Properties of Complex Networks

Last updated: 2021/10/06, 23:35:55 EDT

Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021-2022 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

000

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

120	191
200	191

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of

Complex

Networks

Degree distrib

Clustering

Branching ratio

Nutshell

References

Motifs

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of Complex

Networks

A problem

Clustering

Motifs

Nutshell

References

Outline

Properties of Complex Networks

A problem
Degree distributions
Assortativity
Clustering
Motifs
Concurrency
Branching ratios
Network distances
Interconnectedness

Nutshell

References

A notable feature of large-scale networks:

🚳 Graphical renderings are often just a big mess.

← Typical hairball \bigcirc number of nodes N = 500 \bigcirc number of edges m = 1000 \bigcirc average degree $\langle k \rangle$ = 4

And even when renderings somehow look good: "That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way" said Ponder [Stibbons] - Making Money, T. Pratchett.

We need to extract digestible, meaningful aspects.

Some key aspects of real complex networks:

- Plus coevolution of network structure and processes on networks.
- * Degree distribution is the elephant in the room that we are now all very aware of ...

າຈ	ç	1	of 39

Properties

- $\mathfrak{P}_{l_{k}}$ is the probability that a randomly selected node has degree k.
- k = node degree = number of connections.
- 🚓 ex 1: Erdős-Rényi random networks have Poisson degree distributions: Insert question from assignment 7 🗹

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

- $R_{\rm ex}$ ex 2: "Scale-free" networks: $P_{\rm ex} \propto k^{-\gamma} \Rightarrow$ 'hubs'.
- link cost controls skew.
- litate or impede contagion.

(I) (S • n q (→ 2 of 39

PoCS

@pocsvox

Networks

Branching ratio

Nutshell

0

References

A problem

Properties of

Properties

Note:

- 🗞 Erdős-Rényi random networks are a *mathematical* construct.
- Scale-free' networks are growing networks that form according to a plausible mechanism.
- 🗞 Randomness is out there, just not to the degree of a completely random network.

Properties

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of

A problem Degree distribution

Complex

Networks

Assortativity

Clustering

Branching ratios Network distance

Nutshell

References

(m) [8]

PoCS

@pocsvox

Complex

Networks

Properties of

Degree distribution

Branching ratio

Interconnectedne

Nutshell

References

(III)

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of

Degree distributions Assortativity Clustering

Branching ratios Network distances

Nutshell

Complex

Networks

Motifs

Complex

Networks

Properties of

୬ ବ. ୦୦ f 39

Motifs

2. Assortativity/3. Homophily:

Local socialness:

Example network:

h

Calculation of C_1 :

C1 1=1

C.

4. Clustering:

- Social networks: Homophily I = birds of a feather
- e.g., degree is standard property for sorting: measure degree-degree correlations.
- Assortative network: ^[5] similar degree nodes connecting to each other. Often social: company directors, coauthors, actors.
- Disassortative network: high degree nodes connecting to low degree nodes.
- Often techological or biological: Internet, WWW, protein interactions, neural networks, food webs.

00

PoCS @pocsvox Properties of Complex Networks

Properties of Complex Networks Degree distri Clustering Motifs Concurrency Branching ratio Interconnectedn

References

00 ୬ ବ 🕫 16 of 39

PoCS

Properties of

Networks

Degree distri

Clustering

(in |

@pocsvox $\bigotimes C_1$ is the average fraction of Properties of Complex pairs of neighbors who are Networks connected.

 $\frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$

where k_i is node *i*'s degree, Nutshell and \mathcal{N}_i is the set of *i*'s References neighbors.

Averaging over all nodes, we have:

 $C_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} =$ $\frac{\sum_{j_1j_2\in\mathcal{N}_i}a_{j_1j_2}}{k_i(k_i-1)/2}$

•ጋ < C • 10 of 39

each other. 🚳 Two measures (explained on following slides): 1. Watts & Strogatz^[8] $C_1 = \left\langle \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right.$

A Your friends tend to know

Nutshell

References

PoCS @pocsvo> Properties of Complex Networks

Properties of

Networks

Assortativity

Motifs

Degree distribut

Branching ratios Network distance

Interconnectedne

Nutshell

A problem

1. degree distribution P_k

わへで 5 of 39

Complex Networks Properties o

Triples and triangles

Example network:

Triangles:

Triples:

 \bigotimes Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 . \mathbf{R} Nodes i_1, i_2 , and i_3 form a triangle if each pair of nodes is connected \clubsuit The definition $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triangles}}$ measures the fraction of closed triples

The '3' appears because for each triangle, we have 3 closed triples.

Social Network Analysis (SNA): fraction of transitive triples.

Clustering:

Sneaky counting for undirected, unweighted networks:

- \bigotimes If the path *i*-*j*- ℓ exists then $a_{ij}a_{j\ell} = 1$.
- \bigotimes Otherwise, $a_{ij}a_{j\ell} = 0$.

Los 10-200

- \bigotimes We want $i \neq \ell$ for good triples.
- \Re In general, a path of *n* edges between nodes i_1 and i_n travelling through nodes i_2 , i_3 , ... i_{n-1} exists $\iff a_{i_1i_2}a_{i_2i_3}a_{i_3i_4}\cdots a_{i_{n-2}i_{n-1}}a_{i_{n-1}i_n} = 1.$

8

 $\# \text{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \text{Tr}A^2 \right)$

8

#triangles $=\frac{1}{6}$ Tr A^3

Properties

- \mathcal{R} For sparse networks, C_1 tends to discount highly connected nodes.
- \mathcal{C}_2 is a useful and often preferred variant
- \bigotimes In general, $C_1 \neq C_2$.
- $\bigotimes C_1$ is a global average of a local ratio.
- $\bigotimes C_2$ is a ratio of two global quantities.

Properties

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of Complex

Networks

Clustering

Nutshell

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of

Complex

Networks

Degree distrib

Clustering Motifs Concurrency

Nutshell

(I) (S

PoCS

@pocsvox

Complex

Networks

Properties o

Properties of Complex Networks

A problem Degree distribu

Clustering Motifs

Branching ratios Network distances

References

୍ଲା 👸

୬ ଏ ୯୦ 19 of 39

References

Branching ratio

References

5. motifs:

- small, recurring functional subnetworks
- 🚳 e.g., Feed Forward Loop:


```
Shen-Orr, Uri Alon, et al. [7]
```

00 • 𝔍 𝔄 18 of 39

Properties

6. modularity and structure/community detection:

Clauset et al., 2006 [2]: NCAA football

Bipartite/multipartite affiliation structures:

🚳 Many real-world networks have an underlying multi-partite structure.

🗊 Stories-tropes. Boards and

- directors. 🗊 Films-actorsdirectors.
- Classes-teachersstudents. 🗊 Upstairs-

🚳 Unipartite networks may be induced or co-exist.

Properties

7. concurrency:

- transmission of a contagious element only occurs during contact
- line a simple model should be a simple model in a simple model in
- & dynamic property—static networks are not enough
- line with the second se
- 🙈 beware cumulated network data

8. Horton-Strahler ratios:

9. network distances:

j.)

(a) shortest path length d_{ij} :

Metrics for branching networks:

Number: $R_n = N_{\omega}/N_{\omega+1}$

Segment length: $R_l = \langle l_{\omega+1} \rangle / \langle l_{\omega} \rangle$

Area/Volume: $R_a = \langle a_{\omega+1} \rangle / \langle a_{\omega} \rangle$

- 🗞 Kretzschmar and Morris, 1996^[4]
- "Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

Method for ordering streams hierarchically

(III) ୬ ବ 🕫 22 of 39

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of Complex

Degree distribution

Networks

Assortativity

Clustering

Motifs Concurrency

Nutshell

References

Branching ratios Network distance

A problem

PoCS Properties @pocsvox Properties of

Complex Networks

Properties of Complex Networks A problem Degree distrib Motifs Concurrency Branching ratio Nutshell References

(III) ∙∕) q (२ 23 of 39

PoCS Properties @pocsvox

Properties of Complex Networks

Properties of Complex Networks Degree distrib Assortativity Clustering Motifs Concurrency Branching ratio

Nutshell References

(III)

• ୨ < C+ 24 of 39

downstairs.

PoCS

@pocsvox Properties of Complex Networks

Properties of Complex Networks Degree distri Motifs Branching ratios Nutshell

References

() ()

• 𝔍 𝔄 28 of 39

PoCS @pocsvox Properties of Complex Networks

Properties of Networks Degree distri Assortativity Clustering Motifs Concurrency Branching rati Network distances Nutshell References

(b) average path length $\langle d_{ij} \rangle$:

& Fewest number of steps between nodes *i* and *j*.

& (Also called the chemical distance between *i* and

- Average shortest path length in whole network.
- 🚳 Good algorithms exist for calculation.
- Weighted links can be accommodated.

PoCS @pocsvo> Properties of Complex Networks

Properties of Networks A problem Clustering Motifs Concurrency Branching ratios Network distance Interconnectedne Nutshell References

(III)

୬ ବ 🗠 26 of 39

Properties

- 9. network distances:
- \clubsuit network diameter d_{max} : Maximum shortest path length between any two nodes.
- \bigotimes closeness $d_{cl} = [\sum_{ij} d_{ij}^{-1} / \binom{n}{2}]^{-1}$: Average 'distance' between any two nodes.
- Closeness handles disconnected networks $(d_{ij} = \infty)$
- $d_{\rm cl} = \infty$ only when all nodes are isolated.
- loseness perhaps compresses too much into one number

(I) (S

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of

Complex

A problem

Motifs

Networks

Degree distrib

Branching rat

Nutshell

References

(in 18

PoCS

わく(~ 32 of 39

Network distances

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of Complex

Networks

A problem

Assortativity

Concurrency

Network distances

Nutshell

References

Motifs

Pro	pert	ies	

10. centrality:

- Many such measures of a node's 'importance.'
- \bigotimes ex 1: Degree centrality: k_i .
- solution ex 2: Node *i*'s betweenness = fraction of shortest paths that pass through *i*.
- Sector Secto = fraction of shortest paths that travel along ℓ .
- 🗞 ex 4: Recursive centrality: Hubs and Authorities (Ion Kleinberg^[3])

Properties

Interconnected networks and robustness (two for one deal):

"Catastrophic cascade of failures in interdependent networks"^[1]. Buldyrev et al., Nature 2010.

@pocsvox	
Properties of Complex Networks	References I
Properties of Complex Networks A problem Degree distributions Assortativity Clustering Motifs Consurrency Consurrency Branching ratios Network distances Interconnectedness Nutshell	 [1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin. Catastrophic cascade of failures in interdependent networks. <u>Nature</u>, 464:1025–1028, 2010. pdf ^[2] [2] A. Clauset, C. Moore, and M. E. J. Newman. Structural inference of hierarchies in networks,
References	2006. pdf 🖾
2	 [3] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998, pdf (2)
New IOI	
• 𝔍 𝔄 34 of 39	

scale-free-networks,

Nutshell:

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- line that the second se systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- Three main (blurred) categories:
 - 1. Physical (e.g., river networks),
 - 2. Interactional (e.g., social networks),
 - 3. Abstract (e.g., thesauri).

References II

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of Complex

Degree distribution

Networks

A problem

Assortativity

Concurrency

Branching ratios Network distances

Interconnectedne

Nutshell

References

PoCS

@pocsvox

Complex

Networks

Properties of

Properties of

Complex

Networks

Degree distri

Clustering

Branching ratio

Motifs

A problem

• ୨ < . ↔ 35 of 39

Motifs

- Properties of Complex [4] M. Kretzschmar and M. Morris. Networks Measures of concurrency in networks and the Properties of spread of infectious disease. Complex Networks Math. Biosci., 133:165–95, 1996. pdf 🗷 A problem Degree distributi Assortativity [5] M. Newman. Clustering Motifs Assortative mixing in networks. Branching ratios Network distance Phys. Rev. Lett., 89:208701, 2002. pdf [6] M. E. J. Newman. The structure and function of complex networks. SIAM Rev., 45(2):167–256, 2003. pdf [7] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31:64–68, 2002. pdf PoCS References III @pocsvox Clustering [8] D. J. Watts and S. J. Strogatz.
 - Collective dynamics of 'small-world' networks. Nature, 393:440-442, 1998. pdf

Nutshell References

00 ୬ ଏ ୯୦ 39 of 39

(in 19 • n q (→ 37 of 39

PoCS @pocsvox Properties of Complex Networks

> Properties of Complex

Networks Degree distr Motifs Branching ratio Nutshell References

(in |

Interconnectedn Nutshell References

PoCS

@pocsvo>

00 わ < C+ 38 of 39

> Properties of Complex Networks

Properties of Complex Networks Degree distri Motifs Branching ratio Interconnected

Nutshell References