Branching Networks II

Last updated: 2021/10/02, 00:15:03 EDT
Principles of Complex Systems, Vols. 1 \& 2 CSYS/MATH 300 and 303, 2021-2022| @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

The PoCSverse Branching Networks II 2 of 87

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

These slides are also brought to you by:

Special Guest Executive Producer

The PoCSverse Branching Networks II 3 of 87

Horton \Leftrightarrow Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

우 On Instagram at pratchett_the_cat[

Outline

The PoCSverse Branching

Horton \Leftrightarrow Tokunaga
Tokunaga
Reducing Horton
Scaling relations
Reducing Horton
Fluctuations
Models
Scaling relations
Fluctuations

Models

Nutshell

References

Piracy on the high χ 's:

"Dynamic Reorganization of River
 Basins"
 Willett et al.,
 Science, 343, 1248765, 2014. ${ }^{[21]}$

$$
\begin{aligned}
& \frac{\partial z(x, t)}{\partial t}=U-K A^{m}\left|\frac{\partial z(x, t)}{\partial x}\right|^{n} \\
& z(x)=z_{\mathrm{b}}+\left(\frac{U}{K A_{0}^{m}}\right)^{1 / n} \chi \\
& \chi=\int_{x_{\mathrm{b}}}^{x}\left(\frac{A_{0}}{A\left(x^{\prime}\right)}\right)^{m / n} \mathrm{~d} x^{\prime}
\end{aligned}
$$

Piracy on the high χ 's:

The PoCSverse
Branching
Networks II
7 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

More: How river networks move across a landscape [3 (Science Daily)

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

The PoCSverse
Branching Networks II
10 of 87
Horton \Leftrightarrow
Tōkūn̄āgà
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

\& In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
Oddly, Horton's laws have four parameters and Tokunaga has two parameters.

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
R R_{n}, R_{a}, R_{ℓ}, and R_{s} versus T_{1} and R_{T}. One simple redundancy: $R_{\ell}=R_{s}$. Insert question from assignment 1×3

The PoCSverse Branching Networks II 10 of 87

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
. Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
. R_{n}, R_{a}, R_{ℓ}, and R_{s} versus T_{1} and R_{T}. One simple redundancy: $R_{\ell}=R_{s}$. Insert question from assignment 1×3
To make a connection, clearest approach is to start with Tokunaga's law ...

The PoCSverse Branching Networks II 10 of 87

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
. Oddly, Horton's laws have four parameters and Tokunaga has two parameters.

- R_{n}, R_{a}, R_{ℓ}, and R_{s} versus T_{1} and R_{T}. One simple redundancy: $R_{\ell}=R_{s}$. Insert question from assignment 1×3
To make a connection, clearest approach is to start with Tokunaga's law ...
Known result: Tokunaga \rightarrow Horton ${ }^{[18, ~ 19, ~ 20, ~ 9, ~ 2] ~}$

The PoCSverse Branching Networks II 10 of 87

Let us make them happy

The PoCSverse
Branching
Networks II
11 of 87
We need one more ingredient:

Let us make them happy

We need one more ingredient:

Space-fillingness

Horton \Leftrightarrow
Tōkūn̄āḡā
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Let us make them happy

Branching Networks II 11 of 87
We need one more ingredient:

Space-fillingness

A network is space-filling if the average distance between adjacent streams is roughly constant.

Let us make them happy

We need one more ingredient:

Space-fillingness

A network is space-filling if the average distance between adjacent streams is roughly constant.
Reasonable for river and cardiovascular networks

Let us make them happy

We need one more ingredient:

Space-fillingness

A network is space-filling if the average distance
Reasonable for river and cardiovascular networks
\& For river networks:
Drainage density $\rho_{\mathrm{dd}}=$ inverse of typical distance between channels in a landscape.

Let us make them happy

We need one more ingredient:

Space-fillingness

A network is space-filling if the average distance
Reasonable for river and cardiovascular networks
\& For river networks:
Drainage density $\rho_{\mathrm{dd}}=$ inverse of typical distance between channels in a landscape.
In terms of basin characteristics:

$$
\rho_{\mathrm{dd}} \simeq \frac{\sum \text { stream segment lengths }}{\text { basin area }}
$$

Let us make them happy

We need one more ingredient:

Space-fillingness

A network is space-filling if the average distance
Reasonable for river and cardiovascular networks
For river networks:
Drainage density $\rho_{\mathrm{dd}}=$ inverse of typical distance between channels in a landscape.
In terms of basin characteristics:

$$
\rho_{\mathrm{dd}} \simeq \frac{\sum \text { stream segment lengths }}{\text { basin area }}=\frac{\sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega}}{a_{\Omega}}
$$

More with the happy-making thing

Start with Tokunaga's law: $T_{k}=T_{1} R_{T}^{k-1}$

More with the happy-making thing

 Branching Networks II 12 of 87
Start with Tokunaga's law: $T_{k}=T_{1} R_{T}^{k-1}$

Start looking for Horton's stream number law:
$n_{\omega} / n_{\omega+1}=R_{n}$.

More with the happy-making thing

Start with Tokunaga's law: $T_{k}=T_{1} R_{T}^{k-1}$

Start looking for Horton's stream number law:
$n_{\omega} / n_{\omega+1}=R_{n}$.
Estimate n_{ω}, the number of streams of order ω in terms of other $n_{\omega^{\prime}}, \omega^{\prime}>\omega$.

The PoCSverse Branching Networks II 12 of 87

Horton \Leftrightarrow
Tōkūn̄āḡā
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

More with the happy-making thing

Start with Tokunaga's law: $T_{k}=T_{1} R_{T}^{k-1}$

Start looking for Horton's stream number law:
$n_{\omega} / n_{\omega+1}=R_{n}$.
\& Estimate n_{ω}, the number of streams of order ω in terms of other $n_{\omega^{\prime}}, \omega^{\prime}>\omega$.
Observe that each stream of order ω terminates by either:

The PoCSverse Branching Networks II 12 of 87

Horton \Leftrightarrow Tōkūn̄āgā

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

More with the happy-making thing

Start with Tokunaga's law: $T_{k}=T_{1} R_{T}^{k-1}$

- Start looking for Horton's stream number law:
$n_{\omega} / n_{\omega+1}=R_{n}$.
Estimate n_{ω}, the number of streams of order ω in terms of other $n_{\omega^{\prime}, \omega^{\prime}}>\omega$.
Observe that each stream of order ω terminates by either:

More with the happy-making thing

Start with Tokunaga's law: $T_{k}=T_{1} R_{T}^{k-1}$

Start looking for Horton's stream number law:
$n_{\omega} / n_{\omega+1}=R_{n}$.
\&stimate n_{ω}, the number of streams of order ω in terms of other $n_{\omega^{\prime}}, \omega^{\prime}>\omega$.
Observe that each stream of order ω terminates by either:

More with the happy-making thing

Start with Tokunaga's law: $T_{k}=T_{1} R_{T}^{k-1}$

Start looking for Horton's stream number law:
$n_{\omega} / n_{\omega+1}=R_{n}$.
\&stimate n_{ω}, the number of streams of order ω in terms of other $n_{\omega^{\prime}}, \omega^{\prime}>\omega$.

- Observe that each stream of order ω terminates by either:

1. Running into another stream of order ω and generating a stream of order $\omega+1$

- $2 n_{\omega+1}$ streams of order ω do this

2. Running into and being absorbed by a stream of higher order $\omega^{\prime}>\omega$...

More with the happy-making thing

Start with Tokunaga's law: $T_{k}=T_{1} R_{T}^{k-1}$

Start looking for Horton's stream number law:
$n_{\omega} / n_{\omega+1}=R_{n}$.
Estimate n_{ω}, the number of streams of order ω in terms of other $n_{\omega^{\prime}, \omega^{\prime}}>\omega$.
Observe that each stream of order ω terminates

1. Running into another stream of order ω and generating a stream of order $\omega+1$

- $2 n_{\omega+1}$ streams of order ω do this

2. Running into and being absorbed by a stream of higher order $\omega^{\prime}>\omega \ldots$

- $n_{\omega^{\prime}} T_{\omega^{\prime}-\omega}$ streams of order ω do this

More with the happy-making thing

Putting things together:

$$
n_{\omega}=\underbrace{2 n_{\omega+1}}_{\text {generation }}+
$$

The PoCSverse
Branching Networks II
13 of 87
Horton \Leftrightarrow
T̄ōkūn̄āga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

More with the happy-making thing

 Branching Networks II 13 of 87
Putting things together:

$$
n_{\omega}=\underbrace{2 n_{\omega+1}}_{\text {generation }}+\sum_{\omega^{\prime}=\omega+1}^{\Omega} \underbrace{T_{\omega^{\prime}-\omega^{\prime}} n_{\omega^{\prime}}}_{\text {absorption }}
$$

Reducing Horton

More with the happy-making thing

Branching

Putting things together:

$$
n_{\omega}=\underbrace{2 n_{\omega+1}}_{\text {generation }}+\sum_{\omega^{\prime}=\omega+1}^{\Omega} \underbrace{T_{\omega^{\prime}-\omega^{\prime}} n_{\omega^{\prime}}}_{\text {absorption }}
$$

s. Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_{n}.

- Insert question from assignment 1 ©

Reducing Horton
Scaling relations
Fluctuations
Models

More with the happy-making thing

Branching Networks II 13 of 87
Putting things together:

$$
n_{\omega}=\underbrace{2 n_{\omega+1}}_{\text {generation }}+\sum_{\omega^{\prime}=\omega+1}^{\Omega} \underbrace{T_{\omega^{\prime}-\omega^{\prime}} n_{\omega^{\prime}}}_{\text {absorption }}
$$

. Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_{n}.
R Insert question from assignment 1 B
Solution:

$$
R_{n}=\frac{\left(2+R_{T}+T_{1}\right) \pm \sqrt{\left(2+R_{T}+T_{1}\right)^{2}-8 R_{T}}}{2}
$$

(The larger value is the one we want.)

Finding other Horton ratios

Connect Tokunaga to R_{s}

Now use uniform drainage density ρ_{dd}.

The PoCSverse
Branching Networks II 14 of 87

Finding other Horton ratios

Connect Tokunaga to R_{s}

Now use uniform drainage density $\rho_{\text {dd }}$.
, Assume side streams are roughly separated by distance $1 / \rho_{\mathrm{dd}}$.

The PoCSverse Branching Networks II 14 of 87

Finding other Horton ratios

Branching Networks II 14 of 87

Connect Tokunaga to R_{s}

Now use uniform drainage density ρ_{dd}.
Assume side streams are roughly separated by distance $1 / \rho_{\mathrm{dd}}$.
. For an order ω stream segment, expected length is

$$
\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1}\left(1+\sum_{k=1}^{\omega-1} T_{k}\right)
$$

Finding other Horton ratios

Connect Tokunaga to R_{s}

Now use uniform drainage density ρ_{dd}.
Assume side streams are roughly separated by distance $1 / \rho_{\mathrm{dd}}$.
\& For an order ω stream segment, expected length is

$$
\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1}\left(1+\sum_{k=1}^{\omega-1} T_{k}\right)
$$

Substitute in Tokunaga's law $T_{k}=T_{1} R_{T}^{k-1}$:

$$
\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1}\left(1+T_{1} \sum_{k=1}^{\omega-1} R_{T}^{k-1}\right)
$$

Finding other Horton ratios

Connect Tokunaga to R_{s}

Now use uniform drainage density ρ_{dd}.
Assume side streams are roughly separated by distance $1 / \rho_{\mathrm{dd}}$.
\& For an order ω stream segment, expected length is

$$
\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1}\left(1+\sum_{k=1}^{\omega-1} T_{k}\right)
$$

Substitute in Tokunaga's law $T_{k}=T_{1} R_{T}^{k-1}$:

$$
\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1}\left(1+T_{1} \sum_{k=1}^{\omega-1} R_{T}^{k-1}\right) \propto R_{T}^{\omega}
$$

Horton and Tokunaga are happy

Altogether then:

$$
\Rightarrow \bar{s}_{\omega} / \bar{s}_{\omega-1}=R_{T}
$$

The PoCSverse
Branching Networks II
15 of 87
Horton \Leftrightarrow

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Horton and Tokunaga are happy

Altogether then:

$$
\Rightarrow \bar{s}_{\omega} / \bar{s}_{\omega-1}=R_{T} \Rightarrow R_{s}=R_{T}
$$

The PoCSverse
Branching
Networks II
15 of 87
Horton \Leftrightarrow

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Horton and Tokunaga are happy

Altogether then:

$$
\Rightarrow \bar{s}_{\omega} / \bar{s}_{\omega-1}=R_{T} \Rightarrow R_{s}=R_{T}
$$

Recall $R_{\ell}=R_{s}$ so

The PoCSverse
Branching
Networks II
15 of 87
Horton \Leftrightarrow

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

$$
R_{\ell}=R_{s}=R_{T}
$$

Horton and Tokunaga are happy

Altogether then:

$$
\Rightarrow \bar{s}_{\omega} / \bar{s}_{\omega-1}=R_{T} \Rightarrow R_{s}=R_{T}
$$

The PoCSverse Branching Networks II 15 of 87

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

$$
R_{\ell}=R_{s}=R_{T}
$$

And from before:

$$
R_{n}=\frac{\left(2+R_{T}+T_{1}\right)+\sqrt{\left(2+R_{T}+T_{1}\right)^{2}-8 R_{T}}}{2}
$$

Horton and Tokunaga are happy

Some observations:

R R_{n} and R_{ℓ} depend on T_{1} and R_{T}.

The PoCSverse
Branching Networks II 16 of 87

Horton \Leftrightarrow
Tōkūn̄āgà
Reducing Horton
Scaling relations

Models
Nutshell
References

Horton and Tokunaga are happy

Some observations:

R R_{n} and R_{ℓ} depend on T_{1} and R_{T}.
Seems that R_{a} must as well ...

The PoCSverse Branching Networks II 16 of 87

Horton \Leftrightarrow
Tōkūn̄āgā
Reducing Horton
Scaling relations

Models
Nutshell
References

Horton and Tokunaga are happy

The PoCSverse Branching Networks II 16 of 87

Some observations:

\& R_{n} and R_{ℓ} depend on T_{1} and R_{T}.
Seems that R_{a} must as well ...
Suggests Horton's laws must contain some
Scaling relations

Horton and Tokunaga are happy

Branching Networks II 16 of 87

Some observations:

. R_{n} and R_{ℓ} depend on T_{1} and R_{T}.
Seems that R_{a} must as well ...
Suggests Horton's laws must contain some redundancy
We'll in fact see that $R_{a}=R_{n}$.

Scaling relations

Horton and Tokunaga are happy

Some observations:

\& R_{n} and R_{ℓ} depend on T_{1} and R_{T}.
\& Seems that R_{a} must as well ...
Suggests Horton's laws must contain some redundancy
We'll in fact see that $R_{a}=R_{n}$.
Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. ${ }^{[3,4]}$

Horton and Tokunaga are happy

The other way round

Note: We can invert the expresssions for R_{n} and R_{ℓ} to find Tokunaga's parameters in terms of Horton's parameters.

Horton and Tokunaga are happy

The other way round

Note: We can invert the expresssions for R_{n} and R_{ℓ} to find Tokunaga's parameters in terms of Horton's parameters. Branching Networks II 17 of 87

Horton \Leftrightarrow
Tōkūn̄āgā
Reducing Horton
Scaling relations

$$
T_{1}=R_{n}-R_{\ell}-2+2 R_{\ell} / R_{n}
$$

Horton and Tokunaga are happy

The other way round

Note: We can invert the expresssions for R_{n} and R_{ℓ} to find Tokunaga's parameters in terms of Horton's parameters.

$$
T_{1}=R_{n}-R_{\ell}-2+2 R_{\ell} / R_{n}
$$

s Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform) ...

Horton and Tokunaga are friends

From Horton to Tokunaga [2]

(a)

The PoCSverse Branching Networks II 18 of 87

Horton \Leftrightarrow
Tō̄kūn̄āḡā
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Horton and Tokunaga are friends

The PoCSverse Branching Networks II 18 of 87

From Horton to Tokunaga [2]

(a)

- Assume Horton's laws hold for number and length

Horton and Tokunaga are friends

The PoCSverse Branching Networks II 18 of 87

From Horton to Tokunaga [2]

\& Assume Horton's laws hold for number and length

- Start with picture showing an order ω
(a)

(b)
(c)

Reducing Horton
Scaling relations
Fluctuations
Models

Horton and Tokunaga are friends

From Horton to Tokunaga [2]

- Assume Horton's laws hold for number and length
- Start with picture showing an order ω 18 of 87
(a)
(b)
(c)

Reducing Horton
Scaling relations
Fluctuations
Models

R Scale up by a factor of R_{ℓ}, orders increment to $\omega+1$ and ω.

Horton and Tokunaga are friends

From Horton to Tokunaga [2]

(a)
(b)
(c)

\& Assume Horton's laws hold for number and length
\& Start with picture showing an order ω stream and order $\omega-1$ generating and side streams.
. Scale up by a factor of R_{ℓ}, orders increment to $\omega+1$ and ω.

- Maintain drainage density by adding new order $\omega-1$ streams

Reducing Horton
Scaling relations
Fluctuations
Models

Horton and Tokunaga are friends

...and in detail:

Must retain same drainage density.

The PoCSverse
Branching Networks II
19 of 87
Horton \Leftrightarrow
Tōkūn̄āgà
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Horton and Tokunaga are friends

...and in detail:

Must retain same drainage density.
Add an extra $\left(R_{\ell}-1\right)$ first order streams for each original tributary.

Horton and Tokunaga are friends

...and in detail:

Must retain same drainage density.
Add an extra $\left(R_{\ell}-1\right)$ first order streams for each original tributary.
\& Since by definition, an order $\omega+1$ stream segment has T_{ω} order 1 side streams, we have:

Horton and Tokunaga are friends

...and in detail:

Must retain same drainage density.
Add an extra $\left(R_{\ell}-1\right)$ first order streams for each original tributary.
Since by definition, an order $\omega+1$ stream segment References has T_{ω} order 1 side streams, we have:

$$
T_{k}=\left(R_{\ell}-1\right)\left(1+\sum_{i=1}^{k-1} T_{i}\right)
$$

Horton and Tokunaga are friends

...and in detail:

Must retain same drainage density.
Add an extra $\left(R_{\ell}-1\right)$ first order streams for each original tributary.
Since by definition, an order $\omega+1$ stream segment has T_{ω} order 1 side streams, we have:

$$
T_{k}=\left(R_{\ell}-1\right)\left(1+\sum_{i=1}^{k-1} T_{i}\right)
$$

For large ω, Tokunaga's law is the solution-let's check ...

Horton and Tokunaga are friends

Just checking:

\& Substitute Tokunaga's law $T_{i}=T_{1} R_{T}^{i-1}=T_{1} R_{\ell}^{i-1}$ into

$$
T_{k}=\left(R_{\ell}-1\right)\left(1+\sum_{i=1}^{k-1} T_{i}\right)
$$

The PoCSverse Branching Networks II 20 of 87
Horton \Leftrightarrow Tōkūn̄āgā
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Horton and Tokunaga are friends

Just checking:

\& Substitute Tokunaga's law $T_{i}=T_{1} R_{T}^{i-1}=T_{1} R_{\ell}^{i-1}$ into

$$
\begin{gathered}
T_{k}=\left(R_{\ell}-1\right)\left(1+\sum_{i=1}^{k-1} T_{i}\right) \\
T_{k}=\left(R_{\ell}-1\right)\left(1+\sum_{i=1}^{k-1} T_{1} R_{\ell}^{i-1}\right)
\end{gathered}
$$

The PoCSverse Branching Networks II 20 of 87

Horton \Leftrightarrow

Tōkūn̄āgā
Reducing Horton Scaling relations
Fluctuations
Models
Nutshell
References

Horton and Tokunaga are friends

Just checking:

\& Substitute Tokunaga's law $T_{i}=T_{1} R_{T}^{i-1}=T_{1} R_{\ell}^{i-1}$ into

$$
\begin{gathered}
T_{k}=\left(R_{\ell}-1\right)\left(1+\sum_{i=1}^{k-1} T_{i}\right) \\
T_{k}=\left(R_{\ell}-1\right)\left(1+\sum_{i=1}^{k-1} T_{1} R_{\ell}^{i-1}\right) \\
=\left(R_{\ell}-1\right)\left(1+T_{1} \frac{R_{\ell}^{k-1}-1}{R_{\ell}-1}\right)
\end{gathered}
$$

The PoCSverse Branching Networks II 20 of 87
Horton \Leftrightarrow Tōkūn̄āgā
Reducing Horton Scaling relations Fluctuations
Models
Nutshell
References

Horton and Tokunaga are friends

Just checking:

Substitute Tokunaga's law $T_{i}=T_{1} R_{T}^{i-1}=T_{1} R_{\ell}{ }^{i-1}$ into

$$
\begin{gathered}
T_{k}=\left(R_{\ell}-1\right)\left(1+\sum_{i=1}^{k-1} T_{i}\right) \\
T_{k}=\left(R_{\ell}-1\right)\left(1+\sum_{i=1}^{k-1} T_{1} R_{\ell}^{i-1}\right) \\
=\left(R_{\ell}-1\right)\left(1+T_{1} \frac{R_{\ell}^{k-1}-1}{R_{\ell}-1}\right) \\
\simeq\left(R_{\ell}-1\right) T_{1} \frac{R_{\ell}^{k-1}}{R_{\ell}-1}
\end{gathered}
$$

The PoCSverse Branching Networks II 20 of 87
Horton \Leftrightarrow Tōkūn̄āga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Horton and Tokunaga are friends

Just checking:

Substitute Tokunaga's law $T_{i}=T_{1} R_{T}^{i-1}=T_{1} R_{\ell}{ }^{i-1}$ into

$$
\begin{gathered}
T_{k}=\left(R_{\ell}-1\right)\left(1+\sum_{i=1}^{k-1} T_{i}\right) \\
T_{k}=\left(R_{\ell}-1\right)\left(1+\sum_{i=1}^{k-1} T_{1} R_{\ell}^{i-1}\right) \\
=\left(R_{\ell}-1\right)\left(1+T_{1} \frac{R_{\ell}^{k-1}-1}{R_{\ell}-1}\right) \\
\simeq\left(R_{\ell}-1\right) T_{1} \frac{R_{\ell}^{k-1}}{R_{\ell}-1}=T_{1} R_{\ell}^{k-1} \quad \ldots \text { yep. }
\end{gathered}
$$

The PoCSverse Branching Networks II 20 of 87
Horton \Leftrightarrow Tōkūn̄āga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Horton's laws of area and number:

The PoCSverse Branching Networks II 21 of 87
Horton \Leftrightarrow Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

In bottom plots, stream number graph has been flipped vertically.
Highly suggestive that $R_{n} \equiv R_{a} \ldots$

Measuring Horton ratios is tricky:

Measuring Horton ratios is tricky:

How robust are our estimates of ratios?

Rule of thumb: discard data for two smallest and two largest orders.

Mississippi:

ω range	R_{n}	R_{a}	R_{ℓ}	R_{s}	R_{a} / R_{n}
$[2,3]$	5.27	5.26	2.48	2.30	1.00
$[2,5]$	4.86	4.96	2.42	2.31	1.02
$[2,7]$	4.77	4.88	2.40	2.31	1.02
$[3,4]$	4.72	4.91	2.41	2.34	1.04
$[3,6]$	4.70	4.83	2.40	2.35	1.03
$[3,8]$	4.60	4.79	2.38	2.34	1.04
$[4,6]$	4.69	4.81	2.40	2.36	1.02
$[4,8]$	4.57	4.77	2.38	2.34	1.05
$[5,7]$	4.68	4.83	2.36	2.29	1.03
$[6,7]$	4.63	4.76	2.30	2.16	1.03
$[7,8]$	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ / μ	0.045	0.027	0.015	0.031	0.024

Horton \Leftrightarrow Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Amazon:

The PoCSverse Branching Networks II 24 of 87

Horton \Leftrightarrow Tokunaga

ω range	R_{n}	R_{a}	R_{ℓ}	R_{s}	R_{a} / R_{n}
$[2,3]$	4.78	4.71	2.47	2.08	0.99
$[2,5]$	4.55	4.58	2.32	2.12	1.01
$[2,7]$	4.42	4.53	2.24	2.10	1.02
$[3,5]$	4.45	4.52	2.26	2.14	1.01
$[3,7]$	4.35	4.49	2.20	2.10	1.03
$[4,6]$	4.38	4.54	2.22	2.18	1.03
$[5,6]$	4.38	4.62	2.22	2.21	1.06
$[6,7]$	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ / μ	0.038	0.023	0.045	0.042	0.019

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Reducing Horton's laws:

The PoCSverse
Branching
Networks II
25 of 87
Rough first effort to show $R_{n} \equiv R_{a}$:

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Reducing Horton's laws:

 Branching Networks II 25 of 87
Rough first effort to show $R_{n} \equiv R_{a}$:

$a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations

Reducing Horton's laws:

 Branching Networks II 25 of 87
Rough first effort to show $R_{n} \equiv R_{a}$:

$a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
So:

$$
a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathrm{dd}}
$$

Reducing Horton's laws:

 Branching Networks II 25 of 87
Rough first effort to show $R_{n} \equiv R_{a}$:

$a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
s. So :

$$
a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathrm{dd}}
$$

$$
\propto \sum_{\omega=1}^{\Omega}
$$

Reducing Horton's laws:

 Branching Networks II 25 of 87
Rough first effort to show $R_{n} \equiv R_{a}$:

$a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
So:

$$
\begin{aligned}
& a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathrm{dd}} \\
\propto & \sum_{\omega=1}^{\Omega} \underbrace{R_{n}^{\Omega-\omega} \cdot \hat{1}^{n_{\Omega}}}_{n_{\omega}}
\end{aligned}
$$

Reducing Horton's laws:

The PoCSverse Branching Networks II 25 of 87

Rough first effort to show $R_{n} \equiv R_{a}$:

\& $a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
s. So:

$$
\begin{gathered}
a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathrm{dd}} \\
\propto \sum_{\omega=1}^{\Omega} \underbrace{R_{n}^{\Omega-\omega} \cdot \hat{1}^{\Omega}}_{n_{\omega}} \underbrace{\bar{s}_{1} \cdot R_{s}^{\omega-1}}_{\bar{s}_{\omega}}
\end{gathered}
$$

Reducing Horton's laws:

The PoCSverse Branching Networks II 25 of 87

Rough first effort to show $R_{n} \equiv R_{a}$:

$a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density) So:

$$
\begin{gathered}
a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathrm{dd}} \\
\propto \sum_{\omega=1}^{\Omega} \underbrace{R_{n}^{\Omega-\omega} \cdot \overbrace{1}^{n_{\Omega}}}_{n_{\omega}} \underbrace{\bar{s}_{1} \cdot R_{s}^{\omega-1}}_{\bar{s}_{\omega}} \\
=\frac{R_{n}^{\Omega} \bar{s}_{1} \sum_{\omega=1}^{R_{s}}}{\left(\frac{R_{s}}{R_{n}}\right)^{\omega}}
\end{gathered}
$$

Reducing Horton's laws:

The PoCSverse
Branching
Networks II
26 of 87

Continued ...

B

$$
a_{\Omega} \propto \frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega}\left(\frac{R_{s}}{R_{n}}\right)^{\omega}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Reducing Horton's laws:

The PoCSverse
Branching
Networks II
26 of 87

Continued ...

$$
\begin{aligned}
& a_{\Omega} \propto \frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega}\left(\frac{R_{s}}{R_{n}}\right)^{\omega} \\
& =\frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \frac{R_{s}}{R_{n}} \frac{1-\left(R_{s} / R_{n}\right)^{\Omega}}{1-\left(R_{s} / R_{n}\right)}
\end{aligned}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Reducing Horton's laws:

The PoCSverse Branching Networks II 26 of 87

Continued ...

$$
\begin{aligned}
& a_{\Omega} \propto \frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega}\left(\frac{R_{s}}{R_{n}}\right)^{\omega} \\
& =\frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \frac{R_{s}}{R_{n}} \frac{1-\left(R_{s} / R_{n}\right)^{\Omega}}{1-\left(R_{s} / R_{n}\right)} \\
\sim & R_{n}^{\Omega-1} \bar{s}_{1} \frac{1}{1-\left(R_{s} / R_{n}\right)} \text { as } \Omega \nearrow
\end{aligned}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Reducing Horton's laws:

The PoCSverse Branching Networks II 26 of 87

Continued ...

$$
\begin{aligned}
& a_{\Omega} \propto \frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega}\left(\frac{R_{s}}{R_{n}}\right)^{\omega} \\
= & \frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \frac{R_{s}}{R_{n}} \frac{1-\left(R_{s} / R_{n}\right)^{\Omega}}{1-\left(R_{s} / R_{n}\right)} \\
\sim & R_{n}^{\Omega-1} \bar{s}_{1} \frac{1}{1-\left(R_{s} / R_{n}\right)} \text { as } \Omega
\end{aligned}
$$

So, a_{Ω} is growing like R_{n}^{Ω} and therefore:

$$
R_{n} \equiv R_{a}
$$

Reducing Horton's laws:

Branching Networks II
27 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations

Not quite:

...But this only a rough argument as Horton's laws do not imply a strict hierarchy

Reducing Horton's laws:

The PoCSverse

Not quite:

...But this only a rough argument as Horton's laws do not imply a strict hierarchy

Models

Need to account for sidebranching.

Reducing Horton's laws:

The PoCSverse

Not quite:

...But this only a rough argument as Horton's laws do not imply a strict hierarchy
Need to account for sidebranching.

- Insert question from assignment 2[3

Equipartitioning:

The PoCSverse Branching Networks II

Intriguing division of area:

Observe: Combined area of basins of order ω independent of ω.

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Equipartitioning:

Intriguing division of area:

Observe: Combined area of basins of order ω independent of ω.
Not obvious: basins of low orders not necessarily contained in basis on higher orders.

Equipartitioning:

Intriguing division of area:

Observe: Combined area of basins of order ω independent of ω.
Not obvious: basins of low orders not necessarily contained in basis on higher orders.

- Story:

$$
R_{n} \equiv R_{a} \Rightarrow n_{\omega} \bar{a}_{\omega}=\text { const }
$$

Equipartitioning:

Intriguing division of area:

Observe: Combined area of basins of order ω independent of ω.
Not obvious: basins of low orders not necessarily contained in basis on higher orders.
\& Story:

$$
R_{n} \equiv R_{a} \Rightarrow n_{\omega} \bar{a}_{\omega}=\text { const }
$$

Reason:

$$
\begin{gathered}
n_{\omega} \propto\left(R_{n}\right)^{-\omega} \\
\bar{a}_{\omega} \propto\left(R_{a}\right)^{\omega} \propto n_{\omega}^{-1}
\end{gathered}
$$

Equipartitioning:

Some examples:

The PoCSverse Branching Networks II
29 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Neural Reboot: Fwoompf

30 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse
Branching Networks II
31 of 87
Horton \Leftrightarrow
Tokunaga

The story so far:

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse

The story so far:

Natural branching networks are hierarchical, self-similar structures

Scaling laws

The PoCSverse

The story so far:

Natural branching networks are hierarchical, self-similar structures
Hierarchy is mixed

Scaling laws

The PoCSverse Branching Networks II 31 of 87

Horton \Leftrightarrow
Tokunaga

The story so far:

Natural branching networks are hierarchical, self-similar structures
Hierarchy is mixed
Tokunaga's law describes detailed architecture:

$$
T_{k}=T_{1} R_{T}^{k-1} .
$$

Scaling laws

The PoCSverse

The story so far:

Natural branching networks are hierarchical, self-similar structures

- Hierarchy is mixed

R Tokunaga's law describes detailed architecture:
$T_{k}=T_{1} R_{T}^{k-1}$.
B
We have connected Tokunaga's and Horton's laws

Scaling laws

The story so far:

. Natural branching networks are hierarchical, self-similar structures
\&ierarchy is mixed
\& Tokunaga's law describes detailed architecture:
$T_{k}=T_{1} R_{T}^{k-1}$.
8
We have connected Tokunaga's and Horton's laws
Only two Horton laws are independent $\left(R_{n}=R_{a}\right)$

Scaling laws

The story so far:

Natural branching networks are hierarchical, self-similar structures
\&ierarchy is mixed
\& Tokunaga's law describes detailed architecture: $T_{k}=T_{1} R_{T}^{k-1}$.

We have connected Tokunaga's and Horton's laws
R Only two Horton laws are independent ($R_{n}=R_{a}$)
S Only two parameters are independent: $\left(T_{1}, R_{T}\right) \Leftrightarrow\left(R_{n}, R_{s}\right)$

Scaling laws

The PoCSverse
Branching
Networks II
32 of 87
Horton \Leftrightarrow
Tokunaga

A little further ...

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse Branching Networks II
32 of 87
Horton \Leftrightarrow
Tokunaga

A little further ...
 Ignore stream ordering for the moment

Scaling laws

The PoCSverse Branching Networks II
32 of 87
Horton \Leftrightarrow
Tokunaga

A little further ...

Ignore stream ordering for the moment
. Pick a random location on a branching network p.

Scaling laws

A little further ...

Ignore stream ordering for the moment
Pick a random location on a branching network p.
Each point p is associated with a basin and a longest stream length

Scaling laws

A little further ...

- Ignore stream ordering for the moment

Pick a random location on a branching network p.
Each point p is associated with a basin and a longest stream length
Q Qhat is probability that the $p^{\prime} \mathrm{s}$ drainage basin has area a ?

Scaling laws

A little further ...

\& Ignore stream ordering for the moment
Pick a random location on a branching network p.
Each point p is associated with a basin and a longest stream length
Q Qhat is probability that the $p^{\prime} \mathrm{s}$ drainage basin has area a ?
Q: What is probability that the longest stream from p has length ℓ ?

Scaling laws

A little further ...

- Ignore stream ordering for the moment

Pick a random location on a branching network p.
Each point p is associated with a basin and a longest stream length
Q Q: What is probability that the p 's drainage basin has area a ? $P(a) \propto a^{-\tau}$ for large a
Q: What is probability that the longest stream from p has length ℓ ?

Scaling laws

A little further ...

- Ignore stream ordering for the moment

Pick a random location on a branching network p.
Each point p is associated with a basin and a longest stream length
\& Q : What is probability that the p 's drainage basin has area a ? $P(a) \propto a^{-\tau}$ for large a
Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ

Scaling laws

A little further ...

\& Ignore stream ordering for the moment
Pick a random location on a branching network p.
Each point p is associated with a basin and a longest stream length
\& Q : What is probability that the p 's drainage basin has area a ? $P(a) \propto a^{-\tau}$ for large a
Q Q What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
R Roughly observed: $1.3 \lesssim \tau \lesssim 1.5$ and $1.7 \lesssim \gamma \lesssim 2.0$

Scaling laws

The PoCSverse
Branching Networks II
33 of 87
Horton \Leftrightarrow
Tokunaga
Probability distributions with power-law decays
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse
Branching

Probability distributions with power-law decays
We see them everywhere:

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse

Probability distributions with power-law decays

We see them everywhere:
Earthquake magnitudes (Gutenberg-Richter law)

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse Branching Networks II 33 of 87

Horton \Leftrightarrow
Tokunaga

Probability distributions with power-law decays

We see them everywhere:

- Earthquake magnitudes (Gutenberg-Richter law)
- City sizes (Zipf's law)

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse Branching Networks II 33 of 87
Horton \Leftrightarrow
Tokunaga

Probability distributions with power-law decays

We see them everywhere:

- Earthquake magnitudes (Gutenberg-Richter law)
- City sizes (Zipf's law)
- Word frequency (Zipf's law) ${ }^{\text {[22] }}$

Scaling laws

The PoCSverse Branching Networks II 33 of 87

Probability distributions with power-law decays

We see them everywhere:
(1) Earthquake magnitudes (Gutenberg-Richter law)

- City sizes (Zipf's law)
- Word frequency (Zipf's law) ${ }^{[22]}$

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

- Wealth (maybe not-at least heavy tailed)

Scaling laws

Probability distributions with power-law decays

We see them everywhere:

- Earthquake magnitudes (Gutenberg-Richter law)
- City sizes (Zipf's law)
- Word frequency (Zipf's law) ${ }^{[22]}$

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

- Wealth (maybe not-at least heavy tailed)
- Statistical mechanics (phase transitions) ${ }^{[5]}$

Scaling laws

Probability distributions with power-law decays

We see them everywhere:

- Earthquake magnitudes (Gutenberg-Richter law)
- City sizes (Zipf's law)
(7) Word frequency (Zipf's law) ${ }^{[22]}$

Reducing Horton
Scaling relations
Fluctuations
Models

- Wealth (maybe not-at least heavy tailed)
- Statistical mechanics (phase transitions) ${ }^{[5]}$

A big part of the story of complex systems

Scaling laws

Probability distributions with power-law decays

We see them everywhere:

- Earthquake magnitudes (Gutenberg-Richter law)
- City sizes (Zipf's law)
- Word frequency (Zipf's law) ${ }^{\text {[22] }}$
- Wealth (maybe not-at least heavy tailed)
- Statistical mechanics (phase transitions) ${ }^{[5]}$

A big part of the story of complex systems
Arise from mechanisms: growth, randomness, optimization, ...

Scaling laws

Probability distributions with power-law decays

We see them everywhere:

- Earthquake magnitudes (Gutenberg-Richter law)
- City sizes (Zipf's law)
(7) Word frequency (Zipf's law) ${ }^{[22]}$
- Wealth (maybe not-at least heavy tailed)
- Statistical mechanics (phase transitions) ${ }^{[5]}$

A big part of the story of complex systems
Arise from mechanisms: growth, randomness, optimization, ...

- Our task is always to illuminate the mechanism ...

Scaling laws

The PoCSverse
Branching Networks II
34 of 87

Connecting exponents

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse

Connecting exponents

We have the detailed picture of branching networks (Tokunaga and Horton)

Scaling laws

The PoCSverse Branching Networks II

Connecting exponents

We have the detailed picture of branching networks (Tokunaga and Horton)
\& Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story ${ }^{[17,1,2]}$

Scaling laws

Branching

Connecting exponents

We have the detailed picture of branching networks (Tokunaga and Horton)
\& Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story ${ }^{[17,1,2]}$
Let's work on $P(\ell)$...

Scaling laws

Connecting exponents

We have the detailed picture of branching networks (Tokunaga and Horton)
\& Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story ${ }^{[17,1,2]}$
\& Let's work on $P(\ell)$...
Our first fudge: assume Horton's laws hold throughout a basin of order Ω.

Scaling laws

Connecting exponents

We have the detailed picture of branching networks (Tokunaga and Horton)
\& Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story ${ }^{[17,1,2]}$

- Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
(We know they deviate from strict laws for low ω and high ω but not too much.)

Scaling laws

Connecting exponents

We have the detailed picture of branching networks (Tokunaga and Horton)
\& Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story ${ }^{[17,1,2]}$
\& Let's work on $P(\ell)$...
Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
(We know they deviate from strict laws for low ω and high ω but not too much.)
8 Next: place stick between teeth.

Scaling laws

Connecting exponents

We have the detailed picture of branching networks (Tokunaga and Horton)
\& Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story ${ }^{[17,1,2]}$
\& Let's work on $P(\ell)$...
Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
(We know they deviate from strict laws for low ω and high ω but not too much.)
8 Next: place stick between teeth. Bite stick.

Scaling laws

Connecting exponents

We have the detailed picture of branching networks (Tokunaga and Horton)
\& Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story ${ }^{[17,1,2]}$
\& Let's work on $P(\ell)$...
Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
(We know they deviate from strict laws for low ω and high ω but not too much.)
8 Next: place stick between teeth. Bite stick. Proceed.

Scaling laws

The PoCSverse
Branching Networks II
35 of 87
Horton \Leftrightarrow
Finding γ :

Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

Finding γ :

Often useful to work with cumulative distributions, especially when dealing with power-law distributions. Branching Networks II

Scaling laws

Finding γ :

The PoCSverse Branching Networks II

Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
The complementary cumulative distribution turns out to be most useful:

$$
P_{>}\left(\ell_{*}\right)=P\left(\ell>\ell_{*}\right)=\int_{\ell=\ell_{*}}^{\ell_{\max }} P(\ell) \mathrm{d} \ell
$$

Scaling laws

Finding γ :

The PoCSverse Branching Networks II 35 of 87

Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
The complementary cumulative distribution turns out to be most useful:

$$
\begin{gathered}
P_{>}\left(\ell_{*}\right)=P\left(\ell>\ell_{*}\right)=\int_{\ell=\ell_{*}}^{\ell_{\max }} P(\ell) \mathrm{d} \ell \\
P_{>}\left(\ell_{*}\right)=1-P\left(\ell<\ell_{*}\right)
\end{gathered}
$$

Scaling laws

Finding γ :

Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
The complementary cumulative distribution turns out to be most useful:

$$
\begin{gathered}
P_{>}\left(\ell_{*}\right)=P\left(\ell>\ell_{*}\right)=\int_{\ell=\ell_{*}}^{\ell_{\max }} P(\ell) \mathrm{d} \ell \\
P_{>}\left(\ell_{*}\right)=1-P\left(\ell<\ell_{*}\right)
\end{gathered}
$$

Also known as the exceedance probability.

Scaling laws

The PoCSverse Branching

Scaling laws

 Branching Networks II
Finding γ :

The connection between $P(x)$ and $P_{>}(x)$ when $P(x)$ has a power law tail is simple:
Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_{*}

$$
P_{>}\left(\ell_{*}\right)=\int_{\ell=\ell_{*}}^{\ell_{\max }} P(\ell) \mathrm{d} \ell
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

 Branching Networks II
Finding γ :

The connection between $P(x)$ and $P_{>}(x)$ when $P(x)$ has a power law tail is simple:
Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_{*}

$$
\begin{gathered}
P_{>}\left(\ell_{*}\right)=\int_{\ell=\ell_{*}}^{\ell_{\max }} P(\ell) \mathrm{d} \ell \\
\sim \int_{\ell=\ell_{*}}^{\ell_{\max }} \ell^{-\gamma} \mathrm{d} \ell
\end{gathered}
$$

Scaling laws

 Branching Networks IIThe connection between $P(x)$ and $P_{>}(x)$ when $P(x)$ has a power law tail is simple:
Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_{*}

$$
\begin{gathered}
P_{>}\left(\ell_{*}\right)=\int_{\ell=\ell_{*}}^{\ell_{\max }} P(\ell) \mathrm{d} \ell \\
\sim \int_{\ell=\ell_{*}}^{\ell_{\max }} \ell^{-\gamma} \mathrm{d} \ell \\
=\left.\frac{\ell^{-(\gamma-1)}}{-(\gamma-1)}\right|_{\ell=\ell_{.}} ^{\ell_{\max }}
\end{gathered}
$$

Scaling laws

 Branching Networks IIThe connection between $P(x)$ and $P_{>}(x)$ when $P(x)$ has a power law tail is simple:
Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_{*}

$$
\begin{gathered}
P_{>}\left(\ell_{*}\right)=\int_{\ell=\ell_{*}}^{\ell_{\max }} P(\ell) \mathrm{d} \ell \\
\sim \int_{\ell=\ell_{*}}^{\ell_{\max }} \ell^{-\gamma} \mathrm{d} \ell \\
=\left.\frac{\ell^{-(\gamma-1)}}{-(\gamma-1)}\right|_{\ell=\ell_{*}} ^{\ell_{\max }} \\
\propto \ell_{*}^{-(\gamma-1)} \text { for } \ell_{\max } \gg \ell_{*}
\end{gathered}
$$

Scaling laws

The PoCSverse Branching Networks II

Finding γ :

Aim: determine probability of randomly choosing a point on a network with main stream length $>\ell_{*}$

Scaling laws

The PoCSverse Branching Networks II

Finding γ :

Aim: determine probability of randomly choosing a point on a network with main stream length $>\ell_{*}$
Assume some spatial sampling resolution Δ

Models

Scaling laws

Finding γ :

Aim: determine probability of randomly choosing a point on a network with main stream length $>\ell_{*}$
Assume some spatial sampling resolution Δ
Landscape is broken up into grid of $\Delta \times \Delta$ sites

Scaling laws

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length $>\ell_{*}$
Assume some spatial sampling resolution Δ
Landscape is broken up into grid of $\Delta \times \Delta$ sites

$$
P_{>}\left(\ell_{*}\right)=\frac{N_{>}\left(\ell_{*} ; \Delta\right)}{N_{>}(0 ; \Delta)} .
$$

where $N_{>}\left(\ell_{*} ; \Delta\right)$ is the number of sites with main stream length $>\ell_{*}$.

Scaling laws

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length $>\ell_{*}$
Assume some spatial sampling resolution Δ
Landscape is broken up into grid of $\Delta \times \Delta$ sites
Approximate $P_{>}\left(\ell_{*}\right)$ as

$$
P_{>}\left(\ell_{*}\right)=\frac{N_{>}\left(\ell_{*} ; \Delta\right)}{N_{>}(0 ; \Delta)} .
$$

where $N_{>}\left(\ell_{*} ; \Delta\right)$ is the number of sites with main stream length $>\ell_{*}$.
\& Use Horton's law of stream segments:

$$
\bar{s}_{\omega} / \bar{s}_{\omega-1}=R_{s} \ldots
$$

Scaling laws

The PoCSverse
Branching
Networks II
38 of 87
Finding γ :
Set $\ell_{*}=\bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse
Branching
Networks II
38 of 87

Finding γ :

Set $\ell_{*}=\bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$
P_{>}\left(\bar{\ell}_{\omega}\right)=\frac{N_{>}\left(\bar{\ell}_{\omega} ; \Delta\right)}{N_{>}(0 ; \Delta)}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse Branching Networks II 38 of 87

Finding γ :

Set $\ell_{*}=\bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$
P_{>}\left(\bar{\ell}_{\omega}\right)=\frac{N_{>}\left(\bar{\ell}_{\omega} ; \Delta\right)}{N_{>}(0 ; \Delta)} \simeq \frac{\sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} / \Delta}{\sum_{\omega^{\prime}=1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} / \Delta}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse Branching Networks II 38 of 87

Finding γ :

Set $\ell_{*}=\bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$
P_{>}\left(\bar{\ell}_{\omega}\right)=\frac{N_{>}\left(\bar{\ell}_{\omega} ; \Delta\right)}{N_{>}(0 ; \Delta)} \simeq \frac{\sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} / \Delta}{\sum_{\omega^{\prime}=1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} / \Delta}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

- Δ 's cancel

Scaling laws

The PoCSverse Branching Networks II 38 of 87

Finding γ :

Set $\ell_{*}=\bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$
P_{>}\left(\bar{\ell}_{\omega}\right)=\frac{N_{>}\left(\bar{\ell}_{\omega} ; \Delta\right)}{N_{>}(0 ; \Delta)} \simeq \frac{\sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} / \Delta}{\sum_{\omega^{\prime}=1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} / \Delta}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

\& Δ 's cancel

Denominator is $a_{\Omega} \rho_{\mathrm{dd}}$, a constant.

Scaling laws

The PoCSverse Branching Networks II 38 of 87

Finding γ :

Set $\ell_{*}=\bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$
P_{>}\left(\bar{\ell}_{\omega}\right)=\frac{N_{>}\left(\bar{\ell}_{\omega} ; \Delta\right)}{N_{>}(0 ; \Delta)} \simeq \frac{\sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} / \Delta}{\sum_{\omega^{\prime}=1}^{\Omega} n_{\omega^{\prime}} \bar{\delta}_{\omega^{\prime}} / \Delta}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

\& Δ 's cancel

Denominator is $a_{\Omega} \rho_{\mathrm{dd}}$, a constant.
So ...

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}}
$$

Scaling laws

The PoCSverse Branching Networks II 38 of 87

Finding γ :

Set $\ell_{*}=\bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$
P_{>}\left(\bar{\ell}_{\omega}\right)=\frac{N_{>}\left(\bar{\ell}_{\omega} ; \Delta\right)}{N_{>}(0 ; \Delta)} \simeq \frac{\sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} / \Delta}{\sum_{\omega^{\prime}=1}^{\Omega} n_{\omega^{\prime}} \bar{\delta}_{\omega^{\prime}} / \not \subset}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

\& Δ 's cancel

Denominator is $a_{\Omega} \rho_{\mathrm{dd}}$, a constant.
So ...

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} \simeq \sum_{\omega^{\prime}=\omega+1}^{\Omega}
$$

Scaling laws

The PoCSverse Branching Networks II 38 of 87

Finding γ :

Set $\ell_{*}=\bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$
P_{>}\left(\bar{\ell}_{\omega}\right)=\frac{N_{>}\left(\bar{\ell}_{\omega} ; \Delta\right)}{N_{>}(0 ; \Delta)} \simeq \frac{\sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} / \Delta}{\sum_{\omega^{\prime}=1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} / \Delta}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

- Δ 's cancel

Denominator is $a_{\Omega} \rho_{\mathrm{dd}}$, a constant.
So ...using Horton's laws ...

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} \simeq \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(1 \cdot R_{n}^{\Omega-\omega^{\prime}}\right)
$$

Scaling laws

The PoCSverse Branching Networks II 38 of 87

Finding γ :

Set $\ell_{*}=\bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$
P_{>}\left(\bar{\ell}_{\omega}\right)=\frac{N_{>}\left(\bar{\ell}_{\omega} ; \Delta\right)}{N_{>}(0 ; \Delta)} \simeq \frac{\sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} / \Delta}{\sum_{\omega^{\prime}=1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} / \Delta}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

- Δ 's cancel

Denominator is $a_{\Omega} \rho_{\mathrm{dd}}$, a constant.
\&o ... using Horton's laws ...

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} \bar{s}_{\omega^{\prime}} \simeq \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(1 \cdot R_{n}^{\Omega-\omega^{\prime}}\right)\left(\bar{s}_{1} \cdot R_{s}^{\omega^{\prime}-1}\right)
$$

Scaling laws

The PoCSverse
Branching

Finding γ :

We are here:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(1 \cdot R_{n}^{\Omega-\omega^{\prime}}\right)\left(\bar{s}_{1} \cdot R_{s}^{\omega^{\prime}-1}\right)
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse Branching Networks II 39 of 87

Finding γ :

We are here:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(1 \cdot R_{n}^{\Omega-\omega^{\prime}}\right)\left(\bar{s}_{1} \cdot R_{s}^{\omega^{\prime}-1}\right)
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
Cleaning up irrelevant constants:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(\frac{R_{s}}{R_{n}}\right)^{\omega^{\prime}}
$$

Scaling laws

The PoCSverse Branching Networks II

Finding γ :

We are here:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(1 \cdot R_{n}^{\Omega-\omega^{\prime}}\right)\left(\bar{s}_{1} \cdot R_{s}^{\omega^{\prime}-1}\right)
$$

Cleaning up irrelevant constants:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(\frac{R_{s}}{R_{n}}\right)^{\omega^{\prime}}
$$

Change summation order by substituting $\omega^{\prime \prime}=\Omega-\omega^{\prime}$.

Scaling laws

The PoCSverse Branching Networks II 39 of 87

Finding γ :

We are here:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(1 \cdot R_{n}^{\Omega-\omega^{\prime}}\right)\left(\bar{s}_{1} \cdot R_{s}^{\omega^{\prime}-1}\right)
$$

Cleaning up irrelevant constants:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(\frac{R_{s}}{R_{n}}\right)^{\omega^{\prime}}
$$

Change summation order by substituting $\omega^{\prime \prime}=\Omega-\omega^{\prime}$.
Sum is now from $\omega^{\prime \prime}=0$ to $\omega^{\prime \prime}=\Omega-\omega-1$

Scaling laws

Finding γ :

We are here:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(1 \cdot R_{n}^{\Omega-\omega^{\prime}}\right)\left(\bar{s}_{1} \cdot R_{s}^{\omega^{\prime}-1}\right)
$$

Cleaning up irrelevant constants:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(\frac{R_{s}}{R_{n}}\right)^{\omega^{\prime}}
$$

Change summation order by substituting $\omega^{\prime \prime}=\Omega-\omega^{\prime}$.
Sum is now from $\omega^{\prime \prime}=0$ to $\omega^{\prime \prime}=\Omega-\omega-1$ (equivalent to $\omega^{\prime}=\Omega$ down to $\omega^{\prime}=\omega+1$)

Scaling laws

The PoCSverse
Branching Networks II
40 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime \prime}=0}^{\Omega-\omega-1}\left(\frac{R_{s}}{R_{n}}\right)^{\Omega-\omega^{\prime \prime}}
$$

Models
Nutshell
References

Scaling laws

The PoCSverse
Branching
Networks II
40 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime \prime}=0}^{\Omega-\omega-1}\left(\frac{R_{s}}{R_{n}}\right)^{\Omega-\omega^{\prime \prime}} \propto \sum_{\omega^{\prime \prime}=0}^{\Omega-\omega-1}\left(\frac{R_{n}}{R_{s}}\right)^{\omega^{\prime \prime}}
$$

Models
Nutshell
References

Scaling laws

The PoCSverse Branching Networks II 40 of 87
Horton \Leftrightarrow
Tokunaga
Finding γ :
s

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime \prime}=0}^{\Omega-\omega-1}\left(\frac{R_{s}}{R_{n}}\right)^{\Omega-\omega^{\prime \prime}} \propto \sum_{\omega^{\prime \prime}=0}^{\Omega-\omega-1}\left(\frac{R_{n}}{R_{s}}\right)^{\omega^{\prime \prime}}
$$

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Since $R_{n}>R_{s}$ and $1 \ll \omega \ll \Omega$,

Scaling laws

The PoCSverse Branching Networks II 40 of 87
Horton \Leftrightarrow
Finding γ :

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime \prime}=0}^{\Omega-\omega-1}\left(\frac{R_{s}}{R_{n}}\right)^{\Omega-\omega^{\prime \prime}} \propto \sum_{\omega^{\prime \prime}=0}^{\Omega-\omega-1}\left(\frac{R_{n}}{R_{s}}\right)^{\omega^{\prime \prime}}
$$

Tokunaga
Reducing Horton Scaling relations Fluctuations

Models
Nutshell
References

Since $R_{n}>R_{s}$ and $1 \ll \omega \ll \Omega$,

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto\left(\frac{R_{n}}{R_{s}}\right)^{\Omega-\omega}
$$

again using $\sum_{i=0}^{n-1} a^{i}=\left(a^{n}-1\right) /(a-1)$

Scaling laws

The PoCSverse Branching Networks II 40 of 87
Horton \Leftrightarrow

Finding γ :

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto \sum_{\omega^{\prime \prime}=0}^{\Omega-\omega-1}\left(\frac{R_{s}}{R_{n}}\right)^{\Omega-\omega^{\prime \prime}} \propto \sum_{\omega^{\prime \prime}=0}^{\Omega-\omega-1}\left(\frac{R_{n}}{R_{s}}\right)^{\omega^{\prime \prime}}
$$

Tokunaga
Reducing Horton Scaling relations Fluctuations

Models
Nutshell
References

Since $R_{n}>R_{s}$ and $1 \ll \omega \ll \Omega$,

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto\left(\frac{R_{n}}{R_{s}}\right)^{\Omega-\omega} \propto\left(\frac{R_{n}}{R_{s}}\right)^{-\omega}
$$

again using $\sum_{i=0}^{n-1} a^{i}=\left(a^{n}-1\right) /(a-1)$

Scaling laws

The PoCSverse
Branching

Finding γ :

Nearly there:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto\left(\frac{R_{n}}{R_{s}}\right)^{-\omega}
$$

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse
Branching

Finding γ :

Nearly there:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto\left(\frac{R_{n}}{R_{s}}\right)^{-\omega}=e^{-\omega \ln \left(R_{n} / R_{s}\right)}
$$

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse Branching Networks II 41 of 87

Horton \Leftrightarrow
Tokunaga

Finding γ :

Nearly there:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto\left(\frac{R_{n}}{R_{s}}\right)^{-\omega}=e^{-\omega \ln \left(R_{n} / R_{s}\right)}
$$

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
Need to express right hand side in terms of $\bar{\ell}_{\omega}$.

Scaling laws

The PoCSverse Branching Networks II 41 of 87
Horton \Leftrightarrow
Tokunaga

Finding γ :

Nearly there:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto\left(\frac{R_{n}}{R_{s}}\right)^{-\omega}=e^{-\omega \ln \left(R_{n} / R_{s}\right)}
$$

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
, Need to express right hand side in terms of $\bar{\ell}_{\omega}$. R Recall that $\bar{\ell}_{\omega} \simeq \bar{\ell}_{1} R_{\ell}^{\omega-1}$.

Scaling laws

The PoCSverse Branching Networks II 41 of 87
Horton \Leftrightarrow
Tokunaga

Finding γ :

Nearly there:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto\left(\frac{R_{n}}{R_{s}}\right)^{-\omega}=e^{-\omega \ln \left(R_{n} / R_{s}\right)}
$$

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
Need to express right hand side in terms of $\bar{\ell}_{\omega}$. Recall that $\bar{\ell}_{\omega} \simeq \bar{\ell}_{1} R_{\ell}^{\omega-1}$.
8

$$
\bar{\ell}_{\omega} \propto R_{\ell}^{\omega}=R_{s}^{\omega}=e^{\omega \ln R_{s}}
$$

Scaling laws

The PoCSverse
Branching
Networks II
Finding γ :
Therefore:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto e^{-\omega \ln \left(R_{n} / R_{s}\right)}
$$

42 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse
Branching
Networks II

Finding γ :

Therefore:

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto e^{-\omega \ln \left(R_{n} / R_{s}\right)}=\left(e^{\omega \ln R_{s}}\right)^{-\ln \left(R_{n} / R_{s}\right) / \ln \left(R_{s}\right)}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse
Branching
Networks II
42 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto e^{-\omega \ln \left(R_{n} / R_{s}\right)}=\left(e^{\omega \ln R_{s}}\right)^{-\ln \left(R_{n} / R_{s}\right) / \ln \left(R_{s}\right)}
$$

$$
\propto \bar{\ell}_{\omega}-\ln \left(R_{n} / R_{s}\right) / \ln R_{s}
$$

Scaling laws

The PoCSverse
Branching

Reducing Horton

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto e^{-\omega \ln \left(R_{n} / R_{s}\right)}=\left(e^{\omega \ln R_{s}}\right)^{-\ln \left(R_{n} / R_{s}\right) / \ln \left(R_{s}\right)}
$$

Scaling relations

$$
\begin{aligned}
& \propto \bar{\ell}_{\omega}-\ln \left(R_{n} / R_{s}\right) / \ln R_{s} \\
& =\bar{\ell}_{\omega}^{-\left(\ln R_{n}-\ln R_{s}\right) / \ln R_{s}}
\end{aligned}
$$

Scaling laws

The PoCSverse
Branching

Reducing Horton

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto e^{-\omega \ln \left(R_{n} / R_{s}\right)}=\left(e^{\omega \ln R_{s}}\right)^{-\ln \left(R_{n} / R_{s}\right) / \ln \left(R_{s}\right)}
$$

Scaling relations

$$
\begin{aligned}
& \propto \bar{\ell}_{\omega}-\ln \left(R_{n} / R_{s}\right) / \ln R_{s} \\
& =\bar{\ell}_{\omega}^{-\left(\ln R_{n}-\ln R_{s}\right) / \ln R_{s}} \\
& =\bar{\ell}_{\omega}^{-\ln R_{n} / \ln R_{s}+1}
\end{aligned}
$$

Scaling laws

The PoCSverse
Branching

Reducing Horton

$$
P_{>}\left(\bar{\ell}_{\omega}\right) \propto e^{-\omega \ln \left(R_{n} / R_{s}\right)}=\left(e^{\omega \ln R_{s}}\right)^{-\ln \left(R_{n} / R_{s}\right) / \ln \left(R_{s}\right)}
$$

Scaling relations

$$
\begin{gathered}
\propto \bar{\ell}_{\omega}-\ln \left(R_{n} / R_{s}\right) / \ln R_{s} \\
=\bar{\ell}_{\omega}^{-}\left(\ln R_{n}-\ln R_{s}\right) / \ln R_{s} \\
=\bar{\ell}_{\omega}^{-\ln R_{n} / \ln R_{s}+1} \\
=\bar{\ell}_{\omega}^{-\gamma+1}
\end{gathered}
$$

Scaling laws

The PoCSverse
Branching
Networks II
43 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton
And so we have:
Scaling relations

$$
\gamma=\ln R_{n} / \ln R_{s}
$$

Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse Branching Networks II 43 of 87

Finding γ :

And so we have:

$$
\gamma=\ln R_{n} / \ln R_{s}
$$

R Proceeding in a similar fashion, we can show

$$
\tau=2-\ln R_{s} / \ln R_{n}=2-1 / \gamma
$$

Insert question from assignment 2 (3
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse Branching Networks II 43 of 87

Finding γ :

And so we have:

$$
\gamma=\ln R_{n} / \ln R_{s}
$$

Reducing Horton
Scaling relations
Fluctuations
Models

$$
\tau=2-\ln R_{s} / \ln R_{n}=2-1 / \gamma
$$

Insert question from assignment 2 (3

B
Such connections between exponents are called scaling relations

Scaling laws

Finding γ :

And so we have:

$$
\gamma=\ln R_{n} / \ln R_{s}
$$

The PoCSverse Branching Networks II 43 of 87

$$
\tau=2-\ln R_{s} / \ln R_{n}=2-1 / \gamma
$$

Insert question from assignment $2 \times$

\&
Such connections between exponents are called scaling relations
Let's connect to one last relationship: Hack's law

Scaling laws

The PoCSverse
Branching Networks II
44 of 87

Hack's law: ${ }^{[6]}$

Horton \Leftrightarrow
Tokunaga
Reducing Horton

$$
\ell \propto a^{h}
$$

Scaling relations

Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse
Branching

Hack's law: ${ }^{[6]}$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scaling laws

The PoCSverse Branching Networks II
Horton \Leftrightarrow
Tokunaga

Hack's law: ${ }^{[6]}$

$$
\ell \propto a^{h}
$$

R Typically observed that $0.5 \lesssim h \lesssim 0.7$.
昤 Use Horton laws to connect h to Horton ratios:

Reducing Horton

$$
\bar{\ell}_{\omega} \propto R_{s}^{\omega} \text { and } \bar{a}_{\omega} \propto R_{n}^{\omega}
$$

Scaling laws

The PoCSverse Branching Networks II
Horton \Leftrightarrow
Tokunaga

Hack's law: ${ }^{[6]}$

$$
\ell \propto a^{h}
$$

R Typically observed that $0.5 \lesssim h \lesssim 0.7$.
. Use Horton laws to connect h to Horton ratios:

Reducing Horton

$$
\bar{\ell}_{\omega} \propto R_{s}^{\omega} \text { and } \bar{a}_{\omega} \propto R_{n}^{\omega}
$$

Observe:

$$
\bar{\ell}_{\omega} \propto e^{\omega \ln R_{s}}
$$

Scaling laws

Hack's law: ${ }^{[6]}$

$$
\ell \propto a^{h}
$$

R Typically observed that $0.5 \lesssim h \lesssim 0.7$.
. Use Horton laws to connect h to Horton ratios:

Reducing Horton

$$
\bar{\ell}_{\omega} \propto R_{s}^{\omega} \text { and } \bar{a}_{\omega} \propto R_{n}^{\omega}
$$

- Observe:

$$
\bar{\ell}_{\omega} \propto e^{\omega \ln R_{s}} \propto\left(e^{\omega \ln R_{n}}\right)^{\ln R_{s} / \ln R_{n}}
$$

Scaling laws

The PoCSverse Branching Networks II

Hack's law: ${ }^{[6]}$

Horton \Leftrightarrow
Tokunaga

$$
\ell \propto a^{h}
$$

R Typically observed that $0.5 \lesssim h \lesssim 0.7$.
. Use Horton laws to connect h to Horton ratios:
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

$$
\bar{\ell}_{\omega} \propto R_{s}^{\omega} \text { and } \bar{a}_{\omega} \propto R_{n}^{\omega}
$$

Observe:

$$
\bar{\ell}_{\omega} \propto e^{\omega \ln R_{s}} \propto\left(e^{\omega \ln R_{n}}\right)^{\ln R_{s} / \ln R_{n}}
$$

$\propto\left(R_{n}^{\omega}\right)^{\ln R_{s} / \ln R_{n}}$

Scaling laws

The PoCSverse Branching Networks II

Hack's law: ${ }^{[6]}$

Horton \Leftrightarrow
Tokunaga

$$
\ell \propto a^{h}
$$

R Typically observed that $0.5 \lesssim h \lesssim 0.7$.
. Use Horton laws to connect h to Horton ratios:
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

$$
\bar{\ell}_{\omega} \propto R_{s}^{\omega} \text { and } \bar{a}_{\omega} \propto R_{n}^{\omega}
$$

(s) Observe:

$$
\bar{\ell}_{\omega} \propto e^{\omega \ln R_{s}} \propto\left(e^{\omega \ln R_{n}}\right)^{\ln R_{s} / \ln R_{n}}
$$

$\propto\left(R_{n}^{\omega}\right)^{\ln R_{s} / \ln R_{n}} \propto \bar{a}_{\omega}^{\ln R_{s} / \ln R_{n}}$

Scaling laws

The PoCSverse Branching Networks II 44 of 87

Hack's law: ${ }^{[6]}$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

$$
\bar{\ell}_{\omega} \propto R_{s}^{\omega} \text { and } \bar{a}_{\omega} \propto R_{n}^{\omega}
$$

- Observe:

$$
\bar{\ell}_{\omega} \propto e^{\omega \ln R_{s}} \propto\left(e^{\omega \ln R_{n}}\right)^{\ln R_{s} / \ln R_{n}}
$$

$$
\propto\left(R_{n}^{\omega}\right)^{\ln R_{s} / \ln R_{n}} \propto \bar{a}_{\omega}^{\ln R_{s} / \ln R_{n}} \Rightarrow h=\ln R_{s} / \ln R_{n}
$$

We mentioned there were a good number

 of 'laws': ${ }^{[2]}$
Relation: Name or description:

$$
\begin{aligned}
T_{k}=T_{1}\left(R_{T}\right)^{k-1} & \text { Tokunaga's law } \\
\ell \sim L^{d} & \text { self-affinity of single channels } \\
n_{\omega} / n_{\omega+1}=R_{n} & \text { Horton's law of stream numbers } \\
\bar{\ell}_{\omega+1} / \ell_{\omega}=R_{\ell} & \text { Horton's law of main stream lengths } \\
\bar{a}_{\omega+1} / \bar{a}_{\omega}=R_{a} & \text { Horton's law of basin areas } \\
\bar{s}_{\omega+1} / \bar{s}_{\omega}=R_{s} & \text { Horton's law of stream segment lengths } \\
L_{\perp} \sim L^{H} & \text { scaling of basin widths } \\
P(a) \sim a^{-\tau} & \text { probability of basin areas } \\
P(\ell) \sim \ell^{-\gamma} & \text { probability of stream lengths } \\
\ell \sim a^{h} & \text { Hack's law } \\
a \sim L^{D} & \text { scaling of basin areas } \\
\Lambda \sim a^{\beta} & \text { Langbein's law } \\
\lambda \sim L^{\varphi} & \text { variation of Langbein's law }
\end{aligned}
$$

ng relations

Connecting exponents

The PoCSverse Branching Networks II 46 of 87
Only 3 parameters are independent:
e.g., take d, R_{n}, and R_{s}

relation:

$\ell \sim L^{d}$
$T_{k}=T_{1}\left(R_{T}\right)^{k-1}$ scaling relation/parameter: d

$$
n_{\omega} / n_{\omega+1}=R_{n} \quad R_{n}
$$

$$
\bar{a}_{\omega+1} / \bar{a}_{\omega}=R_{a} \quad R_{a}=R_{n}
$$

$$
\bar{\ell}_{\omega+1} / \bar{\ell}_{\omega}=R_{\ell} \quad R_{\ell}=R_{s}
$$

$$
\ell \sim a^{h} \quad h=\ln R_{s} / \ln R_{n}
$$

$$
a \sim L^{D} \quad D=d / h
$$

$$
L_{\perp} \sim L^{H} \quad H=d / h-1
$$

$$
P(\bar{a}) \sim a^{-\tau} \quad \tau=2-h
$$

$$
P(\ell) \sim \ell^{-\gamma} \quad \gamma=1 / h
$$

$$
\Lambda \sim a^{\beta} \quad \beta=1+h
$$

$$
\lambda \sim L^{\varphi}
$$

$$
\varphi=d
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scheidegger's model

The PoCSverse
Branching Networks II 47 of 87

Directed random networks ${ }^{[11,12]}$

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

$$
P(\searrow)=P(\swarrow)=1 / 2
$$

Runctional form of all scaling laws exhibited but exponents differ from real world ${ }^{[15,16,14]}$
Useful and interesting test case

A toy model-Scheidegger's model

Random walk basins:

Boundaries of basins are random walks

Scheidegger's model

The PoCSverse Branching Networks II 49 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scheidegger's model

The PoCSverse
Branching

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scheidegger's model

The PoCSverse
Branching

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$
P(n) \sim \frac{1}{2 \sqrt{\pi}} n^{-3 / 2} .
$$

and so $P(\ell) \propto \ell^{-3 / 2}$.

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Scheidegger's model

The PoCSverse Branching Networks II 50 of 87

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$
P(n) \sim \frac{1}{2 \sqrt{\pi}} n^{-3 / 2} .
$$

and so $P(\ell) \propto \ell^{-3 / 2}$.
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
Typical area for a walk of length n is $\propto n^{3 / 2}$:

$$
\ell \propto a^{2 / 3}
$$

Scheidegger's model

The PoCSverse Branching Networks II 50 of 87

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$
P(n) \sim \frac{1}{2 \sqrt{\pi}} n^{-3 / 2} .
$$

and so $P(\ell) \propto \ell^{-3 / 2}$.
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
Typical area for a walk of length n is $\propto n^{3 / 2}$:

$$
\ell \propto a^{2 / 3} .
$$

Find $\tau=4 / 3, h=2 / 3, \gamma=3 / 2, d=1$.

Scheidegger's model

The PoCSverse Branching Networks II 50 of 87

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$
P(n) \sim \frac{1}{2 \sqrt{\pi}} n^{-3 / 2} .
$$

Horton \Leftrightarrow Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
and so $P(\ell) \propto \ell^{-3 / 2}$.
Typical area for a walk of length n is $\propto n^{3 / 2}$:

$$
\ell \propto a^{2 / 3}
$$

Find $\tau=4 / 3, h=2 / 3, \gamma=3 / 2, d=1$.
Note $\tau=2-h$ and $\gamma=1 / h$.

Scheidegger's model

The PoCSverse Branching Networks II 50 of 87

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$
P(n) \sim \frac{1}{2 \sqrt{\pi}} n^{-3 / 2} .
$$

and so $P(\ell) \propto \ell^{-3 / 2}$.
Typical area for a walk of length n is $\propto n^{3 / 2}$:

$$
\ell \propto a^{2 / 3}
$$

s. Find $\tau=4 / 3, h=2 / 3, \gamma=3 / 2, d=1$.

Note $\tau=2-h$ and $\gamma=1 / h$.
R R_{n} and R_{ℓ} have not been derived analytically.

Equipartitioning reexamined:

The PoCSverse Branching Networks II

Equipartitioning

What about

$$
P(a) \sim a^{-\tau}
$$

Reducing Horton

Equipartitioning

What about

$$
P(a) \sim a^{-\tau} \quad ?
$$

Reducing Horton

Models
Nutshell
References

$$
a P(a) \sim a^{-\tau+1} \neq \text { const }
$$

Equipartitioning

The PoCSverse Branching Networks II 52 of 87
Horton \Leftrightarrow
Tokunaga

Reducing Horton
What about

$$
P(a) \sim a^{-\tau} \quad ?
$$

$$
a P(a) \sim a^{-\tau+1} \neq \text { const }
$$

R $P(a)$ overcounts basins within basins ...

Equipartitioning

What about

$$
P(a) \sim a^{-\tau} \quad ?
$$

$$
a P(a) \sim a^{-\tau+1} \neq \text { const }
$$

- $P(a)$ overcounts basins within basins ...
while stream ordering separates basins ...

The PoCSverse

Hard neural reboot (sound matters):

Horton \Leftrightarrow
Tokunaga
Reducing Horton

Scaling relations

Fluctuations
Models
Nutshell
References
https://twitter.com/round_boys/status/951873765964681216

Fluctuations

Branching
Networks II
54 of 87
Horton \Leftrightarrow
Tokunaga

Moving beyond the mean:

Fluctuations

The PoCSverse Branching Networks II 54 of 87

Horton \Leftrightarrow
Tokunaga

Moving beyond the mean:

Reducing Horton
Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$
\bar{s}_{\omega} / \bar{s}_{\omega-1}=R_{s}
$$

Scaling relations
Fluctuations
Models

Fluctuations

The PoCSverse Branching Networks II 54 of 87

Horton \Leftrightarrow
Tokunaga

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$
\bar{s}_{\omega} / \bar{s}_{\omega-1}=R_{s}
$$

Natural generalization to consider relationships between probability distributions

Fluctuations

The PoCSverse Branching Networks II 54 of 87
Horton \Leftrightarrow Tokunaga

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$
\bar{s}_{\omega} / \bar{s}_{\omega-1}=R_{s}
$$

Natural generalization to consider relationships between probability distributions
. Yields rich and full description of branching network structure

Fluctuations

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$
\bar{s}_{\omega} / \bar{s}_{\omega-1}=R_{s}
$$

. Natural generalization to consider relationships between probability distributions
\&ields rich and full description of branching network structure
R See into the heart of randomness ...

A toy model-Scheidegger's model

Directed random networks ${ }^{[11,12]}$

$$
P(\searrow)=P(\swarrow)=1 / 2
$$

\& Flow is directed downwards

The PoCSverse
Branching Networks II 55 of 87
Horton \Leftrightarrow Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Horton's laws

The PoCSverse
Branching
Networks II
56 of 87
\& $\bar{\ell}_{\omega} \propto\left(R_{\ell}\right)^{\omega} \Rightarrow N(\ell \mid \omega)=\left(R_{n} R_{\ell}\right)^{-\omega} F_{\ell}\left(\ell / R_{\ell}^{\omega}\right)$
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Horton's laws

The PoCSverse
Branching
Networks II
56 of 87
($\bar{\ell}_{\omega} \propto\left(R_{\ell}\right)^{\omega} \Rightarrow N(\ell \mid \omega)=\left(R_{n} R_{\ell}\right)^{-\omega} F_{\ell}\left(\ell / R_{\ell}^{\omega}\right)$
\& $\bar{a}_{\omega} \propto\left(R_{a}\right)^{\omega} \Rightarrow N(a \mid \omega)=\left(R_{n}^{2}\right)^{-\omega} F_{a}\left(a / R_{n}^{\omega}\right)$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Horton's laws

The PoCSverse
Branching
Networks II
56 of 87
\& $\bar{\ell}_{\omega} \propto\left(R_{\ell}\right)^{\omega} \Rightarrow N(\ell \mid \omega)=\left(R_{n} R_{\ell}\right)^{-\omega} F_{\ell}\left(\ell / R_{\ell}^{\omega}\right)$
\& $\bar{a}_{\omega} \propto\left(R_{a}\right)^{\omega} \Rightarrow N(a \mid \omega)=\left(R_{n}^{2}\right)^{-\omega} F_{a}\left(a / R_{n}^{\omega}\right)$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Horton's laws

The PoCSverse Branching Networks II 56 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton Scaling relations

Scaling collapse works well for intermediate
orders

Fluctuations

Models
Nutshell
References

Generalizing Horton's laws

The PoCSverse Branching Networks II 56 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton

Scaling collapse works well for intermediate orders
All moments grow exponentially with order

Generalizing Horton's laws

The PoCSverse Branching Networks II 57 of 87

Horton \Leftrightarrow
Tokunaga

How well does overall basin fit internal pattern?

Reducing Horton
Scaling relations

Generalizing Horton's laws

The PoCSverse Branching Networks II 57 of 87

Horton \Leftrightarrow
Tokunaga

How well does overall basin fit internal pattern?

Actual length $=4920$ km (at 1 km res)

Generalizing Horton's laws

The PoCSverse Branching Networks II 57 of 87

Horton \Leftrightarrow
Tokunaga
How well does overall basin fit internal pattern?

- Actual length $=4920$ km (at 1 km res)
Predicted Mean length $=11100 \mathrm{~km}$

Generalizing Horton's laws

The PoCSverse Branching Networks II 57 of 87

Horton \Leftrightarrow
Tokunaga
How well does overall basin fit internal pattern?

. 8 Actual length $=4920$ km (at 1 km res)
\& Predicted Mean length $=11100 \mathrm{~km}$
Predicted Std dev = 5600 km

Reducing Horton
Scaling relations

Fluctuations

Models
Nutshell
References

Generalizing Horton's laws

The PoCSverse Branching Networks II 57 of 87

Horton \Leftrightarrow
Tokunaga
How well does overall basin fit internal pattern?

- Actual length $=4920$ km (at 1 km res)
\& Predicted Mean length $=11100 \mathrm{~km}$
Predicted Std dev = 5600 km
Actual length/Mean length $=44 \%$

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

8 Std dev=

Generalizing Horton's laws

The PoCSverse Branching Networks II 57 of 87

Horton \Leftrightarrow
Tokunaga
How well does overall basin fit internal pattern?

[10-Dec-1999 peter dodds]

- Actual length $=4920$ km (at 1 km res)
\& Predicted Mean length $=11100 \mathrm{~km}$
. Predicted Std dev = 5600 km
Actual length/Mean length $=44$ \%
Okay.

Generalizing Horton's laws

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10^{3} km):

basin:	ℓ_{Ω}	ℓ_{Ω}	σ_{ℓ}	$\ell_{\Omega} / \ell_{\Omega}$	$\sigma_{\ell} / \ell_{\Omega}$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	a_{Ω}	\bar{a}_{Ω}	σ_{a}	$a_{\Omega} / \bar{a}_{\Omega}$	$\sigma_{a} / \bar{a}_{\Omega}$
Mississippi	2.74	7.55	5.58	0.36	0.74
Amazon	5.40	9.07	8.04	0.60	0.89
Nile	3.08	0.96	0.79	3.19	0.82
Congo	3.70	10.09	8.28	0.37	0.82
Kansas	0.14	0.49	0.42	0.28	0.86

Combining stream segments distributions:

Stream segments sum to give main stream lengths

$$
\ell_{\omega}=\sum_{\mu=1}^{\mu=\omega} s_{\mu}
$$

Combining stream segments distributions:

The PoCSverse Branching Networks II 59 of 87

B
Stream segments sum to give main stream lengths

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
$P\left(\ell_{\omega}\right)$ is a convolution of distributions for the s_{ω}

Generalizing Horton's laws

The PoCSverse Branching Networks II 60 of 87

Sum of variables $\ell_{\omega}=\sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$
N(\ell \mid \omega)=N(s \mid 1) * N(s \mid 2) * \cdots * N(s \mid \omega)
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Horton's laws

The PoCSverse Branching Networks II 60 of 87

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

$$
\begin{gathered}
N(s \mid \omega)=\frac{1}{R_{n}^{\omega} R_{\ell}^{\omega}} F\left(s / R_{\ell}^{\omega}\right) \\
F(x)=e^{-x / \xi}
\end{gathered}
$$

Mississippi: $\xi \simeq 900 \mathrm{~m}$.

Generalizing Horton's laws

R Next level up: Main stream length distributions must combine to give overall distribution for stream length

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Horton's laws

The PoCSverse Branching Networks II 61 of 87

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
\& $P(\ell) \sim \ell^{-\gamma}$
Another round of convolutions ${ }^{[3]}$
\& Interesting ...

Generalizing Horton's laws

The PoCSverse Branching Networks II 62 of 87

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
$P\left(n_{1,6}\right)$ versus
$P\left(a_{6}\right)$ for a randomly selected $\omega=6$ basin.

Generalizing Tokunaga's law

The PoCSverse Branching Networks II 63 of 87

Scheidegger:

Observe exponential distributions for $T_{\mu, \nu}$
Scaling collapse works using R_{s}

Generalizing Tokunaga's law

The PoCSverse Branching Networks II 64 of 87

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Same data collapse for Mississippi ...

Generalizing Tokunaga's law

 Branching Networks II 65 of 87Horton \Leftrightarrow
Tokunaga
So

$$
P\left(T_{\mu, \nu}\right)=\left(R_{s}\right)^{\mu-\nu-1} P_{t}\left[T_{\mu, \nu} /\left(R_{s}\right)^{\mu-\nu-1}\right]
$$

where

$$
\begin{aligned}
& P_{t}(z)=\frac{1}{\xi_{t}} e^{-z / \xi_{t}} \\
& P\left(s_{\mu}\right) \Leftrightarrow P\left(T_{\mu, \nu}\right)
\end{aligned}
$$

Exponentials arise from randomness.
R Look at joint probability $P\left(s_{\mu}, T_{\mu, \nu}\right)$.

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Tokunaga's law

Network architecture:

\& Inter-tributary lengths
exponentially distributed
Leads to random spatial distribution of stream segments

The PoCSverse Branching Networks II 66 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Tokunaga's law

The PoCSverse

Follow streams segments down stream from their beginning

Reducing Horton

Generalizing Tokunaga's law

Branching Networks II

Follow streams segments down stream from their beginning

Probability (or rate) of an order μ stream segment terminating is constant:

Reducing Horton
Scaling relations
Fluctuations
Models

$$
\tilde{p}_{\mu} \simeq 1 /\left(R_{s}\right)^{\mu-1} \xi_{s}
$$

Generalizing Tokunaga's law

Follow streams segments down stream from their beginning

Probability (or rate) of an order μ stream segment terminating is constant:

Reducing Horton

$$
\tilde{p}_{\mu} \simeq 1 /\left(R_{s}\right)^{\mu-1} \xi_{s}
$$

Probability decays exponentially with stream order

Generalizing Tokunaga's law

Follow streams segments down stream from their beginning

Probability (or rate) of an order μ stream segment terminating is constant:

$$
\tilde{p}_{\mu} \simeq 1 /\left(R_{s}\right)^{\mu-1} \xi_{s}
$$

Probability decays exponentially with stream order
\& Inter-tributary lengths exponentially distributed

Generalizing Tokunaga's law

Follow streams segments down stream from their beginning
8
Probability (or rate) of an order μ stream segment terminating is constant:

$$
\tilde{p}_{\mu} \simeq 1 /\left(R_{s}\right)^{\mu-1} \xi_{s}
$$

R Probability decays exponentially with stream order
R Inter-tributary lengths exponentially distributed
R \Rightarrow random spatial distribution of stream segments

Generalizing Tokunaga's law

Branching Networks II 68 of 87

Tokunaga's law:

- Joint distribution for generalized version of

$$
P\left(s_{\mu}, T_{\mu, \nu}\right)=\tilde{p}_{\mu}\binom{s_{\mu}-1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}}\left(1-p_{\nu}-\tilde{p}_{\mu}\right)^{s_{\mu}-T_{\mu, \nu}-1}
$$

where
(1) $p_{\nu}=$ probability of absorbing an order ν side stream

Generalizing Tokunaga's law

The PoCSverse Branching Networks II 68 of 87

Joint distribution for generalized version of Tokunaga's law:
$P\left(s_{\mu}, T_{\mu, \nu}\right)=\tilde{p}_{\mu}\binom{s_{\mu}-1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}}\left(1-p_{\nu}-\tilde{p}_{\mu}\right)^{s_{\mu}-T_{\mu, \nu}-1}$
where
(1) $p_{\nu}=$ probability of absorbing an order ν side stream

- $\tilde{p}_{\mu}=$ probability of an order μ stream terminating

Generalizing Tokunaga's law

8. Joint distribution for generalized version of Tokunaga's law:
$P\left(s_{\mu}, T_{\mu, \nu}\right)=\tilde{p}_{\mu}\binom{s_{\mu}-1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}\left(1-p_{\nu}-\tilde{p}_{\mu}\right)^{s_{\mu}-T_{\mu, \nu}-1}}$
where
(1) $p_{\nu}=$ probability of absorbing an order ν side stream
(-) $\tilde{p}_{\mu}=$ probability of an order μ stream terminating
Approximation: depends on distance units of s_{μ}
In each unit of distance along stream, there is one chance of a side stream entering or the stream
 terminating.

Generalizing Tokunaga's law

The PoCSverse Branching Networks II 69 of 87

Horton \Leftrightarrow
Tokunaga
Now deal with this thing:

$$
P\left(s_{\mu}, T_{\mu, \nu}\right)=\tilde{p}_{\mu}\binom{s_{\mu}-1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}}\left(1-p_{\nu}-\tilde{p}_{\mu}\right)^{s_{\mu}-T_{\mu, \nu}-1}
$$

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Tokunaga's law

The PoCSverse Branching Networks II 69 of 87
$P\left(s_{\mu}, T_{\mu, \nu}\right)=\tilde{p}_{\mu}\binom{s_{\mu}-1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}}\left(1-p_{\nu}-\tilde{p}_{\mu}\right)^{s_{\mu}-T_{\mu, \nu}-1}$
Horton \Leftrightarrow
Tokunaga

Now deal with this thing:

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
$\operatorname{Set}(x, y)=\left(s_{\mu}, T_{\mu, \nu}\right)$ and $q=1-p_{\nu}-\tilde{p}_{\mu}$, approximate liberally.

Generalizing Tokunaga's law

The PoCSverse Branching Networks II 69 of 87

Horton \Leftrightarrow
Tokunaga
Now deal with this thing:
Reducing Horton
$P\left(s_{\mu}, T_{\mu, \nu}\right)=\tilde{p}_{\mu}\binom{s_{\mu}-1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}}\left(1-p_{\nu}-\tilde{p}_{\mu}\right)^{s_{\mu}-T_{\mu, \nu}-1}$
$8 \operatorname{Set}(x, y)=\left(s_{\mu}, T_{\mu, \nu}\right)$ and $q=1-p_{\nu}-\tilde{p}_{\mu}$, approximate liberally.
Obtain

$$
P(x, y)=N x^{-1 / 2}[F(y / x)]^{x}
$$

where

$$
F(v)=\left(\frac{1-v}{q}\right)^{-(1-v)}\left(\frac{v}{p}\right)^{-v}
$$

Scaling relations

Generalizing Tokunaga's law

The PoCSverse Branching Networks II 70 of 87

Horton \Leftrightarrow
Tokunaga
Checking form of $P\left(s_{\mu}, T_{\mu, \nu}\right)$ works:
Scheidegger:
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Tokunaga's law

The PoCSverse
Branching Networks II 71 of 87
Horton \Leftrightarrow
Tokunaga
Checking form of $P\left(s_{\mu}, T_{\mu, \nu}\right)$ works:
Scheidegger:

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Tokunaga's law

The PoCSverse Branching Networks II 72 of 87

Horton \Leftrightarrow
Tokunaga
Checking form of $P\left(s_{\mu}, T_{\mu, \nu}\right)$ works:
Scheidegger:
Reducing Horton Scaling relations

Fluctuations

Models
Nutshell
References

Generalizing Tokunaga's law

The PoCSverse Branching Networks II

Checking form of $P\left(s_{\mu}, T_{\mu, \nu}\right)$ works: Mississippi:

Reducing Horton
Scaling relations
Fluctuations

Models

The PoCSverse
Branching
Networks II
75 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations

Models

Nutshell
References

Models

The PoCSverse Branching Networks II 75 of 87

Random subnetworks on a Bethe lattice ${ }^{[13]}$

\& Dominant theoretical concept for several decades.

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Models

The PoCSverse Branching Networks II 75 of 87

Random subnetworks on a Bethe lattice ${ }^{[13]}$

8
Dominant theoretical concept for several decades.

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Bethe lattices are fun and tractable.

Models
Nutshell
References

Models

 Branching Networks II 75 of 87
Random subnetworks on a Bethe lattice ${ }^{[13]}$

8
Dominant theoretical concept for several decades.
Bethe lattices are fun and tractable.
R Led to idea of "Statistical inevitability" of river network statistics ${ }^{[7]}$

Models
Nutshell
References

Models

Random subnetworks on a Bethe lattice ${ }^{[13]}$

B
Dominant theoretical concept for several decades.

Bethe lattices are fun and tractable.
R Led to idea of "Statistical inevitability" of river network statistics ${ }^{[7]}$
\& But Bethe lattices unconnected with surfaces.

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Models

Random subnetworks on a Bethe lattice ${ }^{[13]}$

Dominant theoretical concept for several decades.

\square
Bethe lattices are fun and tractable.
\& Led to idea of "Statistical inevitability" of river network statistics ${ }^{[7]}$
B But Bethe lattices unconnected with surfaces.
. In fact, Bethe lattices \simeq infinite dimensional spaces (oops).

Models

Random subnetworks on a Bethe lattice ${ }^{[13]}$

Dominant theoretical concept for several decades.
8
Bethe lattices are fun and tractable.
R Led to idea of "Statistical inevitability" of river network statistics ${ }^{[7]}$
B But Bethe lattices unconnected with surfaces.

- In fact, Bethe lattices \simeq infinite dimensional spaces
ractict and (oops).
So let's move on ...

Scheidegger's model

The PoCSverse
Branching Networks II 76 of 87

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations Fluctuations

Models

Nutshell
References

$$
P(\searrow)=P(\swarrow)=1 / 2
$$

Runctional form of all scaling laws exhibited but exponents differ from real world ${ }^{[15,16,14]}$

Optimal channel networks

The PoCSverse
Branching
Networks II
77 of 87
Rodríguez-Iturbe, Rinaldo, et al.

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Optimal channel networks

 Branching Networks II 77 of 87Rodríguez-lturbe, Rinaldo, et al.

- Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Optimal channel networks

Rodríguez-lturbe, Rinaldo, et al.

Reducing Horton
Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$
\dot{\varepsilon} \propto \int \mathrm{d} \vec{r}(\text { flux }) \times(\text { force })
$$

Optimal channel networks

Rodríguez-lturbe, Rinaldo, et al.

Reducing Horton
Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$
\dot{\varepsilon} \propto \int \mathrm{d} \vec{r}(\text { flux }) \times(\text { force }) \sim \sum_{i} a_{i} \nabla h_{i}
$$

Optimal channel networks

Rodríguez-lturbe, Rinaldo, et al.

Reducing Horton
Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$
\dot{\varepsilon} \propto \int \mathrm{d} \vec{r}(\text { flux }) \times(\text { force }) \sim \sum_{i} a_{i} \nabla h_{i} \sim \sum_{i} a_{i}^{\gamma}
$$

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. ${ }^{[10]}$

\& Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$
\dot{\varepsilon} \propto \int \mathrm{d} \vec{r}(\text { flux }) \times(\text { force }) \sim \sum_{i} a_{i} \nabla h_{i} \sim \sum_{i} a_{i}^{\gamma}
$$

Landscapes obtained numerically give exponents near that of real networks.

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. ${ }^{[10]}$

R Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$
\dot{\varepsilon} \propto \int \mathrm{d} \vec{r}(\text { flux }) \times(\text { force }) \sim \sum_{i} a_{i} \nabla h_{i} \sim \sum_{i} a_{i}^{\gamma}
$$

Landscapes obtained numerically give exponents near that of real networks.
But: numerical method used matters.

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. ${ }^{[10]}$

- Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$
\dot{\varepsilon} \propto \int \mathrm{d} \vec{r}(\text { flux }) \times(\text { force }) \sim \sum_{i} a_{i} \nabla h_{i} \sim \sum_{i} a_{i}^{\gamma}
$$

Landscapes obtained numerically give exponents near that of real networks.
But: numerical method used matters.
And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network ${ }^{[8]}$

Theoretical networks

Branching Networks II 78 of 87

Summary of universality classes:

network	h	d		
Non-convergent flow	1	1		
Directed random	$2 / 3$	1		
Undirected random	$5 / 8$	$5 / 4$		
Self-similar	$1 / 2$	1		
OCN's (I)	$1 / 2$	1		
OCN' (II)	$2 / 3$	1		
OCN's (III)	$3 / 5$	1		
Real rivers	$0.5-0.7$	$1.0-1.2$		
$h \Rightarrow \ell \propto a^{h}$ (Hack's law).				
$d \Rightarrow \ell \propto L_{\\| \\|}^{d}$ (stream self-affinity).				

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Nutshell

Branching networks II Key Points:
Horton's laws and Tokunaga law all fit together.

The PoCSverse
Branching Networks II 79 of 87

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Nutshell

Branching networks II Key Points:
Horton's laws and Tokunaga law all fit together.
For 2-d networks, these laws are 'planform' laws and ignore slope.

The PoCSverse Branching Networks II 79 of 87
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Nutshell

Branching networks II Key Points:
Horton's laws and Tokunaga law all fit together.
For 2-d networks, these laws are 'planform' laws and ignore slope.
Abundant scaling relations can be derived.

The PoCSverse Branching Networks II 79 of 87

Horton \Leftrightarrow

Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Nutshell

Branching networks II Key Points:
Horton's laws and Tokunaga law all fit together.
For 2-d networks, these laws are 'planform' laws and ignore slope.
. Abundant scaling relations can be derived.
\& Can take R_{n}, R_{ℓ}, and d as three independent parameters necessary to describe all 2-d branching networks.

Nutshell

Branching networks II Key Points:
Horton's laws and Tokunaga law all fit together.
For 2-d networks, these laws are 'planform' laws and ignore slope.
R Abundant scaling relations can be derived.
\& Can take R_{n}, R_{ℓ}, and d as three independent parameters necessary to describe all 2-d branching networks.
\& For scaling laws, only $h=\ln R_{\ell} / \ln R_{n}$ and d are needed.
Laws can be extended nicely to laws of distributions.

Nutshell

Branching networks II Key Points:
Horton's laws and Tokunaga law all fit together.
For 2-d networks, these laws are 'planform' laws and ignore slope.
Abundant scaling relations can be derived.

- Can take R_{n}, R_{ℓ}, and d as three independent parameters necessary to describe all 2-d branching networks.
For scaling laws, only $h=\ln R_{\ell} / \ln R_{n}$ and d are needed.
R Laws can be extended nicely to laws of distributions.
\& Numerous models of branching network evolution exist: nothing rock solid yet.

References I

The PoCSverse Branching Networks II 80 of 87
[1] H. de Vries, T. Becker, and B. Eckhardt.
Power law distribution of discharge in ideal networks.
Water Resources Research, 30(12):3541-3543, 1994. pdf[「
[2] P. S. Dodds and D. H. Rothman.
Unified view of scaling laws for river networks. Physical Review E, 59(5):4865-4877, 1999. pdf[T
[3] P. S. Dodds and D. H. Rothman.
Geometry of river networks. II. Distributions of component size and number.
Physical Review E, 63(1):016116, 2001. pdf[

References II

[4] P. S. Dodds and D. H. Rothman.
Geometry of river networks. III. Characterization of component connectivity.
Physical Review E, 63(1):016117, 2001. pdf[3
[5] N. Goldenfeld.
Lectures on Phase Transitions and the
Renormalization Group, volume 85 of Frontiers in Physics.
Addison-Wesley, Reading, Massachusetts, 1992.
[6] J. T. Hack.
Studies of longitudinal stream profiles in Virginia and Maryland.
United States Geological Survey Professional

References III

The PoCSverse Branching Networks II 82 of 87
[7] J. W. Kirchner.
Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks.

```
Geology, 21:591-594, 1993. pdf[`
```

[8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar.
Universality classes of optimal channel networks. Science, 272:984-986, 1996. pdfC‘
[9] S. D. Peckham.
New results for self-similar trees with applications to river networks.
Water Resources Research, 31(4):1023-1029,
1995.

References IV

[10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and

Self-Organization.

Cambridge University Press, Cambrigde, UK, 1997.
[11] A. E. Scheidegger.
A stochastic model for drainage patterns into an intramontane trench.
Bull. Int. Assoc. Sci. Hydrol., 12(1):15-20, 1967. pdfc
[12] A. E. Scheidegger.
Theoretical Geomorphology.
Springer-Verlag, New York, third edition, 1991.

References V

[13] R. L. Shreve. Infinite topologically random channel networks. Journal of Geology, 75:178-186, 1967. pdf(3

Reducing Horton Scaling relations Fluctuations
[14] H. Takayasu.
Steady-state distribution of generalized aggregation system with injection.
Physcial Review Letters, 63(23):2563-2565, 1989. pdfer
[15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection. Physical Review A, 37(8):3110-3117, 1988.

References VI

[16] M. Takayasu and H. Takayasu.
Apparent independency of an aggregation system with injection.
Physical Review A, 39(8):4345-4347, 1989. pdf[T
Reducing Horton
[17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. Water Resources Research, 26(9):2243-4, 1990. pdfC
[18] E. Tokunaga.
The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University,

References VII

[19] E. Tokunaga.
Consideration on the composition of drainage networks and their evolution.
Geographical Reports of Tokyo Metropolitan University, 13:G1-27, 1978. pdf[厄
[20] E. Tokunaga.
Ordering of divide segments and law of divide segment numbers.
Transactions of the Japanese Geomorphological Union, 5(2):71-77, 1984.
[21] S. D. Willett, S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen.
Dynamic reorganization of river basins.
Science, 343(6175):1248765, 2014. pdf[「

References VIII

The PoCSverse Branching Networks II 87 of 87

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
[22] G. K. Zipf.
Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

