Properties of Complex Networks

Last updated: 2021/10/06, 20:25:47 EDT

Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021–2022 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks

> problem egree distribution ssortativity

Concurrency Branching ratios Network distances

Interconnectedne

Nutshell

Motifs

These slides are brought to you by:

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Motifs Concurrency

Branching ratios Network distances Interconnectedness

Nutshell

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks A problem Degree distributions Assortativity Clustering Motifs Concurrency Branching ratios Network distances Interconnectedness

Nutshell

References

99 € 3 of 41

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering

Motifs

Concurrency

Branching ratios

Network distances

Interconnectedness

Nutshell

References

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem

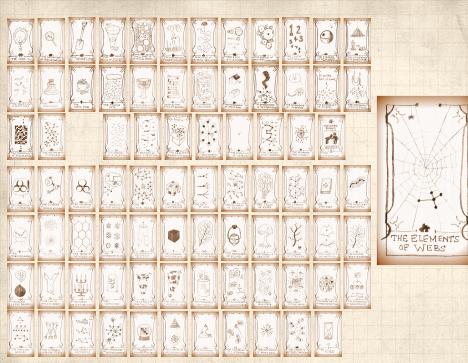
Degree distributions

Assortativity

Clustering Motifs Concurrency

Branching ratios
Network distances

Nutshell



A notable feature of large-scale networks:

Graphical renderings are often just a big mess.

← Typical hairball

- \bigcirc number of nodes N = 500
- number of edges m = 1000
- \bigcirc average degree $\langle k \rangle$ = 4

And even when renderings somehow look good: "That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way" said Ponder [Stibbons] — Making Money, T. Pratchett.

We need to extract digestible, meaningful aspects.

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks Aproblem Degree distributions

Clustering
Motifs
Concurrency

Branching ratios Network distances nterconnectedness

Nutshell References

Some key aspects of real complex networks:

& degree distribution*

assortativity

A homophily

clustering

motifs

modularity

concurrency

hierarchical scaling

network distances

centrality

efficiency

interconnectedness

robustness

Plus coevolution of network structure and processes on networks.

* Degree distribution is the elephant in the room that we are now all very aware of...

Pocs @pocsvox

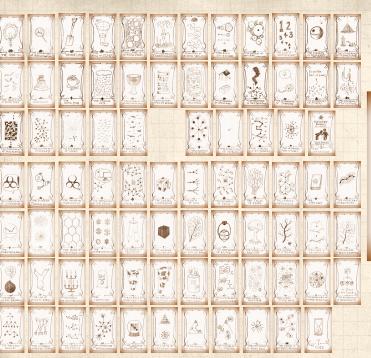
Properties of Complex Networks

Properties of Complex Networks

A problem Degree distributions

Concurrency

Nutshell



1. degree distribution P_k

ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert question from assignment 7 🗷

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

 \Leftrightarrow ex 2: "Scale-free" networks: $P_k \propto k^{-\gamma} \Rightarrow$ 'hubs'.

link cost controls skew.

hubs may facilitate or impede contagion.

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks Aproblem

Degree distributions

Clustering
Motifs
Concurrency
Branching ratios

Nutshell

Note:

- Erdős-Rényi random networks are a mathematical construct.
- 'Scale-free' networks are growing networks that form according to a plausible mechanism.
- Randomness is out there, just not to the degree of a completely random network.

Pocs @pocsvox

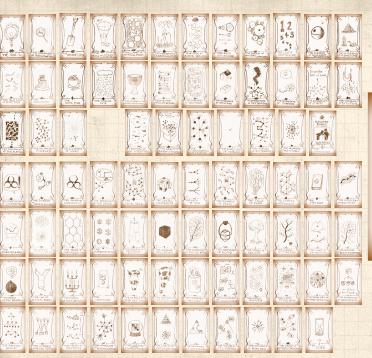
Properties of Complex Networks

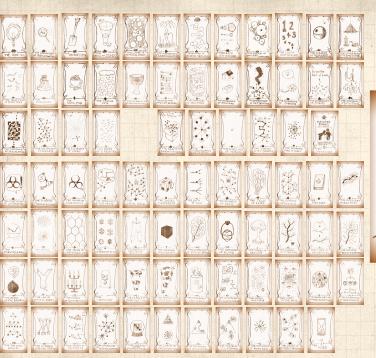
Properties of Complex Networks

Degree distributions

Concurrency

Nutshell

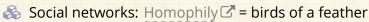




Pocs @pocsvox

Properties of Complex Networks

2. Assortativity/3. Homophily:



e.g., degree is standard property for sorting: measure degree-degree correlations.

Assortative network: [5] similar degree nodes connecting to each other. Often social: company directors, coauthors, actors.

Disassortative network: high degree nodes connecting to low degree nodes. Often techological or biological: Internet, WWW, protein interactions, neural networks, food webs. Properties of Complex Networks

Assortativity

Concurrency

Nutshell

Local socialness:

4. Clustering:



Your friends tend to know each other.

Two measures (explained) on following slides):

1. Watts & Strogatz [8]

$$C_1 = \left\langle \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle_i$$

2. Newman [6]

$$C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$$

Pocs @pocsvox

Properties of Complex Networks

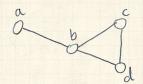
Properties of Complex Networks

Clustering

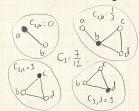
Concurrency

Nutshell

Example network:



Calculation of C_1 :



pairs of neighbors who are connected.

Fraction of pairs of neighbors who are connected is

$$\frac{\sum_{j_1j_2\in\mathcal{N}_i}a_{j_1j_2}}{k_i(k_i-1)/2}$$

where k_i is node i's degree, and \mathcal{N}_i is the set of i's neighbors.

Averaging over all nodes, we have:

$$C_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} = \left\langle \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle_i$$

Pocs @pocsvox

Properties of Complex Networks

Properties of Complex Networks Degree distributions

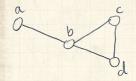
Clustering Motifs

Concurrency

Nutshell

Triples and triangles

Example network:



Triangles:

Triples:

- \mathbb{A} Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .
- Nodes i_1 , i_2 , and i_3 form a triangle if each pair of nodes is connected
 - $Arr The definition <math>C_2 = rac{3 imes \# triangles}{\# triples}$ measures the fraction of closed triples
 - The '3' appears because for each triangle, we have 3 closed triples.
 - Social Network Analysis (SNA): fraction of transitive triples.

Pocs @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Clustering

Concurrency

Interconnectedness

Nutshell

Clustering:

Sneaky counting for undirected, unweighted networks:

 $\begin{cases} \& \end{cases}$ If the path i-j- ℓ exists then $a_{ij}a_{j\ell}=1$.

 $\red {3}$ Otherwise, $a_{ij}a_{j\ell}=0$.

 \clubsuit We want $i \neq \ell$ for good triples.

 $\text{In general, a path of } n \text{ edges between nodes } i_1 \\ \text{and } i_n \text{ travelling through nodes } i_2, i_3, ... i_{n-1} \text{ exists} \\ \Leftrightarrow a_{i_1 i_2} a_{i_2 i_3} a_{i_3 i_4} \cdots a_{i_{n-2} i_{n-1}} a_{i_{n-1} i_n} = 1.$

8

$$\# \mathsf{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \mathsf{Tr} A^2 \right)$$

$$\# {\rm triangles} = \frac{1}{6} {\rm Tr} A^3$$

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem
Degree distributions
Assortativity

Clustering
Motifs
Concurrency
Branching ratios

Network distances nterconnectedness

Nutshell

- & For sparse networks, C_1 tends to discount highly connected nodes.
- $Rackappa C_2$ is a useful and often preferred variant
- \clubsuit In general, $C_1 \neq C_2$.
- \mathcal{L}_1 is a global average of a local ratio.
- & C_2 is a ratio of two global quantities.

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks

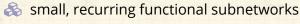
Assortativity

Clustering Motifs

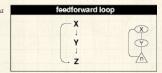
Concurrency Branching ratios Network distances

Nutshell

5. motifs:



🙈 e.g., Feed Forward Loop:



Shen-Orr, Uri Alon, et al. [7]

Pocs @pocsvox

Properties of Complex Networks

Properties of Complex Networks Degree distributions

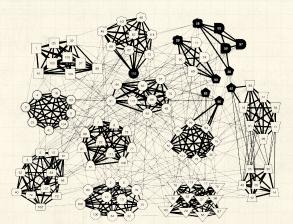
Motifs

Concurrency

Branching ratios Network distances Interconnectedness

Nutshell

6. modularity and structure/community detection:



Clauset et al., 2006 [2]: NCAA football

PoCS @pocsvox

Properties of Complex Networks

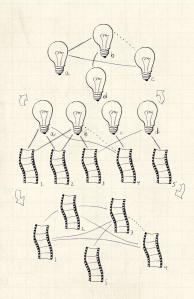
Properties of Complex Networks A problem Degree distributions

Motifs

Concurrency Branching ratios Network distances Interconnectedness

Nutshell

Bipartite/multipartite affiliation structures:



Many real-world networks have an underlying multi-partite structure.

- Stories-tropes.
- Boards and directors.
- Films-actorsdirectors.
- Classes-teachersstudents.
- Upstairsdownstairs.
- Unipartite networks may be induced or co-exist.

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem
Degree distributions
Assortativity
Clustering

Motifs

Branching ratios Network distances Interconnectedness

Nutshell

7. concurrency:

- transmission of a contagious element only occurs during contact
- 🙈 rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- & knowledge of previous contacts crucial
- 🙈 beware cumulated network data
- & Kretzschmar and Morris, 1996 [4]
- "Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

PoCS @pocsvox

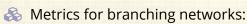
Properties of Complex Networks

Properties of Complex Networks A problem Degree distributions Assortativity

Motifs
Concurrency
Branching ratios
Network distances
Interconnectedness

Nutshell

8. Horton-Strahler ratios:



Method for ordering streams hierarchically

Number: $R_n = N_{\omega}/N_{\omega+1}$

Segment length: $R_l = \langle l_{\omega+1} \rangle / \langle l_{\omega} \rangle$

ightharpoonup Area/Volume: $R_a = \langle a_{\omega+1} \rangle / \langle a_{\omega} \rangle$

Pocs @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Concurrency

Branching ratios

Nutshell

9. network distances:

(a) shortest path length d_{ij} :

& Fewest number of steps between nodes i and j.

 \Re (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:

Average shortest path length in whole network.

Good algorithms exist for calculation.

Weighted links can be accommodated.

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks A problem Degree distributions Assortativity Clustering Motifs

Network distances Interconnectednes

Concurrency

Nutshell

Pocs @pocsvox

Properties of Complex Networks

9. network distances:

 \clubsuit network diameter d_{max} : Maximum shortest path length between any two nodes.

- \Leftrightarrow closeness $d_{cl} = [\sum_{ij} d_{ij}^{-1} / {n \choose 2}]^{-1}$: Average 'distance' between any two nodes.
- Closeness handles disconnected networks $(d_{ij} = \infty)$
- $d_{cl} = \infty$ only when all nodes are isolated.
- Closeness perhaps compresses too much into one number

Properties of Complex Networks

Concurrency

Network distances

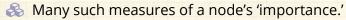
Nutshell

Pocs @pocsvox

Properties of Complex Networks

Properties of

10. centrality:



- \Leftrightarrow ex 1: Degree centrality: k_i .
- ex 2: Node i's betweenness. = fraction of shortest paths that pass through i.
- ex 3: Edge ℓ's betweenness = fraction of shortest paths that travel along ℓ .
- ex 4: Recursive centrality: Hubs and Authorities (Ion Kleinberg [3])

Complex Networks

Concurrency Network distances

Nutshell

Interconnected networks and robustness (two for one deal):

"Catastrophic cascade of failures in interdependent networks" [1]. Buldyrev et al., Nature 2010.

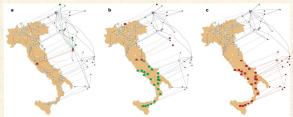


Figure 1 | Modelling a blackout in Italy, Illustration of an iterative process of a cascade of failures using real-world data from a power network (located on the map of Italy) and an Internet network (shifted above the map) that were implicated in an electrical blackout that occurred in Italy in September 200320. The networks are drawn using the real geographical locations and every Internet server is connected to the geographically nearest power station, a. One power station is removed (red node on map) from the power network and as a result the Internet nodes depending on it are removed from the Internet network (red nodes above the map). The nodes that will be disconnected from the giant cluster (a cluster that spans the entire network

at the next step are marked in green, b. Additional nodes that were disconnected from the Internet communication network giant component are removed (red nodes above map). As a result the power stations depending on them are removed from the power network (red nodes on map). Again, the nodes that will be disconnected from the giant cluster at the next step are marked in green. c, Additional nodes that were disconnected from the giant component of the power network are removed (red nodes on map) as well as the nodes in the Internet network that depend on them (red nodes above map).

@pocsvox

Properties of Complex Networks

Properties of Complex Networks

Network distances

Interconnectedness

Nutshell

Nutshell:

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- Three main (blurred) categories:
 - 1. Physical (e.g., river networks),
 - 2. Interactional (e.g., social networks),
 - 3. Abstract (e.g., thesauri).

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distribution Assortativity Clustering Motifs

Concurrency Branching ratios Network distances Interconnectednes

Nutshell

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Assortativity Clustering

Motifs

Concurrency

Branching ratios Network distances

Interconnectedness

Nutshell

scale-free-networks,

References I

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin. Catastrophic cascade of failures in interdependent networks. Nature, 464:1025–1028, 2010. pdf

[2] A. Clauset, C. Moore, and M. E. J. Newman. Structural inference of hierarchies in networks, 2006. pdf

[3] J. M. Kleinberg.
Authoritative sources in a hyperlinked environment.

Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf♂

PoCS @pocsvox

Properties of Complex Networks

Properties of Complex Networks A problem

> ustering otifs

Network distance

Nutshell

References II

[4] M. Kretzschmar and M. Morris. Measures of concurrency in networks and the spread of infectious disease. Math. Biosci., 133:165-95, 1996. pdf

[5] M. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701, 2002. pdf

- [6] M. E. J. Newman. The structure and function of complex networks. SIAM Rev., 45(2):167-256, 2003. pdf
- [7] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31:64-68, 2002. pdf

Pocs @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Concurrency

Nutshell

References III

[8] D. J. Watts and S. J. Strogatz.

Collective dynamics of 'small-world' networks.

Nature, 393:440–442, 1998. pdf

✓

PoCS @pocsvox

Properties of Complex Networks

Properties of

Complex Networks A problem Degree distributions Assortativity

Motifs
Concurrency
Branching ratios
Network distances

Nutshell

