Linguistic Pollyanna Principle: The positivity bias of language

Last updated: 2021/10/26, 23:43:27 EDT

Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021-2022 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License

Outline

Pollyanna Principle

English is happy

10 languages

Extras

Corpora Text parsing Corpus generation

References

"Human language reveals a universal positivity bias"

Dodds et al.,

Proc. Natl. Acad. Sci., 112, 2389-2394, 2015. [2]

PoCS @pocsvox

Pollyanna

English is happy

10 languages

References

W | |

PoCS

@pocsvox

Pollvanna

Pollyanna

English is happy

10 languages

References

WW |8

PoCS

@pocsvox

Pollvanna

Principle

Pollyanna Principle

English is happy

10 languages

References

Extras

◆) < (→ 2 of 54

Extras

Principle

少 Q (~ 1 of 54

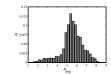
Extras

- Stories we tell about how we should/could/must behave vary enormously. Pollyanna Principle
 - Jainism to Rand's Objectivism.

Basic observations:

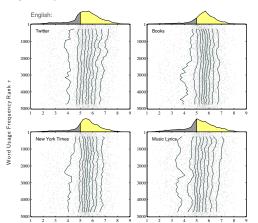
- Language is our great social technology.
- And we convey stories through language.

Basic question:


Who are we?

What's the distribution of emotional content of the atoms of

Data we've generated:

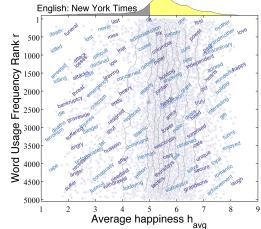

- English plus nine other languages.
- Key: incorporate word usage frequency (= size).

English's scale-invariant, positive bias: [8]

- Social organism story manifested in language.
- Pollyanna Hypothesis: Interactions are predominantly positive
- Positive anchor of concepts: Unhappy but not unsad.
- Many ways for things to go wrong: "All happy families are alike; each unhappy family is unhappy in its own
- & Guns, Germs, and Steel [1] invokes the Anna Karenina Principle 2
- But: must account for frequency of word usage ...

Jellyfish plots:

@pocsvox Pollyanna Pollyanna Principle


PoCS

English is happy

10 languages

References

Extras

@pocsvox Pollyanna

Pollyanna Principle

English is happy

10 languages

Extras

References

UIM

少 Q (~ 7 of 54

@pocsvox Pollvanna Principle

Pollyanna Principle

UIN O

PoCS

少 < ℃ 4 of 54

English is happy 10 language

Extras

References

UIN S

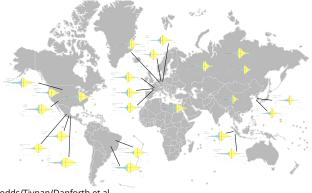
PoCS

@pocsvox

Pollvanna

Pollyanna Principle

English is happy


10 languages

Extras

Text parsing

References

◆) q (> 5 of 54

Dodds/Tivnan/Danforth et al., Proc. Natl. Acad. Sci. 2015, "Human language reveals a universal positivity bias." $^{[2]}$ Global press including National Geographic Top 100 altmetric article, 2015 ☑

Good buzz according to Altmetric ... (report is no longer findable):

As of May 7, 2015:

Altmetric Score: 772.

Ranked 3rd out of 933 articles published in PNAS surrounding 12 weeks.

Ranked 24nd out of 34,050 articles in PNAS all time. (Mean score 13.5.)

Ranked 60th out of all 109,841 tracked articles published in surrounding 12 weeks.

Ranked 459th out of 3,724,005 tracked articles all time.

This doesn't mean it's a good article ... but it is.

Pollvanna

Pollyanna Principle

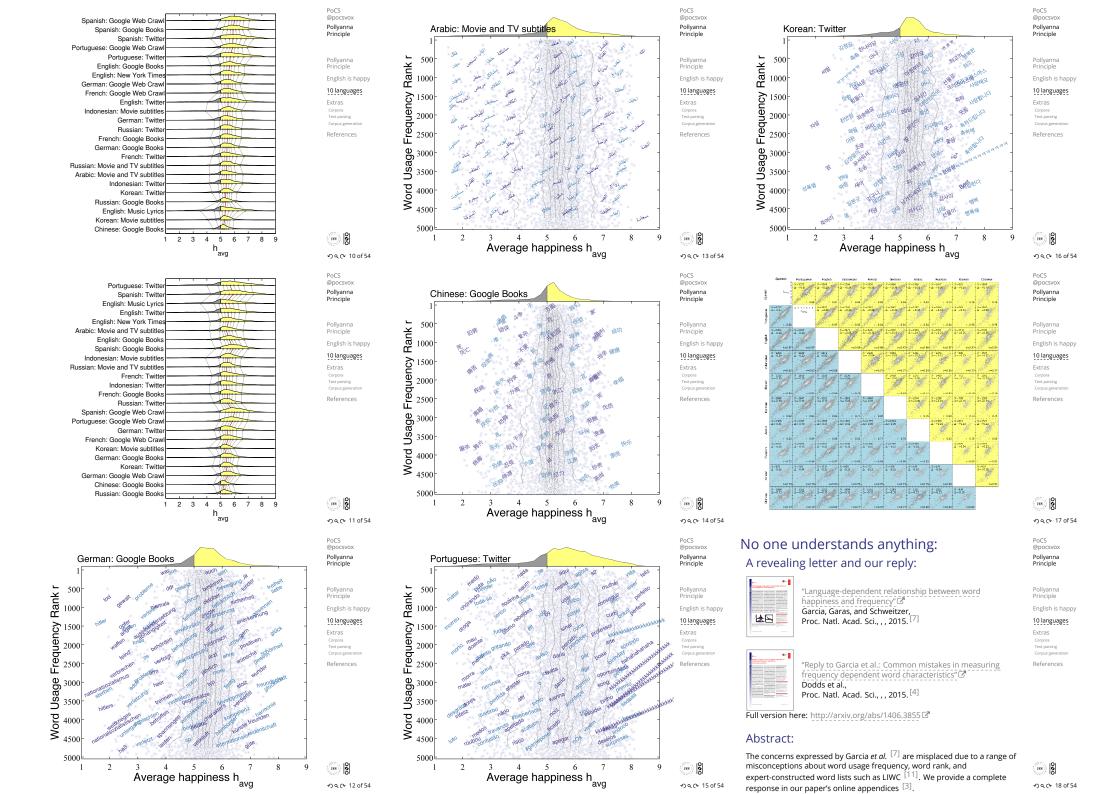
English is happy

10 languages

Extras

References

UM S


WW |

•9 a (~ 3 of 54

Average happiness h_{avg}

UIN S 少 Q (~ 6 of 54

少 Q (~ 9 of 54

LIWC function words are not neutral:

- \ll "greatest" (h_{avg} =7.26),
- & "best" (h_{avg} =7.26),
- * "unique" (h_{avg} =6.98),
- \mathfrak{A} "negative" (h_{avg} =2.42),
- & "worst" (h_{avg} =2.10).

Common scientific sense for text analysis:

Always look at the words.

More LIWC function words:

Neutral

been

other 5.04

theyre

some

where 5.02

themselves

quarterly

hecause

whereas

til 5.00

the 4.98

part

its 4.96

rather 4.98

when 4.96

perhaps

into 5.04

5.04

5.02

5.02

5.02

5.02

5.02

5.02

5.00

5.00

4.98

4.98

4.98

4.98

4.96

4.96

4 94

Low

not 3.86

none 3.84

haven't

fewer

lacking

won't

wasnt

dont 3.70

don't

down 3.66

nobody

doesn't

couldnt

without

cant

zero

against

never 3.34

lack 3.16

worst 2 10

cannot

negative

wouldn't

3.84

3.82

3.78

3.72

3.71

3.70

3.70

3.70

3.64

3.62

3.58

3.54

3.48 3.48

3.44

3.40

3.32

2.42

wouldnt

shouldn't

High

billion

million

couple

millions

rest 7.18

best 7 18

greatest

equality

unique

hopefully

first 6.82

plus 6.76

well 6.68

greater

highly 6.60

done 6 54

extra 6.52

infinite 6.44

simply

egually

sixteen

soon

7.38

7.30

7.26 7.26

7.08

6.98

6.98

6.86

6.84

6.68

6.58

6.42

6.40

6.39

6.38

PoCS

@pocsvox

Pollyanna

Pollyanna Principle

English is happy

10 languages

Extras

•9 q (> 19 of 54

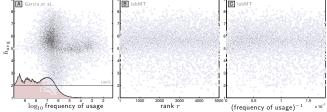
PoCS @pocsvox Pollvanna

Pollyanna Principle

10 languages

.... |S

Principle


English is happy

References

◆) q (→ 20 of 54

The jellyfish knows:

Scatterplot of h_{avg} as a function of word usage frequency for the English Google Books word list generated by Garcia et al.. Uncontrolled subsampling of lower frequency words yields a lexicon that is not statistically representative of any natural language corpus. The lower curve provides a coarse estimate of cumulative lexicon coverage as a function of usage frequency f using Zipf's law $f_r \sim f_1 r^{-1}$ inverted as $r \sim f_1/f_r$. The rapid drop off begins at around rank 5000, the involved lexicon size for Google Books in labMT [3, 6]. B. and Scatterplot of h_{avg} as a function of rank r for the 5000 words for Google Books contributing to labMT, the basis of our jellyfish plots [3]. **C.** Same data as **B** plotted against f. Linear regression fits for the first two scatterplots are $h_{\mathsf{avg}} \simeq 0.089 \mathsf{log}_{10} f + 4.85$ and

 $h_{\rm avg} \simeq -3.04 \times 10^{-5} \, r + 5.62$ (as reported in [3]). Note difference in signs, and the far weaker trend for the statistically appropriate regression against rank in B. Pearson correlation coefficients: +0.105, -0.042, and -0.043 with p-values 6.15 \times 10⁻²⁶, 3.03 \times 10⁻³ and 2.57 \times 10⁻³. Spearman correlation coefficients: +0.201, -0.013, and -0.013 with p-values 6.37×10⁻⁹², 0.350, and 0.350.

Nutshell:

- Linguistic positivity bias holds for 10 major
- 🚵 Spread across 24 corpora: books, news, social media, movie titles, ...
- Languages and evaluating groups spread around the world.
- Diverse in language origins.

Corpus:

English: Twitter

English: Music lyrics

Portuguese: Twitter

Spanish: Twitter

French: Twitter

Indonesian: Twitter

Russian: Twitter

German: Twitter

Korean: Twitter

English: Google Books Project

English: The New York Times

Portuguese: Google Web Crawl

Spanish: Google Books Project

Spanish: Google Web Crawl

French: Google Web Crawl

French: Google Books Project

Arabic: Movie and TV subtitles

Russian: Google Books Project

Russian: Movie and TV subtitles

German: Google Books Project

Chinese: Google Books Project

Indonesian: Movie subtitles

German: Google Web Crawl

- & Language appears to reflect social, cooperative tendency of people.
- Negative emotion is more variable—must be specific, Tolstoyfully.

Words

5000

5000

5000

5000

7133

7119

7189

7056

6569

6192

9999

7044

6726

6575

5980

6186

6902

6459

6097

6728

Reference(s)

[5]

[?]

[?]

[?]

[?]

[?]

[?]

MITRE

[?]

MITRE

[?]

[?]

[?]

[?]

[?]

MITRE

English is happy 10 languages

Extras

PoCS

@nocsvox

Pollyanna

Pollyanna Principle

References

um |S

◆) q (22 of 54

We used the services of Appen Butler Hill (http://www.appen.com) for all word evaluations excluding English, for which we had earlier employed Mechanical Turk (https://www.mturk.com/ [9]).

English instructions were translated to all other languages and given to participants along with survey questions, and an example of the English instruction page is below. Non-english language experiments were conducted through a custom interactive website built by Appen Butler Hill, and all participants were required to pass a stringent aural proficiency test in their own language.

.... |S

@pocsvox

Pollyanna

Pollyanna Principle

Extras

Corpora Text parsing

References

English is happy

10 languages

26 of 54

PoCS @pocsvox

Pollvanna Principle

Pollyanna Principle

English is happy

10 languages Extras

Corpora

References

UM O

PoCS Pollvanna

Pollyanna Principle

Extras

Text parsing

References

English is happy

10 languages

◆) q (~ 27 of 54

Our overall aim is to assess how people feel about individual words. With this particula

rvey, we are focusing on the dual emotions of sadness and happiness. You are to rat

Please consider each word carefully. If we determine that your ratings are randomly or otherwise inappropriately selected, or that any questions are left unanswered, we may not approve your work. These words were chosen based on their common usage. As a result, a small portion of words may be offensive to some people, written in a different

Before completing the word ratings, we ask that you answer a few short demographic questions. We expect the entire survey to require 10 minutes of your time. Thank you for participating!

- 1. What is your gender? (Male/Female)
- 2. What is your age? (Free text)
- Which of the following best describes your highest achieved education level?
 Some High School, High School Graduate, Some college, no degree, Associate degree, Bachelors degree, Graduate degree (Masters, Doctorate, etc.)
- 4. What is the total income of your household?
- 5. Where are you from originally?
- 6. Where do you live currently?
- 7. Is ______your first language? (Yes/No) If it is not, please specify what your first language is.
- 8. Do you have any comments or suggestions? (Free text)

Of our 24 corpora, we received 17 already parsed by the source: the Google Books Project (6 corpora), the Google Web Crawl (8 corpora), and Movie and TV subtitles (3 corpora). For the other 7 corpora (Twitter, New York Times, and Music Lyrics), we extracted words

by standard white space separation (more on Twitter below). We acknowledge the many complications with inflections and variable orthography. We have found merit in not collapsing related words, which would require a more sophisticated treatment going beyond

the present paper's bounds. Moreover, we have observed that allowing, say, different conjugation of verbs to stand in our corpora is valuable as human

evaluations of such have proved to be distinguishable (e.g., present versus past tense [6]).

29 of 54

Participants' location(s) # of participants | Average words scored US, India German Germany 196 2551 146 Indonesian Indonesia 3425 125 4000 Russian Russia Arabic 185 2703 Egypt French France 179 2793 236 2119 Mexico Portuguese Brazil 208 2404 Simplified Chinese China 128 3906 Korean Korea, US

Number and main country/countries of location for participants evaluating the 10,000 common words for each of the 10 languages we studied. Also recorded is the average number of words evaluated by each participant (rounded to the nearest integer). We note that each word received 50 evaluations from distinct individuals. The English word list was evaluated via Mechanical Turk for our initial study [9]. The nine languages evaluated through Appen-Butler Hill yielded a higher participation rate likely due to better pay and the organization's quality of service.

Twitter was easily the most variable and unruly of our text sources and required additional treatment. We first checked if a string contains at least one valid utf8 letter, discarding if not. Next we filtered out strings containing invisible control characters, as these symbols can be problematic. We ignored all strings that start with < and end with > (generally html code). We ignored strings with a leading @ or &, or either preceded with standard punctuation (e.g., Twitter ID's), but kept hashtags. We also removed all strings starting with www. or http: or end in .com (all websites). We stripped the remaining strings of standard punctuation, and we replaced all double quotes (") by single quotes ('). Finally, we converted all Latin alphabet letters to lowercase.

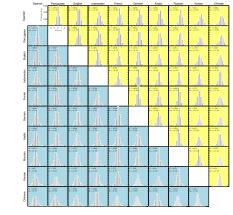
@pocsvox Pollyanna

Pollyanna Principle English is hap 10 language Extras Text parsing

References

.... |S

Pollyanna Principle English is happy 10 languages Extras Text parsing References


.... |S

◆) < (~ 31 of 54 PoCS Pollvanna

•9 < (> 30 of 54 PoCS @pocsvox Pollvanna

		Spanish	Portuguese	English	Indonesian	French	German	Arabic
	Spanish	1.00, 0.00	1.01, 0.03	1.06, -0.07	1.22, -0.88	1.11, -0.24	1.22, -0.84	1.13, -0.22
	Portuguese	0.99, -0.03	1.00, 0.00	1.04, -0.03	1.22, -0.97	1.11, -0.33	1.21, -0.86	1.09, -0.08
арру	English	0.94, 0.06	0.96, 0.03	1.00, 0.00	1.13, -0.66	1.06, -0.23	1.16, -0.75	1.05, -0.10
	Indonesian	0.82, 0.72	0.82, 0.80	0.88, 0.58	1.00, 0.00	0.92, 0.48	0.99, 0.06	0.89, 0.71
es	French	0.90, 0.22	0.90, 0.30	0.94, 0.22	1.09, -0.52	1.00, 0.00	1.08, -0.44	0.99, 0.12
	German	0.82, 0.69	0.83, 0.71	0.86, 0.65	1.01, -0.06	0.92, 0.41	1.00, 0.00	0.91, 0.61
	Arabic	0.88, 0.19	0.92, 0.08	0.95, 0.10	1.12, -0.80	1.01, -0.12	1.10, -0.68	1.00, 0.00
	Russian	0.76, 0.88	0.80, 0.75	0.83, 0.75	0.98, -0.04	0.89, 0.45	0.93, 0.24	0.89, 0.56
ion	Korean	0.62, 1.70	0.62, 1.81	0.66, 1.67	0.77, 1.17	0.73, 1.37	0.78, 1.12	0.71, 1.53
	Chinese	0.63, 1.46	0.63, 1.51	0.68, 1.43	0.75, 1.07	0.71, 1.26	0.76, 1.03	0.70, 1.41

Reduced Major Axis (RMA) regression fits for row language as a linear function of the column language: $h_{\text{avg}}^{\text{(row)}}(w) = m h_{\text{avg}}^{\text{(column)}}(w) + c$ where w indicates a translation-stable word. Each entry in the table contains the coefficient pair m and c. We use RMA regression, also known as Standardized Major Axis linear regression, because of its accommodation of errors in

Pollyanna Principle

English is happy

@pocsvox

Pollyanna

10 languages

Extras

Corpus generatio References

Histograms of the change in average happiness for translation-stable words between each language pair. The largest deviations correspond to strong changes in a word's perceived primary meaning (e.g., 'lying' and 'acostado'). The inset quantities are N, the number of translation-stable words, and Δ is the average difference in translation-stable word happiness between the row language and column language.

•> < ○ 37 of 54

Tokenization	example:

Term	count			
love	10			
LoVE	5		Term	count
love!	2		love	19
#love	3	\rightarrow	#love	3
.love	2		love87	1
@love	1			
love87	1			

The term '@love' is discarded, and all other terms map to either 'love' or 'love87'.

	Spanish	Portuguese	English	Indonesian	French	German	Arabic	Russian
Spanish	1.00	0.89	0.87	0.82	0.86	0.82	0.83	0.73
Portuguese	0.89	1.00	0.87	0.82	0.84	0.81	0.84	0.84
English	0.87	0.87	1.00	0.88	0.86	0.82	0.86	0.87
Indonesian	0.82	0.82	0.88	1.00	0.79	0.77	0.83	0.85
French	0.86	0.84	0.86	0.79	1.00	0.84	0.77	0.84
German	0.82	0.81	0.82	0.77	0.84	1.00	0.76	0.80
Arabic	0.83	0.84	0.86	0.83	0.77	0.76	1.00	0.83
Russian	0.73	0.84	0.87	0.85	0.84	0.80	0.83	1.00
Korean	0.79	0.79	0.82	0.79	0.79	0.73	0.79	0.80
Chinasa	0.79	0.76	0.81	0.77	0.76	0.74	0.80	0.82

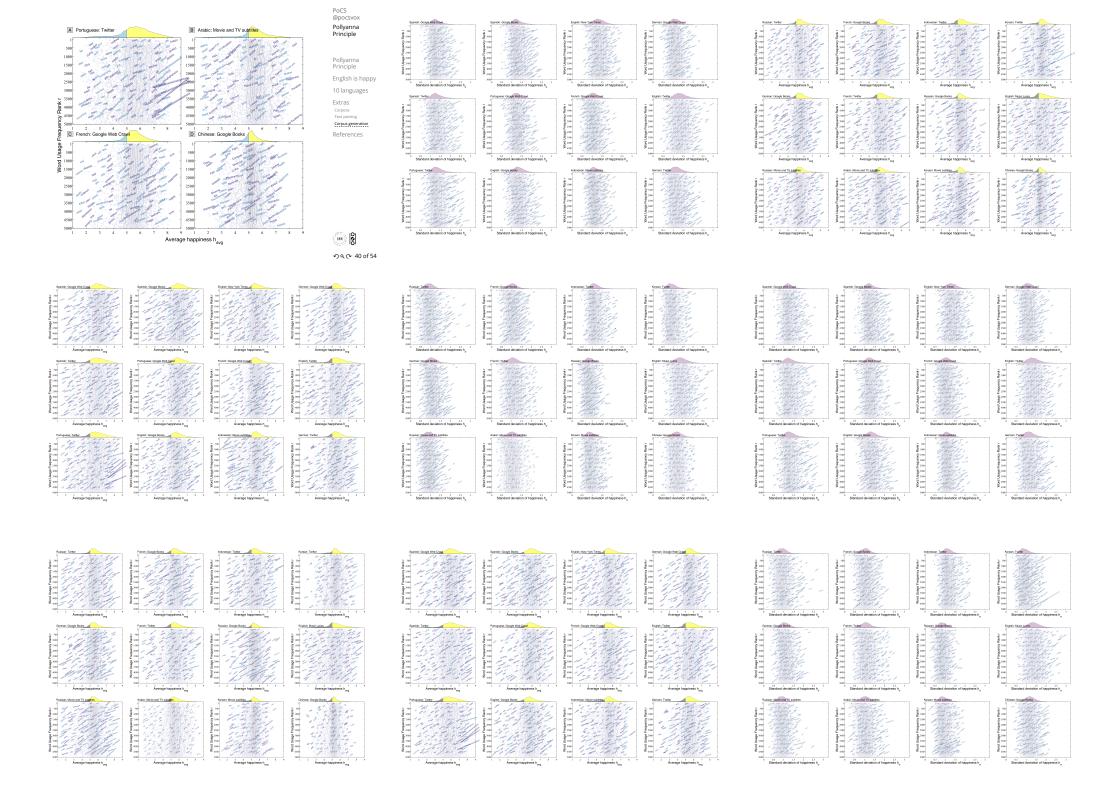
Pearson correlation coefficients for translation-stable words for all language pairs. All p-values are $< 10^{-118}$

Language: Corpus	ρ_{p}	p-value	ρ_{s}	p-value	α	β
Spanish: Google Web Crawl	-0.114	3.38×10^{-22}	-0.090	1.85×10 ⁻¹⁴	-5.55×10 ⁻⁵	6.10
Spanish: Google Books	-0.040	1.51×10^{-3}	-0.016	1.90×10^{-1}	-2.28×10 ⁻⁵	5.90
Spanish: Twitter	-0.048	1.14×10^{-4}	-0.032	1.10×10 ⁻²	-3.10×10 ⁻⁵	5.94
Portuguese: Google Web Crawl	-0.085	6.33×10 ⁻¹³	-0.060	3.23×10^{-7}	-3.98×10 ⁻⁵	5.96
Portuguese: Twitter	-0.041	5.98×10^{-4}	-0.030	1.15×10 ⁻²	-2.40×10 ⁻⁵	5.73
English: Google Books	-0.042	3.03×10^{-3}	-0.013	3.50×10^{-1}	-3.04×10 ⁻⁵	5.62
English: New York Times	-0.056	6.93×10 ⁻⁵	-0.044	1.99×10 ⁻³	-4.17×10 ⁻⁵	5.61
German: Google Web Crawl	-0.096	1.11×10^{-15}	-0.082	6.75×10 ⁻¹²	-3.67×10 ⁻⁵	5.65
French: Google Web Crawl	-0.105	9.20×10^{-19}	-0.080	1.99×10 ⁻¹¹	-4.50×10 ⁻⁵	5.68
English: Twitter	-0.097	6.56×10^{-12}	-0.103	2.37×10^{-13}	-7.78×10 ⁻⁵	5.67
Indonesian: Movie subtitles	-0.039	1.48×10^{-3}	-0.063	2.45×10^{-7}	-2.04×10 ⁻⁵	5.45
German: Twitter	-0.054	1.47×10^{-5}	-0.036	4.02×10^{-3}	-2.51×10 ⁻⁵	5.58
Russian: Twitter	-0.052	2.38×10^{-5}	-0.028	2.42×10 ⁻²	-2.55×10 ⁻⁵	5.52
French: Google Books	-0.043	6.80×10^{-4}	-0.030	1.71×10 ⁻²	-2.31×10 ⁻⁵	5.49
German: Google Books	-0.003	8.12×10 ⁻¹	+0.014	2.74×10 ⁻¹	-1.38×10 ⁻⁶	5.45
French: Twitter	-0.049	6.08×10^{-5}	-0.023	6.31×10 ⁻²	-2.54×10 ⁻⁵	5.54
Russian: Movie and TV subtitles	-0.029	2.36×10 ⁻²	-0.033	9.17×10 ⁻³	-1.57×10 ^{−5}	5.43
Arabic: Movie and TV subtitles	-0.045	7.10×10^{-6}	-0.029	4.19×10^{-3}	-1.66×10 ⁻⁵	5.44
Indonesian: Twitter	-0.051	2.14×10 ⁻⁵	-0.018	1.24×10^{-1}	-2.50×10 ⁻⁵	5.46
Korean: Twitter	-0.032	8.29×10^{-3}	-0.016	1.91×10^{-1}	-1.24×10 ⁻⁵	5.38
Russian: Google Books	+0.030	2.09×10^{-2}	+0.070	5.08×10^{-8}	+1.20×10 ⁻⁵	5.35
English: Music Lyrics	-0.073	2.53×10^{-7}	-0.081	1.05×10^{-8}	-6.12×10 ⁻⁵	5.45
Korean: Movie subtitles	-0.187	8.22×10 ⁻⁴⁴	-0.180	2.01×10 ⁻⁴⁰	-9.66×10 ⁻⁵	5.41
Chinese: Google Books	-0.067	1.48×10 ⁻¹¹	-0.050	5.01×10 ⁻⁷	-1.72×10 ⁻⁵	5.21
		·		·		==

Pearson correlation coefficients and $\ensuremath{p}\xspace$ -values, Spearman correlation coefficients and p-values, and linear fit coefficients, for average word happiness h_{nyg} as a function of word usage frequency rank r. We use the fit is $h_{avg} = xr + \beta$ for the most common 5000 words in each focuprya, determining α and β is a $qr = nx + \beta$. the median of their average word happiness scores (descending). We note that stemming of words may affect these estimates.

Language: Corpus	ρ_{D}	p-value	ρ_{s}	p-value	α	β
Portuguese: Twitter	+0.090	2.55×10 ⁻¹⁴	+0.095	1.28×10 ⁻¹⁵	1.19×10 ⁻⁵	1.29
Spanish: Twitter	+0.097	8.45×10^{-15}	+0.104	5.92×10 ⁻¹⁷	1.47×10 ⁻⁵	1.26
English: Music Lyrics	+0.129	4.87×10^{-20}	+0.134	1.63×10 ⁻²¹	2.76×10 ⁻⁵	1.33
English: Twitter	+0.007	6.26×10 ⁻¹	+0.012	4.11×10 ⁻¹	1.47×10 ⁻⁶	1.35
English: New York Times	+0.050	4.56×10^{-4}	+0.044	1.91×10^{-3}	9.34×10^{-6}	1.32
Arabic: Movie and TV subtitles	+0.101	7.13×10^{-24}	+0.101	3.41×10^{-24}	9.41×10^{-6}	1.01
English: Google Books	+0.180	1.68×10^{-37}	+0.176	4.96×10^{-36}	3.36×10^{-5}	1.27
Spanish: Google Books	+0.066	1.23×10 ⁻⁷	+0.062	6.53×10 ⁻⁷	9.17×10^{-6}	1.26
Indonesian: Movie subtitles	+0.026	3.43×10^{-2}	+0.027	2.81×10 ⁻²	2.87×10 ⁻⁶	1.12
Russian: Movie and TV subtitles	+0.083	7.60×10^{-11}	+0.075	3.28×10^{-9}	1.06×10 ⁻⁵	0.89
French: Twitter	+0.072	4.77×10^{-9}	+0.076	8.94×10 ⁻¹⁰	1.07×10 ⁻⁵	1.05
Indonesian: Twitter	+0.072	1.17×10 ⁻⁹	+0.072	1.73×10 ⁻⁹	8.16×10 ⁻⁶	1.12
French: Google Books	+0.090	1.02×10 ⁻¹²	+0.085	1.67×10 ⁻¹¹	1.25×10 ⁻⁵	1.02
Russian: Twitter	+0.055	6.83×10 ⁻⁶	+0.053	1.67×10 ⁻⁵	7.39×10^{-6}	0.91
Spanish: Google Web Crawl	+0.119	4.45×10^{-24}	+0.106	2.60×10^{-19}	1.45×10 ⁻⁵	1.23
Portuguese: Google Web Crawl	+0.093	4.06×10^{-15}	+0.083	2.91×10 ⁻¹²	1.07×10^{-5}	1.26
German: Twitter	+0.051	4.45×10^{-5}	+0.050	5.15×10 ⁻⁵	7.39×10^{-6}	1.15
French: Google Web Crawl	+0.104	2.12×10 ⁻¹⁸	+0.088	9.64×10 ⁻¹⁴	1.27×10 ⁻⁵	1.01
Korean: Movie subtitles	+0.171	1.39×10^{-36}	+0.185	8.85×10^{-43}	2.58×10 ⁻⁵	0.88
German: Google Books	+0.157	6.06×10^{-35}	+0.162	4.96×10 ⁻³⁷	2.17×10 ⁻⁵	1.03
Korean: Twitter	+0.056	4.07×10^{-6}	+0.062	4.25×10 ⁻⁷	6.98×10 ⁻⁶	0.93
German: Google Web Crawl	+0.099	2.05×10^{-16}	+0.085	1.18×10 ⁻¹²	1.20×10 ⁻⁵	1.07
Chinese: Google Books	+0.099	3.07×10^{-23}	+0.097	3.81×10 ⁻²²	8.70×10^{-6}	1.16
Russian: Google Books	+0.187	5.15×10 ⁻⁴⁸	+0.177	2.24×10 ⁻⁴³	2.28×10 ⁻⁵	0.81

Pearson correlation coefficients and p-values, Spearman correlation coefficients and p-values, and linear fit coefficients for standard deviation of word happiness h_{std} as a function of word usage frequency rank r . We consider the fit is $h_{ ext{std}} = lpha r + eta$ for the most common 5000 words in each corpora, determining α and β via ordinary least squares, and order corpora according to their emotional variance (descending).


set of at least 10,000 words.

Pollvanna									
Principle		Spanish	Portuguese	English	Indonesian	French	German	Arabic	Russian
	Spanish	1.00	0.85	0.83	0.77	0.81	0.77	0.75	0.74
English is happy	Portuguese	0.85	1.00	0.83	0.77	0.78	0.77	0.77	0.81
10 languages	English	0.83	0.83	1.00	0.82	0.80	0.78	0.78	0.81
	Indonesian	0.77	0.77	0.82	1.00	0.72	0.72	0.76	0.77
Extras	French	0.81	0.78	0.80	0.72	1.00	0.80	0.67	0.79
Corpora	German	0.77	0.77	0.78	0.72	0.80	1.00	0.69	0.76
Text parsing	Arabic	0.75	0.77	0.78	0.76	0.67	0.69	1.00	0.74
Corpus generation	Russian	0.74	0.81	0.81	0.77	0.79	0.76	0.74	1.00
References	Korean	0.74	0.75	0.75	0.71	0.71	0.64	0.69	0.70
	Chinese	0.68	0.66	0.70	0.71	0.64	0.62	0.68	0.66

Spearman correlation coefficients for translation-stable words. All p-values are $< 10^{-82}$.

•9 q (~ 33 of 54

References I

- [1] J. M. Diamond. Guns, Germs, and Steel. W. W. Norton & Company, 1997.
- [2] P. S. Dodds, E. M. Clark, S. Desu, M. R. Frank, A. J. Reagan, J. R. Williams, L. Mitchell, K. D. Harris, I. M. Kloumann, J. P. Bagrow, K. Megerdoomian, M. T. McMahon, B. F. Tivnan, and C. M. Danforth. Human language reveals a universal positivity bias.

Proc. Natl. Acad. Sci., 112(8):2389-2394, 2015. Available online at http://www.pnas.org/content/112/8/2389.pdf

Pollyanna Principle English is happy 10 languages Extras Corpora Text parsing

PoCS

@pocsvox

Pollyanna

References

characteristics. Proc. Natl. Acad. Sci., 2015. Available online at http://www.pnas.org/content/ early/2015/05/20/1505647112. pdf

[4] P. S. Dodds, E. M. Clark, S. Desu, M. R. Frank, A. I.

McMahon, B. F. Tivnan, and C. M. Danforth.

Reply to garcia et al.: Common mistakes in

measuring frequency dependent word

Reagan, J. R. Williams, L. Mitchell, K. D. Harris, I. M.

Kloumann, J. P. Bagrow, K. Megerdoomian, M. T.

P. S. Dodds and C. M. Danforth. Measuring the happiness of large-scale written expression: songs, blogs, and presidents. Journal of Happiness Studies, 2009. doi:10.1007/s10902-009-9150-9. pdf

W |S

◆) < (> 49 of 54

References II

[3] P. S. Dodds, E. M. Clark, S. Desu, M. R. Frank, A. J. Reagan, J. R. Williams, L. Mitchell, K. D. Harris, I. M. Kloumann, J. P. Bagrow, K. Megerdoomian, M. T. McMahon, B. F. Tivnan, and C. M. Danforth. Human language reveals a universal positivity

Proc. Natl. Acad. Sci., 112(8):2389-2394, 2015. Available online at http://www.pnas.org/content/112/8/2389; online appendices: http://compstorylab.org/share/papers/dodds2014a/.

PoCS @pocsvox Pollvanna Principle

Pollyanna Principle English is happy

10 languages

UM |OS

◆) < (> 50 of 54

References

References IV

References III

- [6] P. S. Dodds, K. D. Harris, I. M. Kloumann, C. A. Bliss, and C. M. Danforth. Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter. PLoS ONE, 6:e26752, 2011. pdf
- D. Garcia, A. Garas, and F. Schweitzer. Language-dependent relationship between word happiness and frequency. Proc. Natl. Acad. Sci., 2015. doi: 10.1073/pnas.1502909112. pdf
- I. M. Kloumann, C. M. Danforth, K. D. Harris, C. A. Bliss, and P. S. Dodds. Positivity of the English language. PLoS ONE, 7:e29484, 2012. pdf

PoCS @pocsvox Pollyanna

Pollyanna Principle

English is happy

10 languages

References

UIN S

@pocsvox

Pollvanna

Principle

Pollyanna Principle

English is happy

10 languages

Extras

Corpora Text parsing

References

少 Q (~ 51 of 54

Extras

References V

References VI

[12] E. Sandhaus.

Available online at:

[9] I. M. Kloumann, C. M. Danforth, K. D. Harris, C. A. Bliss, and P. S. Dodds. Positivity of the English language. PLoS ONE, 7:e29484, 2012. pdf ☑

[10] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, The Google Books Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak, and E. A. Lieberman. Quantitative analysis of culture using millions of digitized books. Science Magazine, 331:176–182, 2011. pdf

[11] J. W. Pennebaker, R. J. Booth, and M. E. Francis. Linguistic Inquiry and Word Count: LIWC 2007. at http://bit.ly/S1Dk2L, accessed May 15, 2014., 2007.

The New York Times Annotated Corpus.

https://doi.org/10.35111/77ba-9x74.

Linguistic Data Consortium, Philadelphia, 2008.

@pocsvox

Pollyanna Principle English is happy 10 languages

Extras

References

W |S

少 q (~ 53 of 54

@pocsvox Pollvanna

Pollyanna Principle English is happy

10 languages Extras

Corpora Text parsing

References

UN S

•> q (→ 52 of 54

W |S

◆) < (~ 54 of 54