathered}
S_{n, t}=\left[1+\frac{(1-\rho)}{t-1}\right]\left[1+\frac{(1-\rho)}{t-2}\right] \cdots\left[1+\frac{(1-\rho)}{t_{n}^{\text {init }}}\right] \cdot 1 \\
=\left[\frac{t+1-\rho}{t-1}\right]\left[\frac{t-\rho}{t-2}\right] \cdots\left[\frac{t_{n}^{\text {init }}+1-\rho}{t_{n}^{\text {init }}}\right] \\
=\frac{\Gamma(t+1-\rho) \Gamma\left(t_{n}^{\text {init }}\right)}{\Gamma\left(t_{n}^{\text {init }}+1-\rho\right) \Gamma(t)} \\
=\frac{\mathrm{B}\left(t_{n}^{\text {nit }}, 1-\rho\right)}{\mathrm{B}(t, 1-\rho)} .
\end{gathered}
$$

Rich-Get-Richer Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

The first mover is really different:

The issue is $t_{n}^{\text {init }}$ in

$$
S_{n, t}=\frac{\mathrm{B}\left(t_{n}^{\mathrm{init}}, 1-\rho\right)}{\mathrm{B}(t, 1-\rho)}
$$

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
For $n \geq 2$ and $\rho \ll 1$, the nth group typically arrives at $t_{n}^{\text {init }} \simeq\left[\frac{n-1}{\rho}\right]$
But $t_{1}^{\text {init }}=1$ and the scaling is distinct in form.
 Simon missed the first mover by working on the size distribution.

- Contribution to $P_{k, t}$ of the first element vanishes as $t \rightarrow \infty$.
Note: Does not apply to Barabási-Albert model.

Variability:

The probability that the nth arriving group, if of size $S_{n, t}=k$ at time t, first replicates at time $t+\tau$:

$$
\begin{gathered}
\operatorname{Pr}\left(S_{n, t+\tau}=k+1 \mid S_{n, t+i}=k \text { for } i=0, \ldots, \tau-1\right) \\
=\prod_{i=0}^{\tau-1}\left[1-(1-\rho) \frac{k}{t+i}\right] \cdot(1-\rho) \frac{k}{t+\tau} \\
=k \frac{B(\tau, t)}{B(\tau, t-(1-\rho))} \frac{1-\rho}{t+\tau} \propto \frac{\tau^{-(1-\rho) k}}{t+\tau} \sim \tau^{-(2-\rho) k} .
\end{gathered}
$$

Upshot: nth arriving group starting at size 1 will on

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

Related papers:

"Organization of Growing Random
 Networks" []

Krapivsky and Redner, Phys. Rev. E, 63, 066123, 2001. ${ }^{[7]}$
"The first-mover advantage in scientific publication" ${ }^{\text {C/ }}$
M. E. J. Newman, Europhysics Letters, 86, 68001, 2009.

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

Related papers:

"Prediction of highly cited papers" $\mathbb{}$
M. E. J. Newman,

Europhysics Letters, 105, 28002, 2014. ${ }^{[12]}$
"The effect of the initial network
configuration on preferential
attachment"
Berset and Medo,
The European Physical Journal B, 86, 1-7, 2013. ${ }^{[3]}$

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

Arrival variability:

Any one simulation shows a high amount of disorder.
R Two orders of magnitude variation in possible rank.
R Rank ordering creates a smooth Zipf distribution.
Size distribution for the nth arriving group show exponential decay.

Self-referential citation data:

Catchphrases

First Mover Advantage
References

っのल 50 of 56

More mattering:

Rich-get-richerness in social contagion:
\& We love to rank everyone, everything: Top n lists.
People, wealth, sports, music, movies, books, schools, cities, countries, dogs (13/10) CJ, ...
\& Gameable: payola[3, astroturfing[], sockpuppetry [J, John Barron [J] (the sockpuppet hype man [*), ...
Black-box ranking algorithms make ranking opaque.
B Black boxes are gameable but takes money and commensurate skill.
Black box algorithms can make things spread rampantly. ${ }^{1}$
R No "regramming" is a positive feature of Instagram (also: Pratchett the Cat[")

References I

[1] F. Auerbach.

Das gesetz der bevölkerungskonzentration.
Petermanns Geogr. Mitteilungen, 59:73-76, 1913.
[2] A.-L. Barabási and R. Albert.
Emergence of scaling in random networks.
Science, 286:509-511, 1999. pdf[
Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

Networks of scientific papers.
Science, 149:510-515, 1965. pdf[^

References II

［5］P．S．Dodds，D．R．Dewhurst，F．F．Hazlehurst，C．M． Van Oort，L．Mitchell，A．J．Reagan，J．R．Williams， and C．M．Danforth．
Simon＇s fundamental rich－get－richer model entails a dominant first－mover advantage． Physical Review E，95：052301，2017．pdf［天

Rich－Get－Richer
Mechanism
Simon＇s Model
Analysis
Words
Catchphrases
First Mover Advantage
References

UVM ：$\left|\begin{array}{l}0 \\ 8 \\ 0\end{array}\right|$

References III

[8] P. Krugman.
The Self-Organizing Economy.
Blackwell Publishers, Cambridge, Massachusetts, 1996.
[9] A. J. Lotka.
The frequency distribution of scientific productivity.
Journal of the Washington Academy of Science, 16:317-323, 1926.
[10] B. B. Mandelbrot.
An informational theory of the statistical structure of languages.
In W. Jackson, editor, Communication Theory, pages 486-502. Butterworth, Woburn, MA, 1953. pdf(ᄌ

References IV

[11] M. E. J. Newman.
The first-mover advantage in scientific publication.
Europhysics Letters, 86:68001, 2009. pdf[^
[12] M. E. J. Newman.
Prediction of highly cited papers.
Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References
Europhysics Letters, 105:28002, 2014. pdf■
[13] D. D. S. Price.
A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, pages 292-306, 1976. pdf[^̉
[14] H. A. Simon.
On a class of skew distribution functions.
Biometrika, 42(3-4):425-440, 12 1955. pdf[$\boldsymbol{\beta}$

References V

[15] G. U. Yule.
A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Phil. Trans. B, 213:21-87, 1925. pdfCA
[16] G. K. Zipf.
Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

Rich-Get-Richer
Mechanism
Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage
References

