Measures of centrality

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

These slides are brought to you by:

Sealie \& Lambie Productions

๑a@ 2 of 33

These slides are also brought to you by:

Special Guest Executive Producer

Background
Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

O On Instagram at pratchett_the_cat \square

Outline

Nutshell

References

How big is my node？

Basic question：how＇important＇are specific nodes and edges in a network？
\＆An important node or edge might：
1．handle a relatively large amount of the network＇s traffic（e．g．，cars，information）；
2．bridge two or more distinct groups（e．g．，liason， interpreter）；
3．be a source of important ideas，knowledge，or judgments（e．g．，supreme court decisions，an employee who＇knows where everything is＇）．
So how do we quantify such a slippery concept as importance？
8
We generate ad hoc，reasonable measures，and examine their utility ．．．

Centrality

One possible reflection of importance is centrality. Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function.
Idea of centrality comes from social networks literature ${ }^{[7]}$.
. Many flavors of centrality ...

1. Many are topological and quasi-dynamical;
2. Some are based on dynamics (e.g., traffic).

We will define and examine a few ...
8
(Later: see centrality useful in identifying communities in networks.)

Centrality

Degree centrality

Naively estimate importance by node degree. ${ }^{[7]}$
D Doh: assumes linearity (If node i has twice as many friends as node j, it's twice as important.)
Doh: doesn't take in any non-local information.

Closeness centrality

Idea: Nodes are more central if they can reach other nodes 'easily.'
8
Measure average shortest path from a node to all other nodes.
Define Closeness Centrality for node i as

$$
N-1
$$

$$
\overline{\sum_{j, j \neq i}(\text { shortest distance from } i \text { to } j) .}
$$

Range is 0 (no friends) to 1 (single hub).
\& Unclear what the exact values of this measure tells us because of its ad-hocness.
General problem with simple centrality measures: what do they exactly mean?
\& Perhaps, at least, we obtain an ordering of nodes in terms of 'importance.'

Betweenness centrality

Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
For each node i, count how many shortest paths pass through i.
In the case of ties, divide counts between paths.
Call frequency of shortest paths passing through node i the betweenness of i, B_{i}.
Note: Exclude shortest paths between i and other nodes.
Note: works for weighted and unweighted networks.

Consider a network with N nodes and m edges (possibly weighted).

- Computational goal: Find $\binom{N}{2}$ shortest paths [between all pairs of nodes.
- Traditionally use Floyd-Warshall \mathbb{C} algorithm.
- Computation time grows as $O\left(N^{3}\right)$.
- See also:

1. Dijkstra's algorithm [^ for finding shortest path between two specific nodes,
2. and Johnson's algorithm which outperforms Floyd-Warshall for sparse networks:

$$
O\left(m N+N^{2} \log N\right)
$$

Newman (2001) ${ }^{[4,5]}$ and Brandes (2001) independently derive equally fast algorithms that also compute betweenness.

- Computation times grow as:

1. $O(m N)$ for unweighted graphs;
2. and $O\left(m N+N^{2} \log N\right)$ for weighted graphs.

Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality

Shortest path between node i and all others:

. Consider unweighted networks.
\& Use breadth-first search:

Background

1. Start at node i, giving it a distance $d=0$ from itself.
2. Create a list of all of i 's neighbors and label them being at a distance $d=1$.
3. Go through list of most recently visited nodes and find all of their neighbors.
4. Exclude any nodes already assigned a distance.
5. Increment distance d by 1 .
6. Label newly reached nodes as being at distance d.
7. Repeat steps 3 through 6 until all nodes are visited.

Record which nodes link to which nodes moving out from i (former are 'predecessors' with respect to i 's shortest path structure).

Runs in $O(m)$ time and gives $N-1$ shortest paths.
of Find all shortest naths in $O(m N)$ time

Newman's Betweenness algorithm: ${ }^{[4]}$

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

UYM $\left|\begin{array}{l}\text { O } \\ \text { O }\end{array}\right|$
๑a^ 16 of 33

Newman's Betweenness algorithm: ${ }^{[4]}$

1. Set all nodes to have a value $c_{i j}=0, j=1, \ldots$ (c for count).
2. Select one node i and find shortest paths to all other $N-1$ nodes using breadth-first search.
3. Record \# equal shortest paths reaching each node.
4. Move through nodes according to their distance from i, starting with the furthest.

Closeness centrality
5. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i \ell}$ at each node ℓ along the way.
6. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
7. Exclude starting node j and i from increment.
8. Repeat steps $2-8$ for every node i and obtain betweenness as $B_{j}=\sum_{i=1}^{N} c_{i j}$.

Newman's Betweenness algorithm: ${ }^{[4]}$

. For a pure tree network, $c_{i j}$ is the number of nodes beyond j from i 's vantage point.

1. j indexes edges,
2. and we add one to each edge as we traverse it.

For both algorithms, computation time grows as

$$
O(m N) .
$$

Newman's Betweenness algorithm: ${ }^{[4]}$

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

UVM $\left|\begin{array}{l}0 \\ 6 \\ 0\end{array}\right|$
っด® 19 of 33

Important nodes have important friends:

R Define x_{i} as the 'importance' of node i.
Idea: x_{i} depends (somehow) on x_{j}
if j is a neighbor of i.
Recursive: importance is transmitted through a network.
Simplest possibility is a linear combination:

$$
x_{i} \propto \sum_{j} a_{j i} x_{j}
$$

. Assume further that constant of proportionality, c, is independent of i.
Above gives $\vec{x}=c \mathbf{A}^{\top} \vec{x}$ or $\mathbf{A}^{\top} \vec{x}=c^{-1} \vec{x}=\lambda \vec{x}$.
Eigenvalue equation based on adjacency matrix ...

8 Note: Lots of despair over size of the largest eigenvalue. ${ }^{[7]}$ Lose sight of original assumption's non-physicality.

Important nodes have important friends:

So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.

We, the people, would like:

Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

1. A has a real eigenvalue $\lambda_{1} \geq\left|\lambda_{i}\right|$ for $i=2, \ldots, N$.
2. λ_{1} corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
3. The dominant real eigenvalue λ_{1} is bounded by the minimum and maximum row sums of A :

$$
\min _{i} \sum_{j=1}^{N} a_{i j} \leq \lambda_{1} \leq \max _{i} \sum_{j=1}^{N} a_{i j}
$$

4. All other eigenvectors have one or more negative entries.
5. The matrix A can make toast.
6. Note: Proof is relatively short for symmetric matrices that are strictly positive ${ }^{[6]}$ and just non-negative ${ }^{[3]}$.

Other Perron-Frobenius aspects:

- Assuming our network is irreducible [$\mathbb{3}$, meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
\& Irreducibility means largest eigenvalue's eigenvector has strictly non-negative entries.
Analogous to notion of ergodicity: every state is reachable.
(Another term: Primitive graphs and matrices.)

Hubs and Authorities

Generalize eigenvalue centrality to allow nodes to have two attributes:

1. Authority: how much knowledge, information, etc., held by a node on a topic.
2. Hubness (or Hubosity or Hubbishness or Hubtasticness): how well a node 'knows' where to find information on a given topic.

Background
Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities Kleinberg. ${ }^{[2]}$
Best hubs point to best authorities.
8 Recursive: Hubs authoritatively link to hubs, authorities hubbishly link to other authorities.
8 More: look for dense links between sets of 'good' hubs pointing to sets of 'good' authorities.
Known as the HITS algorithm [(Hyperlink-Induced Topics Search).

Hubs and Authorities

- Give each node two scores:

1. $x_{i}=$ authority score for node i
2. $y_{i}=$ hubtasticness score for node i

As for eigenvector centrality, we connect the scores of neighboring nodes.
Rew story I: a good authority is linked to by good hubs.
Means x_{i} should increase as $\sum_{j=1}^{N} a_{j i} y_{j}$ increases.
Note: indices are $j i$ meaning j has a directed link to i.

8New story II: good hubs point to good authorities.
Means y_{i} should increase as $\sum_{j=1}^{N} a_{i j} x_{j}$ increases.
Linearity assumption:

$$
\vec{x} \propto A^{T} \vec{y} \text { and } \vec{y} \propto A \vec{x}
$$

Hubs and Authorities

So let's say we have

$$
\vec{x}=c_{1} A^{T} \vec{y} \text { and } \vec{y}=c_{2} A \vec{x}
$$

where c_{1} and c_{2} must be positive.
Above equations combine to give

$$
\vec{x}=c_{1} A^{T} c_{2} A \vec{x}=\lambda A^{T} A \vec{x}
$$

where $\lambda=c_{1} c_{2}>0$.
It's all good: we have the heart of singular value decomposition before us ...

We can do this:

\& $A^{T} A$ is symmetric.

$A^{T} A$ is semi-positive definite so its eigenvalues are all ≥ 0.

- $A^{T} A^{\prime}$ s eigenvalues are the square of $A^{\prime} \mathrm{s}$ singular values.
8 $A^{T} A^{\prime}$ s eigenvectors form a joyful orthogonal basis.
\& Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.
So: linear assumption leads to a solvable system.
. What would be very good: find networks where we have independent measures of node 'importance' and see how importance is actually distributed.

Nutshell:

Measuring centrality is well motivated if hard to carry out well.
We've only looked at a few major ones.
Methods are often taken to be more sophisticated than they really are.
8
Centrality can be used pragmatically to perform diagnostics on networks (see structure detection).
Focus on nodes rather than groups or modules is a homo narrativus constraint.
\& Possible that better approaches will be developed.

References I

[1] U. Brandes.
A faster algorithm for betweenness centrality.
J. Math. Sociol., 25:163-177, 2001. pdf[天
[2] J. M. Kleinberg.
Authoritative sources in a hyperlinked environment.
Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf[
[3] K. Y. Lin.
An elementary proof of the perron-frobenius theorem for non-negative symmetric matrices.
Chinese Journal of Physics, 15:283-285, 1977. pdf(

References II

[4] M. E. J. Newman.
Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality.
Phys. Rev. E, 64(1):016132, 2001. pdf[天
[5] M. E. J. Newman and M. Girvan.
Finding and evaluating community structure in networks.
Phys. Rev. E, 69(2):026113, 2004. pdf[^
[6] F. Ninio.
A simple proof of the Perron-Frobenius theorem for positive symmetric matrices.
J. Phys. A.: Math. Gen., 9:1281-1282, 1976. pdf[

Background
Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality

References III

[7] S. Wasserman and K. Faust.
Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge, UK, 1994.

