Measures of centrality

Last updated: 2021/10/07, 17:43:36 EDT

Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021–2022 |@pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

nac 1 of 33

These slides are brought to you by:

Sealie & Lambie Productions

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

20f 33

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

الله الح

Outline

Background

Centrality measures

Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

How big is my node?

Basic question: how 'important' are specific nodes and edges in a network?

An important node or edge might:

- handle a relatively large amount of the network's traffic (e.g., cars, information);
- bridge two or more distinct groups (e.g., liason, interpreter);
- be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who 'knows where everything is').
- So how do we quantify such a slippery concept as importance?

We generate ad hoc, reasonable measures, and examine their utility ...

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

Centrality

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

Idea of centrality comes from social networks literature^[7].

some sense) in the middle of a network are

One possible reflection of importance is centrality.

Presumption is that nodes or edges that are (in

- 🚳 Many flavors of centrality ...
 - 1. Many are topological and quasi-dynamical;
 - 2. Some are based on dynamics (e.g., traffic).
- 🚳 We will define and examine a few ...
- (Later: see centrality useful in identifying communities in networks.)

Centrality

Degree centrality

Naively estimate importance by node degree. [7]

- Doh: assumes linearity (If node *i* has twice as many friends as node *j*, it's twice as important.)
- Doh: doesn't take in any non-local information.

PoCS @pocsvox

Measures of centrality

Background

Centrality measures

Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

Closeness centrality

- Idea: Nodes are more central if they can reach other nodes 'easily.'
- Measure average shortest path from a node to all other nodes.
- Define Closeness Centrality for node i as

N-1

 $\sum_{j,j\neq i}$ (shortest distance from *i* to *j*).

- line friends) to 1 (single hub).
- Unclear what the exact values of this measure tells us because of its ad-hocness.
- General problem with simple centrality measures: what do they exactly mean?
- Perhaps, at least, we obtain an ordering of nodes in terms of 'importance.'

PoCS @pocsvox

Measures of centrality

Background

Centrality measures

Degree centrality

Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

Betweenness centrality

- Betweenness centrality is based on coherence of shortest paths in a network.
- Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
- For each node *i*, count how many shortest paths pass through *i*.
- ln the case of ties, divide counts between paths.
- Solution Call frequency of shortest paths passing through node i the betweenness of i, B_i .
- Note: Exclude shortest paths between *i* and other nodes.
- Note: works for weighted and unweighted networks.

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness

igenvalue centrality lubs and Authorities

Nutshell

References

- Consider a network with N nodes and m edges (possibly weighted).
- Somputational goal: Find $\binom{N}{2}$ shortest paths between all pairs of nodes.
- line algorithm.
- Somputation time grows as $O(N^3)$.
- 🚳 See also:
 - 1. Dijkstra's algorithm C for finding shortest path between two specific nodes,
 - 2. and Johnson's algorithm \mathbb{C}^{\bullet} which outperforms Floyd-Warshall for sparse networks: $O(mN + N^2 \log N).$
- Newman (2001)^[4, 5] and Brandes (2001)^[1] independently derive equally fast algorithms that also compute betweenness.
- 🚳 Computation times grow as:
 - 1. O(mN) for unweighted graphs;
 - 2. and $O(mN + N^2 \log N)$ for weighted graphs.

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality

Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

Shortest path between node *i* and all others:

- 🚳 Consider unweighted networks.
- 🚳 Use breadth-first search:
 - 1. Start at node *i*, giving it a distance d = 0 from itself.
 - 2. Create a list of all of *i*'s neighbors and label them being at a distance d = 1.
 - 3. Go through list of most recently visited nodes and find all of their neighbors.
 - 4. Exclude any nodes already assigned a distance.
 - 5. Increment distance *d* by 1.
 - 6. Label newly reached nodes as being at distance *d*.
 - 7. Repeat steps 3 through 6 until all nodes are visited.
- Record which nodes link to which nodes moving out from *i* (former are 'predecessors' with respect to *i*'s shortest path structure).
- Runs in O(m) time and gives N 1 shortest paths.
- Solution Find all shortest paths in O(mN) time

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality

Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

クQ へ 15 of 33

S

 $\frac{5}{6}$

 $\frac{2}{3}$

11

6

 $\frac{5}{6}$

2

 $\frac{25}{6}$

13

 $\frac{7}{3}$

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality

Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

200 16 of 33

- 1. Set all nodes to have a value $c_{ij} = 0$, j = 1, ... (*c* for count).
- 2. Select one node *i* and find shortest paths to all other N-1 nodes using breadth-first search.
- 3. Record # equal shortest paths reaching each node.
- 4. Move through nodes according to their distance from *i*, starting with the furthest.
- 5. Travel back towards *i* from each starting node *j*, along shortest path(s), adding 1 to every value of $c_{i\ell}$ at each node ℓ along the way.
- 6. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
- 7. Exclude starting node *j* and *i* from increment.
- 8. Repeat steps 2–8 for every node *i* and obtain betweenness as $B_j = \sum_{i=1}^{N} c_{ij}$.

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality

Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

Solution For a pure tree network, c_{ij} is the number of nodes beyond j from i's vantage point.

- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm but now
 - 1. j indexes edges,
 - 2. and we add one to each edge as we traverse it.
- 🚳 For both algorithms, computation time grows as

O(mN).

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality

Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

UVN OS

S

 $\frac{5}{6}$

 $\frac{2}{3}$

11

6

 $\frac{5}{6}$

2

 $\frac{25}{6}$

13

 $\frac{7}{3}$

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality

Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

Important nodes have important friends:

- \bigotimes Define x_i as the 'importance' of node *i*. \mathbf{s}_{i} Idea: x_{i} depends (somehow) on x_{i} if i is a neighbor of i.
- Recursive: importance is transmitted through a network.

Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

Pocs @pocsvox

Measures of centrality

Centrality **Eigenvalue** centrality

Nutshell

- Assume further that constant of proportionality, c_i is independent of i.
- Above gives $\vec{x} = c \mathbf{A}^{\mathsf{T}} \vec{x}$ or $|\mathbf{A}^{\mathsf{T}} \vec{x} = c^{-1} \vec{x} = \lambda \vec{x}|$. 1
 - Eigenvalue equation based on adjacency matrix ...
- Note: Lots of despair over size of the largest 3 eigenvalue.^[7] Lose sight of original assumption's non-physicality.

Pocs Important nodes have important friends: @pocsvox Measures of So: solve $\mathbf{A}^{\mathsf{T}} \vec{x} = \lambda \vec{x}$. centrality But which eigenvalue and eigenvector? 🛞 We, the people, would like: Centrality 1. A unique solution. 🗸 2. λ to be real. 3. Entries of \vec{x} to be real. **Eigenvalue** centrality 4. Entries of \vec{x} to be non-negative. \checkmark Nutshell 5. λ to actually mean something ... (maybe too much) 6. Values of x_i to mean something (what does an observation that $x_3 = 5x_7$ mean?) (maybe only ordering is informative ...) (maybe too much) 7. λ to equal 1 would be nice ... (maybe too much) 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption (maybe too much) 🚳 We rummage around in bag of tricks and pull out UVN S

the Perron-Frobenius theorem

na @ 22 of 33

Perron-Frobenius theorem: \square If an $N \times N$ matrix A has non-negative entries then:

- 1. A has a real eigenvalue $\lambda_1 \ge |\lambda_i|$ for i = 2, ..., N.
- 2. λ_1 corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
- 3. The dominant real eigenvalue λ_1 is bounded by the minimum and maximum row sums of *A*:

$$\min_i \sum_{j=1}^N a_{ij} \leq \lambda_1 \leq \max_i \sum_{j=1}^N a_{ij}$$

- All other eigenvectors have one or more negative entries.
- 5. The matrix *A* can make toast.
- 6. Note: Proof is relatively short for symmetric matrices that are strictly positive ^[6] and just non-negative ^[3].

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality

Nutshell

References

23 of 33

Other Perron-Frobenius aspects:

- Assuming our network is irreducible C, meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
- Irreducibility means largest eigenvalue's eigenvector has strictly non-negative entries.
- Analogous to notion of ergodicity: every state is reachable.
- left (Another term: Primitive graphs and matrices.)

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Figenvalue centrality

Nutshell

References

UVN SO

na @ 24 of 33

Hubs and Authorities

- line and a second secon have two attributes:
 - 1. Authority: how much knowledge, information, etc., held by a node on a topic.
 - 2. Hubness (or Hubosity or Hubbishness or Hubtasticness): how well a node 'knows' where to find information on a given topic.
- line and some set the legendary Jon Kleinberg.^[2]
- Best hubs point to best authorities. 24
- Recursive: Hubs authoritatively link to hubs, authorities hubbishly link to other authorities.
- 🚳 More: look for dense links between sets of 'good' hubs pointing to sets of 'good' authorities.
- 🚳 Known as the HITS algorithm 🗹 (Hyperlink-Induced Topics Search).

Pocs @pocsvox

Measures of centrality

Centrality Eigenvalue centrality Hubs and Authorities

Nutshell

References

UVN S 29 c 26 of 33

DQ @ 27 of 33

Hubs and Authorities

🚷 So let's say we have

$$\vec{x} = c_1 A^T \vec{y}$$
 and $\vec{y} = c_2 A \vec{x}$

where c_1 and c_2 must be positive. Above equations combine to give

$$\vec{x} = c_1 A^T c_2 A \vec{x} = \lambda A^T A \vec{x}.$$

where $\lambda = c_1 c_2 > 0$.

It's all good: we have the heart of singular value decomposition before us ...

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

We can do this:

- $\bigotimes A^T A$ is symmetric.
- $A^T A$ is semi-positive definite so its eigenvalues are all ≥ 0 .
- $A^T A$'s eigenvalues are the square of A's singular values.
- $A^T A'$ s eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.

🚳 So: linear assumption leads to a solvable system.

What would be very good: find networks where we have independent measures of node 'importance' and see how importance is actually distributed. PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

- Measuring centrality is well motivated if hard to carry out well.
- 🚳 We've only looked at a few major ones.
- Methods are often taken to be more sophisticated than they really are.
- Centrality can be used pragmatically to perform diagnostics on networks (see structure detection).
- Focus on nodes rather than groups or modules is a homo narrativus constraint.
- Possible that better approaches will be developed.

na @ 30 of 33

References I

U. Brandes.
A faster algorithm for betweenness centrality.
J. Math. Sociol., 25:163–177, 2001. pdf

[2] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf 7

[3] K. Y. Lin. An elementary

An elementary proof of the perron-frobenius theorem for non-negative symmetric matrices. Chinese Journal of Physics, 15:283–285, 1977. pdf

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

UVN OS

na @ 31 of 33

References II

[4] M. E. J. Newman. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E, 64(1):016132, 2001. pdf

[5] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys. Rev. E, 69(2):026113, 2004. pdf

[6] F. Ninio.

A simple proof of the Perron-Frobenius theorem for positive symmetric matrices.

J. Phys. A.: Math. Gen., 9:1281–1282, 1976. pdf

PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

UVN OS

References III

[7] S. Wasserman and K. Faust. Social Network Analysis: Methods and <u>Applications</u>. Cambridge University Press, Cambridge, UK, 1994. PoCS @pocsvox

Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

UVN OS

na @ 33 of 33