Mechanisms for Generating Power-Law Size Distributions, Part 3

Last updated: 2021/10/06, 20:25:47 EDT

Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021–2022 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words
Catchphrases
First Mover Advantage

These slides are brought to you by:

Pocs @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer

Mechanism Simon's Model

Catchphrases First Mover Advantage

References

Analysis

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model

Analysis Words Catchphrases First Mover Advantage

References

9 a @ 3 of 56

Outline

Rich-Get-Richer Mechanism Simon's Model Analysis Words Catchphrases First Mover Advantage

References

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

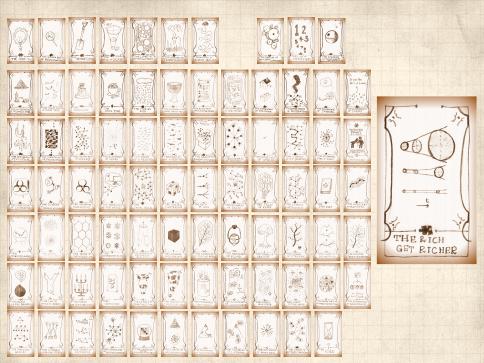
Mechanism Simon's Model Analysis

Catchphrases
First Mover Advantage

The Boggoracle Speaks:

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3


Rich-Get-Richer Mechanism Simon's Model Words

First Mover Advantage

Catchphrases References

Aggregation:

- Random walks represent additive aggregation
- Mechanism: Random addition and subtraction
- Compare across realizations, no competition.
- Next: Random Additive/Copying Processes involving Competition.
- Widespread: Words, Cities, the Web, Wealth, Productivity (Lotka), Popularity (Books, People, ...)
- Competing mechanisms (trickiness)

Pocs @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model

Catchphrases First Mover Advantage

Pre-Zipf's law observations of Zipf's law

№ 1910s: Word frequency examined re Stenography (or shorthand or brachygraphy or tachygraphy), Jean-Baptiste Estoup (6).

№ 1910s: Felix Auerbach pointed out the Zipfitude of city sizes in "Das Gesetz der Bevölkerungskonzentration" ("The Law of Population Concentration") [1].

1924: G. Udny Yule [15]: # Species per Genus (offers first theoretical mechanism)

1926: Lotka [9]:
Scientific papers per author (Lotka's law)

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model Analysis Words Catchobrases

First Mover Advantage
References

Theoretical Work of Yore:

1949: Zipf's "Human Behaviour and the Principle of Least-Effort" is published. [16]

1953: Mandelbrot [10]:
Optimality argument for Zipf's law; focus on language.

1955: Herbert Simon [14, 16]: Zipf's law for word frequency, city size, income, publications, and species per genus.

3 1965/1976: Derek de Solla Price [4, 13]: Network of Scientific Citations.

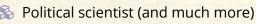
4 1999: Barabasi and Albert [2]: The World Wide Web, networks-at-large.

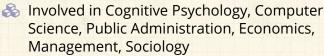
PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model Analysis

Catchphrases
First Mover Advantage
References





Herbert Simon ☐ (1916–2001):

Coined 'bounded rationality' and 'satisficing'

Nearly 1000 publications (see Google Scholar ☑)

An early leader in Artificial Intelligence, Information Processing, Decision-Making, Problem-Solving, Attention Economics, Organization Theory, Complex Systems, And Computer Simulation Of Scientific Discovery.

№ 1978 Nobel Laureate in Economics (his Nobel bio is here]. PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model

Words
Catchphrases
First Mover Advantage

References

29 @ 11 of 56

Essential Extract of a Growth Model:

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t=1
- 2. At time t=2,3,4,..., add a new elephant in one of two ways:
 - With probability ρ , create a new elephant with a new flavor
 - = Mutation/Innovation
 - > With probability $1-\rho$, randomly choose from all existing elephants, and make a copy.
 - = Replication/Imitation
 - Elephants of the same flavor form a group

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases
First Mover Advantage

Example: Words appearing in a language

- Consider words as they appear sequentially.
- - = Mutation/Innovation
- With probability 1ρ , randomly choose one word from all words that have come before, and reuse this word
 - = Replication/Imitation

Note: This is a terrible way to write a novel.

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model Analysis Words

Catchphrases
First Mover Advantage
References

For example:

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases First Mover Advantage

References

9 a € 14 of 56

Some observations:

- Fundamental Rich-get-Richer story;
- Competition for replication between individual elephants is random;
- Competition for growth between groups of matching elephants is not random;
- Selection on groups is biased by size;
- Random selection sounds easy;
- Possible that no great knowledge of system needed (but more later ...).

Your free set of tofu knives:

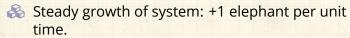
- Related to Pólya's Urn Model , a special case of problems involving urns and colored balls .
- Sampling with super-duper replacement and sneaky sneaking in of new colors.

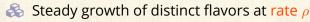
PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model

Analysis Words Catchphrases First Mover Advantage


References



29 @ 15 of 56

Some observations:

- We can incorporate
 - 1. Elephant elimination
 - 2. Elephants moving between groups
 - 3. Variable innovation rate ρ
 - 4. Different selection based on group size (But mechanism for selection is not as simple...)

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases First Mover Advantage

"The Self-Organizing Economy" **3**. by Paul Krugman (1996). [8]

Ch. 3: An Urban Mystery, p. 46

"...Simon showed—in a completely impenetrable exposition!—that the exponent of the power law distribution should be ..."^{1, 2}

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words Catchphrases First Mover Advantage

References

20 € 17 of 56

¹Krugman's book was handed to the Deliverator by a certain Álvaro Cartea ☑ many years ago at the Santa Fe Institute Summer School.

²Let's use π for probability because π 's not special, right guys?

Definitions:

 $k_i =$ size of a group i

 \aleph $N_{k,t}$ = # groups containing k elephants at time t.

Basic question: How does $N_{k,t}$ evolve with time?

First: $\sum kN_{k,t}=t=$ number of elephants at time t

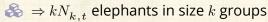
Pocs @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases First Mover Advantage



 $P_{k}(t)$ = Probability of choosing an elephant that belongs to a group of size k:

& t elephants overall

$$P_k(t) = \frac{kN_{k,t}}{t}.$$

Pocs @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases First Mover Advantage

 $N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated:

$$\begin{split} N_{k,\,t+1} &= N_{k,\,t} - 1 \\ \text{Happens with probability } & (1-\rho)kN_{k,\,t}/t \end{split}$$

2. An elephant belonging to a group with k-1 elephants is replicated:

$$\begin{split} N_{k,\,t+1} &= N_{k,\,t} + 1 \\ \text{Happens with probability } & (1-\rho)(k-1)N_{k-1,\,t}/t \end{split}$$

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model

Analysis
Words
Catchphrases
First Mover Advantage

Special case for $N_{1,t}$:

1. The new elephant is a new flavor:

$$N_{1,\,t+1}=N_{1,\,t}+1$$
 Happens with probability ho

2. A unique elephant is replicated:

$$N_{1,t+1} = N_{1,t} - 1$$
 Happens with probability $(1-\rho)N_{1,t}/t$

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases First Mover Advantage

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model Analysis

Putting everything together:

For k > 1:

$$\left\langle N_{k,\,t+1}-N_{k,\,t}\right\rangle = (1-\rho)\left(\frac{(+1)(k-1)\frac{N_{k-1,\,t}}{t}+(-1)k\frac{N_{k,\,t}}{t}}{t}\right)^{\text{(atchphrases) irist Mover Advantages}} \exp\left(-\frac{1}{t}\right)\left(\frac{N_{k,\,t+1}-N_{k,\,t}}{t}\right)^{\frac{1}{2}} \exp\left(-\frac{1}{t}\right)\left(\frac{N_{k,\,t+1}-N_{k,\,t}}{t}\right)^{\frac{1}{2}} \exp\left(-\frac{1}{t}\right) \left(\frac{N_{k,\,t+1}-N_{k,\,t}}{t}\right)^{\frac{1}{2}} \exp\left(-\frac{1}{t}\right) \left(\frac{N_{k,\,t+1}-N_{k,\,t+1}}{t}\right)^{\frac{1}{2}} \exp\left(-\frac{1}{t}\right)^{\frac{1}{2}} \exp\left$$

For k = 1:

$$\left< N_{1,\,t+1} - N_{1,\,t} \right> = \textcolor{red}{(+1)} \rho + \textcolor{red}{(-1)} (1-\rho) 1 \cdot \frac{N_{1,\,t}}{t}$$

Assume distribution stabilizes: $N_{k,t} = n_k t$ (Reasonable for t large)

- Drop expectations
- Numbers of elephants now fractional
- Okay over large time scales
- For later: the fraction of groups that have size k is n_k/ρ since

$$\frac{N_{k,t}}{\rho t} = \frac{n_k t}{\rho t} = \frac{n_k}{\rho}.$$

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases First Mover Advantage

Stochastic difference equation:

$$\left\langle N_{k,t+1}-N_{k,t}\right\rangle = (1-\rho)\left((k-1)\frac{N_{k-1,t}}{t}-k\frac{N_{k,t}}{t}\right)$$

becomes

$$n_k(t+1)-n_kt=(1-\rho)\left((k-1)\frac{n_{k-1}t}{t}-k\frac{n_kt}{t}\right)$$

$$\begin{split} n_k({\color{red}t}+1-{\color{red}t}) &= (1-\rho)\left((k-1)\frac{n_{k-1}{\color{red}t}}{\color{red}t} - k\frac{n_k{\color{red}t}}{\color{red}t}\right) \\ &\Rightarrow n_k = (1-\rho)\left((k-1)n_{k-1} - kn_k\right) \end{split}$$

$$\Rightarrow n_k \left(1 + \textcolor{red}{(1-\rho)k}\right) = (1-\rho)(k-1)n_{k-1}$$

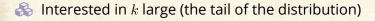
PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases First Mover Advantage



We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

Can be solved exactly.

Insert question from assignment 4 🗷

 $lap{8}$ For just the tail: Expand as a series of powers of 1/k

Insert question from assignment 4 We (okay, you) find

$$n_k \propto k^{-\frac{(2-\rho)}{(1-\rho)}} = k^{-\gamma}$$

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model Analysis

Catchphrases
First Mover Advantage

References

9 q № 26 of 56

 \triangle Micro-to-Macro story with ρ and γ measurable.

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

る Observe 2 < γ < ∞ for 0 < ρ < 1.

A For $\rho \simeq 0$ (low innovation rate):

 $\gamma \simeq 2$

'Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.

A For $\rho \simeq 1$ (high innovation rate):

 $\gamma \simeq \infty$

- All elephants have different flavors.
- Upshot: Tunable mechanism producing a family of universality classes.

Pocs @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model

Analysis Catchphrases First Mover Advantage

- Recall Zipf's law: $s_r \sim r^{-\alpha}$ (s_r = size of the rth largest group of elephants)
- \clubsuit We found $\alpha = 1/(\gamma 1)$ so:

$$\boxed{\alpha = \frac{1}{\gamma - 1} = \frac{1}{\cancel{1} + \frac{1}{(1 - \rho)} - \cancel{1}} = 1 - \rho.}$$

- We (roughly) see Zipfian exponent [16] of $\alpha = 1$ for many real systems: city sizes, word distributions, ...
- $\ensuremath{\mathfrak{S}}$ Corresponds to $\rho \to 0$, low innovation.
- Still, other quite different mechanisms are possible...
- Must look at the details to see if mechanism makes sense... more later.

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

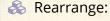
Rich-Get-Richer Mechanism Simon's Model Analysis

First Mover Advantage

What about small k?:

We had one other equation:

$$\left\langle N_{1,\,t+1}-N_{1,\,t}\right\rangle = \rho - (1-\rho)1\cdot\frac{N_{1,\,t}}{t}$$


 $\ensuremath{ \leqslant } \ensuremath{ }$ As before, set $N_{1,\,t} = n_1 t$ and drop expectations

$$n_1(t+1)-n_1t=\rho-(1-\rho)1\cdot\frac{n_1t}{t}$$

$$n_1 = \rho - (1-\rho)n_1$$

$$n_1 + (1-\rho)n_1 = \rho$$

$$n_1 = \frac{\rho}{2 - \rho}$$

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model Analysis

Catchphrases
First Mover Advantage

So...
$$N_{1,\,t}=n_1t=\frac{\rho t}{2-\rho}$$

- \Re Recall number of distinct elephants = ρt .
- Fraction of distinct elephants that are unique (belong to groups of size 1):

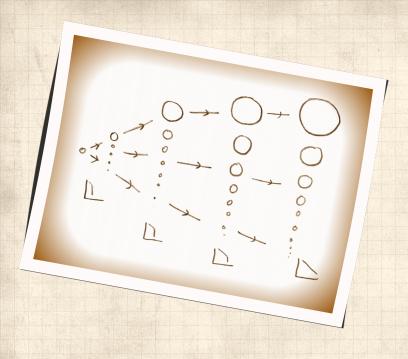
$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho \ell} \frac{\rho \ell}{2 - \rho} = \frac{1}{2 - \rho}$$

(also = fraction of groups of size 1)

- \red{left} For ho small, fraction of unique elephants $\sim 1/2$
- Roughly observed for real distributions
- $\stackrel{\textstyle <}{\sim}$ Can show fraction of groups with two elephants $\sim 1/6$
- Model works well for large and small k #awesome

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3


Rich-Get-Richer Mechanism Simon's Model

Analysis Words

Catchphrases First Mover Advantage

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases First Mover Advantage

References

9 a @ 31 of 56

Words:

From Simon [14]:

Estimate $\rho_{\rm est} = \#$ unique words/# all words

For Joyce's Ulysses: $\rho_{\rm est} \simeq 0.115$

N_1 (real)	N_1 (est)	N_2 (real)	N_2 (est)
16,432	15,850	4,776	4,870

Pocs @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases First Mover Advantage

Yule's paper (1924) [15]:

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955)^[14]:
"On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data—particularly data describing sociological, biological and economic phenomena.

Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model Analysis Words Catchphrases

References

少 q ← 35 of 56

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Derek de Solla Price:

- First to study network evolution with these kinds of models.
- Citation network of scientific papers
- Price's term: Cumulative Advantage
- Idea: papers receive new citations with probability proportional to their existing # of citations
- Directed network
- Two (surmountable) problems:
 - 1. New papers have no citations
 - 2. Selection mechanism is more complicated

Rich-Get-Richer Mechanism Simon's Model

Words
Catchphrases
First Mover Advantage

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given...

(Wait! There's more....)

but from him that hath not, that also which he seemeth to have shall be taken away. And cast the worthless servant into the outer darkness; there men will weep and gnash their teeth."

(Hath = suggested unit of purchasing power.)

Matilda effect: Wwomen's scientific achievements are often overlooked

Pocs @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model

Catchphrases First Mover Advantage

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model
- 3. Unintended (or unanticipated) consequences
- 4. Focused interview \rightarrow focus group
- 5. Obliteration by incorporation ☑ (includes above examples from Merton himself)

And just to be clear...

Merton's son, Robert C. Merton, won the Nobel Prize for Economics in 1997.

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases
First Mover Advantage

- Barabasi and Albert [2]—thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential Attachment"
- Considered undirected networks (not realistic but avoids 0 citation problem)
- Still have selection problem based on size (non-random)
- Solution: Randomly connect to a node (easy) ...
- ...and then randomly connect to the node's friends (also easy)
- "Scale-free networks" = food on the table for physicists

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Analysis Words

Catchphrases First Mover Advantage

Another analytic approach: [5]

- \Re Focus on how the nth arriving group typically grows.
- Analysis gives:

$$S_{n,t} \sim \left\{ \begin{array}{l} \frac{1}{\Gamma(2-\rho)} \left[\frac{1}{t}\right]^{-(1-\rho)} \text{ for } n=1, \\ \rho^{1-\rho} \left[\frac{n-1}{t}\right]^{-(1-\rho)} \text{ for } n \geq 2. \end{array} \right.$$

- \Re First mover is a factor $1/\rho$ greater than expected.
- $\ensuremath{\mathfrak{S}}$ Because ρ is usually close to 0, the first element is truly an elephant in the room.
- Appears that this has been missed for 60 years ...

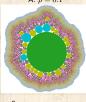
PoCS @pocsvox

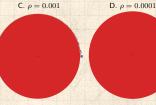
Power-Law Mechanisms, Pt. 3

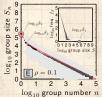
Rich-Get-Richer Mechanism

Simon's Model Analysis

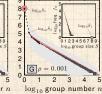
Catchphrases First Mover Advantage

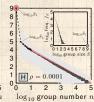


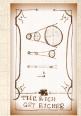



"Simon's fundamental rich-get-richer model entails a dominant first-mover advantage"

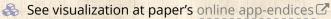
Dodds et al., Physical Review E, 95, 052301, 2017. [5]





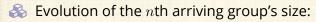

Pocs @pocsvox

Power-Law Mechanisms, Pt. 3


Rich-Get-Richer Mechanism

Simon's Model

Catchphrases First Mover Advantage



Alternate analysis:

$$\left\langle S_{n,\,t+1} - S_{n,\,t} \right\rangle = (1 - \rho_t) \cdot \frac{S_{n,\,t}}{t} \cdot (+1).$$

 \clubsuit For $t \geq t_n^{\text{init}}$, fix $\rho_t = \rho$ and shift t to t-1:

$$S_{n,t} = \left[1 + \frac{(1-\rho)}{t-1}\right] S_{n,t-1}.$$

where $S_{n,t_n^{\text{init}}} = 1$.


PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases

First Mover Advantage

Betafication ensues:

$$\begin{split} S_{n,t} &= \left[1 + \frac{(1-\rho)}{t-1}\right] \left[1 + \frac{(1-\rho)}{t-2}\right] \cdots \left[1 + \frac{(1-\rho)}{t_n^{\mathsf{init}}}\right] \cdot 1 \\ &= \left[\frac{t+1-\rho}{t-1}\right] \left[\frac{t-\rho}{t-2}\right] \cdots \left[\frac{t_n^{\mathsf{init}}+1-\rho}{t_n^{\mathsf{init}}}\right] \\ &= \frac{\Gamma(t+1-\rho)\Gamma(t_n^{\mathsf{init}})}{\Gamma(t_n^{\mathsf{init}}+1-\rho)\Gamma(t)} \\ &= \frac{B(t_n^{\mathsf{init}},1-\rho)}{B(t,1-\rho)}. \end{split}$$

Pocs @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases First Mover Advantage

The first mover is really different:

 \Re The issue is t_n^{init} in

$$S_{n,t} = \frac{\mathbf{B}(t_n^{\mathsf{init}}, 1 - \rho)}{\mathbf{B}(t, 1 - \rho)}$$

- \clubsuit For n > 2 and $\rho \ll 1$, the nth group typically arrives at $t_n^{\text{init}} \simeq \left[\frac{n-1}{n}\right]$
- \Re But $t_1^{\text{init}} = 1$ and the scaling is distinct in form.
- Simon missed the first mover by working on the size distribution.
- & Contribution to $P_{k,t}$ of the first element vanishes as $t \to \infty$.
- Note: Does not apply to Barabási-Albert model.

Pocs @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model

First Mover Advantage

Variability:

 $\ref{eq:sigma}$ The probability that the nth arriving group, if of size $S_{n,t}=k$ at time t, first replicates at time $t+\tau$:

$$\begin{split} & \Pr \big(S_{n,\,t+\tau} = k+1 \,|\, S_{n,\,t+i} = k \text{ for } i = 0,\dots,\tau-1 \big) \\ & = \prod_{i=0}^{\tau-1} \left[1 - (1-\rho)\frac{k}{t+i} \right] \cdot (1-\rho)\frac{k}{t+\tau} \\ & = k \frac{B(\tau,t)}{B\left(\tau,t-(1-\rho)\right)} \frac{1-\rho}{t+\tau} \propto \frac{\tau^{-(1-\rho)k}}{t+\tau} \sim \tau^{-(2-\rho)k}. \end{split}$$

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model

Analysis Words Catchphrases

First Mover Advantage
References

Related papers:

"Organization of Growing Random Networks"

Krapivsky and Redner, Phys. Rev. E, **63**, 066123, 2001. [7]

"The first-mover advantage in scientific publication"

M. E. J. Newman, Europhysics Letters, **86**, 68001, 2009. [11] PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases First Mover Advantage

Related papers:

"Prediction of highly cited papers" M. E. J. Newman, Europhysics Letters, 105, 28002, 2014. [12]

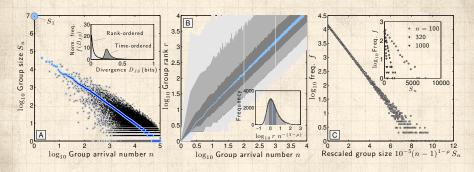
"The effect of the initial network configuration on preferential attachment"

Berset and Medo, The European Physical Journal B, 86, 1-7, 2013.[3]

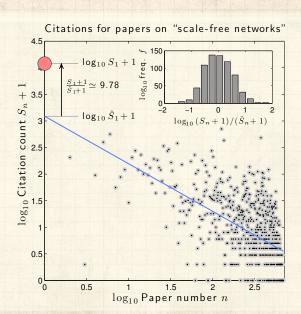
Pocs @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism


Simon's Model

Catchphrases First Mover Advantage



Arrival variability:

- Any one simulation shows a high amount of disorder.
- Two orders of magnitude variation in possible rank.
- Rank ordering creates a smooth Zipf distribution.
- Size distribution for the nth arriving group show exponential decay.

Self-referential citation data:

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases First Mover Advantage

References

9 a € 50 of 56

More mattering:

Rich-get-richerness in social contagion:

- & We love to rank everyone, everything: Top n lists.
- People, wealth, sports, music, movies, books, schools, cities, countries, dogs (13/10) ☑, ...
- Gameable: payola ☑, astroturfing ☑, sockpuppetry ☑, John Barron ☑ (the sockpuppet hype man ☑), ...
- Black-box ranking algorithms make ranking opaque.
- Black boxes are gameable but takes money and commensurate skill.
- Black box algorithms can make things spread rampantly.¹
- No "regramming" is a positive feature of Instagram (also: Pratchett the Cat ☑)
- Nhat if a healthier Facebook is just ...

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism Simon's Model Analysis

Catchphrases
First Mover Advantage
References

9 Q € 51 of 56

References I

- [1] F. Auerbach.Das gesetz der bevölkerungskonzentration.Petermanns Geogr. Mitteilungen, 59:73–76, 1913.
- [2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–511, 1999. pdf

 ☐
- [3] Y. Berset and M. Medo.

 The effect of the initial network configuration on preferential attachment.

 The European Physical Journal B, 86(6):1–7, 2013.

 pdf
- [4] D. J. de Solla Price.

 Networks of scientific papers.

 Science, 149:510–515, 1965. pdf

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Analysis Words Catchphrases First Mover Advantage

References II

@pocsvox Power-Law Mechanisms, Pt. 3

Pocs

[5] P. S. Dodds, D. R. Dewhurst, F. F. Hazlehurst, C. M. Van Oort, L. Mitchell, A. J. Reagan, J. R. Williams, and C. M. Danforth. Simon's fundamental rich-get-richer model entails a dominant first-mover advantage.

Physical Review E, 95:052301, 2017. pdf

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage

References

[6] J.-B. Estoup.

Gammes sténographiques: méthode et exercices pour l'acquisition de la vitesse.

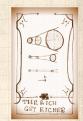
Institut Sténographique, 1916.

THE RICHER

References III

[10] B. B. Mandelbrot.

pdf


- [8] P. Krugman.
 The Self-Organizing Economy.
 Blackwell Publishers, Cambridge, Massachusetts, 1996.
- [9] A. J. Lotka. The frequency distribution of scientific productivity. Journal of the Washington Academy of Science, 16:317–323, 1926.
- An informational theory of the statistical structure of languages.
 In W. Jackson, editor, Communication Theory, pages 486–502. Butterworth, Woburn, MA, 1953.

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage

References IV

[11] M. E. J. Newman.

The first-mover advantage in scientific publication.

Europhysics Letters, 86:68001, 2009. pdf

[12] M. E. J. Newman.

Prediction of highly cited papers.

Europhysics Letters, 105:28002, 2014. pdf

[13] D. D. S. Price.

A general theory of bibliometric and other cumulative advantage processes.

Journal of the American Society for Information Science, pages 292–306, 1976. pdf

[14] H. A. Simon.

On a class of skew distribution functions.

Biometrika, 42(3-4):425-440, 12 1955. pdf 2

PoCS @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases
First Mover Advantage

References

2 0 0 55 of 56

References V

Pocs @pocsvox

Power-Law Mechanisms, Pt. 3

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases First Mover Advantage

References

20 0 56 of 56

[15] G. U. Yule.

A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Phil. Trans. B, 213:21-87, 1925. pdf

[16] G. K. Zipf.

Human Behaviour and the Principle of Least-Effort.

Addison-Wesley, Cambridge, MA, 1949.