Branching Networks II

Last updated: 2021/10/06, 23:35:55 EDT Principles of Complex Systems, Vols. 1 & 2

CSYS/MATH 300 and 303, 2021-2022 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

000 Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

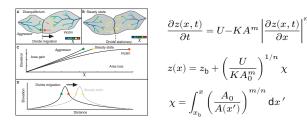
Dutline
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell

References

Out

Piracy on the high χ 's:

"Dynamic Reorganization of River Basins" Willett et al., Science, **343**, 1248765, 2014.^[21]



PoCS @pocsvox	Piracy on the high χ 's:
Branching	

Horton ⇔ Tokunaga
Reducing Horton
Scaling relations

Networks I

Fluctuations

Models

Nutshell

More: How river networks move across a landscape (Science Daily)

PoCS

@pocsvox

Branching

Networks

Horton ⇔

Tokunaga

Models

Nutshell

References

PoCS

@pocsvox

Branching

Networks

Horton ⇔ Tokūnaga

Models

Nutshell

References

(in 19

PoCS

@pocsvox

Branching Networks I

Horton ⇔

Tokunaga

Models

Nutshell

References

(in |

∽ < C + 9 of 85

000

PoCS

@pocsvox

Branching

Networks II

Tokunaga

Reducing Hortor

Scaling relations

Fluctuations

Models

Nutshell

References

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- ln terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- laws have four parameters and Tokunaga has two parameters.
- R_n, R_n, R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_{\ell} = R_{\circ}$. Insert question from assignment 1 🗹
- la To make a connection, clearest approach is to start with Tokunaga's law ...
- Sknown result: Tokunaga \rightarrow Horton^[18, 19, 20, 9, 2]

00

Let us make them happy

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks: Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$p_{\rm dd} \simeq rac{\sum {
m stream segment lengths}}{{
m basin area}} = rac{\sum_{\omega=1}^{\Omega} n_\omega \bar{s}_\omega}{a_\Omega}$$

PoCS More with the happy-making thing @pocsvo> Branching Networks Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$ Start looking for Horton's stream number law: Horton 🖨 Tokunaga $n_{\omega}/n_{\omega+1} = R_n.$ Reducing Horton Reducing Hortor Set Estimate n_{ω} , the number of streams of order ω in Scaling relations Scaling relations terms of other $n_{\omega'}, \omega' > \omega$. Fluctuations Fluctuations Models & Observe that each stream of order ω terminates Nutshell by either: References $\omega = 3$ 1. Running into another stream of order ω ω=3 and generating a stream of order $\omega + 1$ • $2n_{\omega+1}$ streams of order ω do this $\omega = 3$ 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$... • $n_{\omega'}T_{\omega'=\omega}$ streams of order ω do this (I) (S • ୨ ۹ (№ 10 of 85 ୬ < ୯ 5 of 85 PoCS More with the happy-making thing @pocsvox Branching Networks Putting things together: Horton ⇔ Tokunaga $n_{\omega} = \frac{2n_{\omega+1}}{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \frac{T_{\omega'-\omega}n_{\omega'}}{\text{absorption}}$ Reducing Horton Reducing Horton Scaling relations Scaling relation: Fluctuations Fluctuations Models local text and manipulate expression to Nutshell find Horton's law for stream numbers follows and Reference hence obtain R_{m} . 🚳 Insert question from assignment 1 🗹 Solution: $R_n = \frac{(2+R_T+T_1) \pm \sqrt{(2+R_T+T_1)^2 - 8R_T}}{2}$ (The larger value is the one we want.) 00 PoCS Finding other Horton ratios @pocsvox Connect Tokunaga to R_{\circ} Horton ⇔ Solution \mathbb{R}^{2} Now use uniform drainage density ρ_{dd} . Tokunaga Reducing Horton Assume side streams are roughly separated by Scaling relations distance $1/\rho_{dd}$. Fluctuations Fluctuation \Im For an order ω stream segment, expected length is Models Nutshell $\bar{s}_{\omega} \simeq \rho_{\mathsf{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$ Reference Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$: $\bar{s}_{\omega} \simeq \rho_{\mathsf{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^{\omega}$

Branching Networks

Reducing Hortor Scaling relation

() () • n < c + 12 of 85

Horton and Tokunaga are happy

Altogether then:

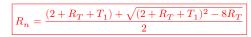
$$\Leftrightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1}$$

Recall $R_{\ell} = R_s$ so

 $R_{\ell} = R_{\circ} = R_{T}$

 $= R_T \Rightarrow R_s = R_T$

And from before:



Horton and Tokunaga are happy

Some observations:

- \Re_n and R_ℓ depend on T_1 and R_T .
- \clubsuit Seems that R_a must as well ...
- 🗞 Suggests Horton's laws must contain some redundancy

 \bigotimes We'll in fact see that $R_a = R_n$.

Horton and Tokunaga are happy

The other way round

uniform) ...

Horton's parameters.

Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

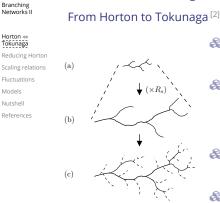
 \mathbb{R} Note: We can invert the expressions for R_n and

 R_{ℓ} to find Tokunaga's parameters in terms of

 $R_T = R_\ell,$

 $T_1 = R_n - R_\ell - 2 + 2R_\ell/R_n.$ Suggests we should be able to argue that Horton's

laws imply Tokunaga's laws (if drainage density is



PoCS

@pocsvox

00

PoCS

@pocsvox

Branching

Horton ⇔ Tokunaga

Reducing Hortor

Scaling relations

Fluctuations

Models

Nutshell

References

Networks II

Assume Horton's laws hold for number and

Horton and Tokunaga are friends

length Scaling relations Fluctuations 🗞 Start with picture Models showing an order ω Nutshell stream and order $\omega - 1$ Reference generating and side streams.

PoCS

@pocsvox

Branching

Networks

Horton ⇔

Tokunaga

PoCS

@pocsvox

Branching

Networks

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

PoCS

@pocsvox

Branching

Reducing Hortor

- Scale up by a factor of R_{ℓ} , orders increment to $\omega + 1$ and ω .
- 🚳 Maintain drainage density by adding new (I) (S order $\omega - 1$ streams

Horton and Tokunaga are friends

...and in detail:

- 🚳 Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
 - Since by definition, an order $\omega + 1$ stream segment has T_{ω} order 1 side streams, we have:

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i\right).$$

 \mathfrak{F} For large ω , Tokunaga's law is the solution—let's check ...

PoCS

Horton ⇔

Tokunaga

Fluctuations

Models

Nutshell

References

Reducing Horton

Scaling relations

Horton and Tokunaga are friends

Just checking:

Substitute Tokunaga's law
$$T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$$

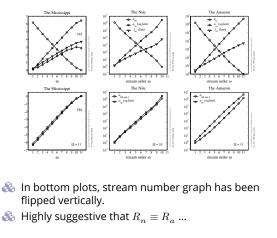
into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i\right)$$

$$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{k-1} - 1}{R_\ell - 1} \right) \end{split}$$

$$\simeq (R_{\ell}-1)T_1 \frac{{R_{\ell}}^{k-1}}{R_{\ell}-1} = T_1 R_{\ell}^{k-1} \quad \ \text{...yep}$$

Horton's laws of area and number:



Measuring Horton ratios is tricky:

PoCS @pocsvo> Branching Networks

00

୬ ବ 🕞 19 of 85

PoCS

@pocsvo>

Branching

Networks I

Horton 😅

Tokunaga

Reducing Horton

Scaling relation:

Fluctuations

Models

Nutshell

References

Horton 😅 Tokunaga Reducing Horton Scaling relation Fluctuations Models

Nutshell

References

🚳 How robust are our estimates of ratios? 🚳 Rule of thumb: discard data for two smallest and two largest orders.

•ን		

Mississippi:

Branching Networks II						
	ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
Horton ⇔	[2, 3]	5.27	5.26	2.48	2.30	1.00
Tokunaga	[2, 5]	4.86	4.96	2.42	2.31	1.02
Reducing Horton	[2, 7]	4.77	4.88	2.40	2.31	1.02
Scaling relations	[3, 4]	4.72	4.91	2.41	2.34	1.04
Models	[3, 6]	4.70	4.83	2.40	2.35	1.03
Nutshell	[3, 8]	4.60	4.79	2.38	2.34	1.04
References	[4, 6]	4.69	4.81	2.40	2.36	1.02
	[4, 8]	4.57	4.77	2.38	2.34	1.05
	[5, 7]	4.68	4.83	2.36	2.29	1.03
	[6, 7]	4.63	4.76	2.30	2.16	1.03
	[7, 8]	4.16	4.67	2.41	2.56	1.12
	mean μ	4.69	4.85	2.40	2.33	1.04
	std dev σ	0.21	0.13	0.04	0.07	0.03
	σ/μ	0.045	0.027	0.015	0.031	0.024
() ()	, r .					

(III) ∽ q (~ 20 of 85

PoCS @pocsvox Branching

Networks Horton 😅

Tokunaga Reducing Horton Scaling relatio Fluctuation

```
Models
Nutshell
Reference
```

UVH 500

@pocsvox Branching Networks II

Substitute Tokunaga's law
$$T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$$

into

$$T_{i}$$

$$\begin{split} T_k &= (R_\ell - 1) \left(1 + \right. \\ &= (R_\ell - 1) \left(1 + T_\ell \right) \end{split}$$

$$\simeq (R_\ell - 1) T_1 \frac{R_\ell^{\,k-1}}{R_\ell - 1} = T_1 R_\ell^{k-1} \quad \dots {\rm y}$$

Πl 1

æ

•		-	_	~	-	
A	m	d	Z	υ	L I	
				_		

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

 $a_{\Omega} \propto sum of all stream segment lengths in a order$

 $a_\Omega\simeq\sum_{\omega=1}^\Omega n_\omega\bar{s}_\omega/\rho_{\rm dd}$

 $\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\,\Omega-\omega}\cdot \hat{1}}_{n_{\omega}} \underbrace{\bar{s}_1\cdot R_s^{\,\omega-1}}_{\bar{s}}$

 $=\frac{R_n^{\ \Omega}}{R_s}\bar{s}_1\sum_{i=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$

 Ω basin (assuming uniform drainage density)

Reducing Horton's laws:

Not quite:

PoCS @pocsvox Branching Networks

PoCS

@pocsvox

Branching Networks I

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

(in |

• n < c + 27 of 85

∽ < へ 26 of 85

Scaling

A little further ...

PoCS @pocsvo> Branching Networks II

Horton ⇔ Tokunaga		Horton ⇔ Tokunaga
Reducing Horton		Reducing Horton
Scaling relations		Scaling relations
Fluctuations	Neural Reboot: Fwoompf	Fluctuations
Models	Neural Reboot. I woompi	Models
Nutshell		Nutshell
References		References

্যা ৩৭.৫ 25 of 85		্য্য 8 ৩৭৫ 28 of 85
PoCS @pocsvox Branching Networks II	Scaling laws	PoCS @pocsvox Branching Networks II
Horton ⇔ Tokunaga	The story so far:	Horton ⇔ Tokunaga
Reducing Horton	line and the set of th	Reducing Horton
Scaling relations	self-similar structures	Scaling relations
Fluctuations		Fluctuations
Models	🗞 Hierarchy is mixed	Models
Nutshell	🚳 Tokunaga's law describes detailed architecture:	Nutshell
References	$T_k = T_1 R_T^{k-1}.$	References

- 🛞 We have connected Tokunaga's and Horton's laws
- \Re Only two Horton laws are independent ($R_n = R_a$)
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

	ማ
laws	PoCS @pocsvox

@pocsvox	
Branching Networks II	

Horton 😅 Tokunaga Reducing Horton

Scaling relation: Fluctuation

Models

Nutshell

Reference

- \bigotimes Pick a random location on a branching network *p*. \clubsuit Each point p is associated with a basin and a longest stream length
- \bigotimes Q: What is probability that the *p*'s drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- 🗞 Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ

Ignore stream ordering for the moment

Roughly observed: $1.3 \leq \tau \leq 1.5$ and $1.7 \leq \gamma \leq 2.0$

୬ ୦ ୦ ୦ 22 of 85 PoCS Equipartitioning: @pocsvox

PoCS

@pocsvox

Branching

Horton ⇔

Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

00

Branching

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Networks II

Networks II

Intriguing division of area:

- \clubsuit Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.

🚓 ...But this only a rough argument as Horton's laws

do not imply a strict hierarchy

Need to account for sidebranching. 🚳 Insert question from assignment 2 🗹

Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \text{const}}$$

🚳 Reason

Equipartitioning:

Mississinni basin partitioning

Some examples:

$$n_{\omega} \propto (R_n)^{-\omega}$$
$$\bar{a}_{\omega} \propto (R_n)^{\omega} \propto n_{\omega}^{-1}$$

Amazon basin partitionin

• n q (→ 23 of 85

PoCS

@pocsvox

Branching Networks II

Reducing Horton's laws:

Reducing Horton's laws:

Rough first effort to show $R_n \equiv R_a$:

Continued ...

8

🚳 So:

$$\begin{split} a_\Omega &\propto \frac{R_\Omega^\Omega}{R_s} \bar{s}_1 \sum_{\omega=1}^\Omega \left(\frac{R_s}{R_n}\right)^\omega \\ &= \frac{R_\Omega^\Omega}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^\Omega}{1 - (R_s/R_n)} \\ &\sim R_n^{\Omega-1} \bar{s}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow \end{split}$$

 \bigotimes So, a_{Ω} is growing like R_n^{Ω} and therefore:

Tokunaga Reducing Horton Scaling relati Fluctuations

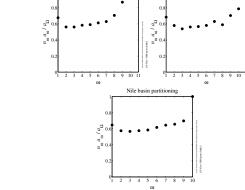
Models

Nutshell

References

(in |S

• ୨ ୦ (୍ • 24 of 85



1:	
	$n_{\omega} \propto (l$
	$\bar{a}_{\omega} \propto (R_a)$

Scaling laws

Probability distributions with power-law decays

🗞 We see them everywhere:

- Earthquake magnitudes (Gutenberg-Richter law)
- City sizes (Zipf's law)
- Word frequency (Zipf's law)^[22]
- Wealth (maybe not—at least heavy tailed) Statistical mechanics (phase transitions)^[5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- line for task is always to illuminate the mechanism ...

Scaling laws

PoCS

@pocsvox

Branching

Horton ⇔

Tokunaga

Fluctuations

Models

Nutshell

00

PoCS

@pocsvox

Branching

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Networks II

Reducing Hortor

Scaling relations

Networks II

Finding γ :

 $rac{2}{8}$ The connection between P(x) and $P_{2}(x)$ when P(x) has a power law tail is simple:

Siven $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_{\star}

$$P_{>}(\ell_{*}) = \int_{\ell=\ell_{*}}^{\ell_{\max}} P(\ell) \, \mathrm{d}\ell$$
$$\sim \int_{\ell=\ell_{*}}^{\ell_{\max}} \ell^{-\gamma} \mathrm{d}\ell$$
$$= \frac{\ell^{-(\gamma-1)}}{-(\gamma-1)} \Big|_{\ell=\ell_{*}}^{\ell_{\max}}$$
$$\propto \ell_{*}^{-(\gamma-1)} \quad \text{for } \ell_{\max} \gg \ell_{*}$$

Finding γ :

PoCS

@pocsvox

Branching

Networks

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

(III)

PoCS

@pocsvox

Branching

Networks

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

୬ ବ 🕫 34 of 85

🚳 We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1\cdot R_n^{\Omega-\omega'}) (\bar{s}_1\cdot R_s^{\omega'-1})$$

$$\sum_{\omega'=\omega+1}^{\infty} (1\cdot R_n^{\Omega-\omega'})(\bar{s}_1\cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

Change summation order by substituting $\omega'' = \Omega - \omega'.$

Sum is now from
$$\omega'' = 0$$
 to $\omega'' = \Omega - \omega - 1$
(equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Scaling laws

Finding γ :

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\Omega-\omega''}$$

 \mathfrak{S} Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$

again using
$$\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a - 1)$$

Scaling laws

Finding γ :

Nearly there:

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

 \mathfrak{R} Need to express right hand side in terms of $\overline{\ell}_{\omega}$. Recall that $\bar{\ell}_{\mu} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$. 8

$$\bar{\ell}_{\omega} \propto R_{\ell}^{\,\omega} = R_s^{\,\omega} = e^{\,\omega \ln R}$$

```
PoCS
@pocsvo>
Branching
Networks I
```

Horton ⇔

Tokunaga

(III)

PoCS

@pocsvox

Branching

Networks

Horton 😅

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

• n q (+ 38 of 85

PoCS

@pocsvox

Branching Networks

Horton ⇔

Tokunaga

Reducing Horton

• n q (r → 37 of 85

```
Reducing Horton
Scaling relations
Fluctuation
Models
Nutshell
References
```

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- A Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story^[17, 1, 2]
- \clubsuit Let's work on $P(\ell)$...
- laws hold 🚯 🚯 throughout a basin of order Ω .
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- 🚯 Next: place stick between teeth. Bite stick. Proceed.

Scaling laws

Finding γ :

- Solution of the second distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\max}} P(\ell) \mathrm{d}\ell$$

- $P_{>}(\ell_{*}) = 1 P(\ell < \ell_{*})$
- Also known as the exceedance probability.

Scaling laws

- 🙈 Ai a point of
- & Assume some spatial sampling resolution Δ
- & Landscape is broken up into grid of $\Delta \times \Delta$ sites Approximate $P_{\neg}(\ell_*)$ as

$$P_{>}(\ell_{*}) = \frac{N_{>}(\ell_{*}; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

Use Horton's law of stream segments:

 $\overline{s}_{(.)}$

PoCS

@pocsvox

Branching Networks II

Horton ⇔

Tokunaga

Fluctuations

Models

Nutshell

References

(in |S • 𝔍 𝔄 33 of 85

Scaling laws

Finding γ :

Set $\ell_* = \overline{\ell}_{\omega}$, for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}$$

- Δ 's cancel
- Solution \mathbb{R}^{2} Denominator is $a_{\Omega}\rho_{dd}$, a constant.

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

$$_n/R_s)$$
 Scaling relations
Fluctuations
Models

Nutshell Reference

() ()

- ე < C + 39 of 85

PoCS

Horton ⇔ Tokunaga

@pocsvox

Branching Networks I

Reducing Horton

(in |

• n < c + 36 of 85

🚳 So ... using Horton's laws ...

3 ~

Horton's law of st
$$\bar{s}_{\omega-1} = R_s \dots$$

Finding
$$\gamma$$
:

ng
$$\gamma$$
:
m: determine probability of randomly choosing

ermine probability of randomly choosing n a network with main stream length
$$> \ell_*$$

Scaling laws

Finding γ :

🚳 Therefore:

$$P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s} \right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\begin{split} & \bigotimes & \\ & \propto \bar{\ell}_{\omega}^{-\ln(R_n/R_s)/\ln R_s} \\ & \bigotimes & \\ & = \bar{\ell}_{\omega}^{-(\ln R_n - \ln R_s)/\ln R_s} \\ & \bigotimes & \\ & = \bar{\ell}_{\omega}^{-\ln R_n/\ln R_s + 1} \\ & \bigotimes & \\ & = \bar{\ell}_{\omega}^{-\gamma + 1} \end{split}$$

Scaling laws

Finding γ :

And so we have:

 $\gamma = \ln R_n / \ln R_s$

Proceeding in a similar fashion, we can show

$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$

Insert question from assignment 2 🖸

- Such connections between exponents are called scaling relations
- A Let's connect to one last relationship: Hack's law

Scaling laws

Hack's law: [6]

8

$$\ell \propto a^h$$

$$m \ressent black Second Strength Second Stre$$

local Horton laws to connect *h* to Horton ratios:

$$\bar{\ell}_\omega \propto R_s^{\,\omega} \; {\rm and} \; \bar{a}_\omega \propto R_n^{\,\omega}$$

🚳 Observe:

$$\bar{\ell}_{\omega} \propto e^{\,\omega {\rm ln}R_s} \propto \left(e^{\,\omega {\rm ln}R_n}\right)^{{\rm ln}R_s/{\rm ln}R_n}$$

 $\propto (R_n^{\omega})^{\ln R_s/\ln R_n} \propto \bar{a}_{\omega}^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$

PoCS @pocsvox We mentioned there were a good number Branching of 'laws': [2] Networks

Relation:	Name or description:	on ⇔
		naga
$T_k = T_1 (R_T)^{k-1}$	Tokunaga's law	icing Hortor
$\ell \sim L^d$	self-affinity of single channels	ng relations
$n_{\omega}/n_{\omega+1} = R_n$	Horton's law of stream numbers	uations
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	Horton's law of main stream lengths	els
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	Horton's law of basin areas	rences
$\bar{s}_{\omega+1}/\bar{s}_{\omega}=R_s$	Horton's law of stream segment lengths	
$L_{\perp} \sim L^H$	scaling of basin widths	
$P(a) \sim a^{-\tau}$	probability of basin areas	
$P(\ell) \sim \ell^{-\gamma}$	probability of stream lengths	
$\ell \sim a^h$	Hack's law	
$a \sim L^D$	scaling of basin areas	
$\Lambda \sim a^\beta$	Langbein's law	
$\lambda \sim L^{\varphi}$	variation of Langbein's law	000
	v	९. (२ 43 of 85

Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

Tokunaga	relation:	scaling relation/parameter: ^[2]
Reducing Horton	$\ell \sim L^d$	
Scaling relations		d
Fluctuations	$T_k = T_1 (R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
Models		$R_T = R_s$
Nutshell	$n_{\omega}/n_{\omega+1} = R_n$	R_n
References	$\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a$	$R_a = R_n$
	$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	$R_{\ell} = \frac{R_s}{R_s}$
	$\ell \sim a^h$	$h = \ln R_s / \ln R_n$
	$a \sim L^D$	D = d/h
	$L_\perp \sim L^H$	H = d/h - 1
	$P(a) \sim a^{-\tau}$	$\tau=2-h$
	$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
	$\Lambda \sim a^\beta$	$\beta = 1 + h$
(UN) [00	$\lambda \sim L^{\varphi}$	$\varphi = d$

PoCS

@pocsvox

Branching Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

() ()

•ე < (~ 42 of 85

References

8

PoCS

@pocsvox

Branching

Horton ⇔

Tokunaga

Fluctuation

Models

Nutshell

References

00

PoCS

@pocsvox

Branching

Horton ⇔ Tokunaga

Networks II

•ጋ < C+ 40 of 85

Reducing Horton

Scaling relations

Networks II

Scheidegger's model

Directed random networks^[11, 12]

 $P(\searrow) = P(\swarrow) = 1/2$

- Functional form of all scaling laws exhibited but exponents differ from real world^[15, 16, 14]
- Useful and interesting test case

A toy model—Scheidegger's model

PoCS

Horton ⇔

Tokunaga

Reducing Horton

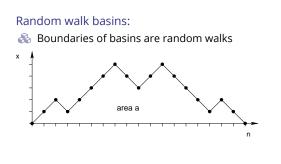
Scaling relations

Fluctuation

Models

Nutshell

References



(III) ୬ ବ. ୧୦ 46 of 85

PoCS @pocsvox Branching Networks II

Horton ⇔

Tokunaga

Fluctuations

Models

Nutshell

References

() ()

PoCS

@pocsvox

Branching Networks I

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

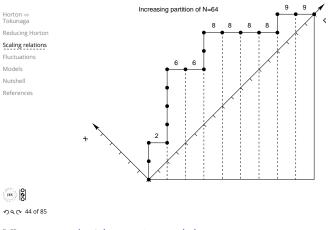
Nutshell

Reference

∽ q (~ 47 of 85

Reducing Horton

Scaling relations



Scheidegger's model

Scheidegger's model

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}.$$

and so $P(\ell) \propto \ell^{-3/2}$.

\mathfrak{R} Typical area for a walk of length *n* is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}$.

Since $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1. \aleph Note $\tau = 2 - h$ and $\gamma = 1/h$. \mathfrak{R}_n and R_ℓ have not been derived analytically.

() () ()

•ጋ < C+ 45 of 85

PoCS

@pocsvox

Branching

Networks I

Horton 😄

Models

Nutshell

PoCS

@pocsvox

Branching Networks I

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

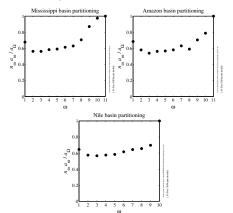
Fluctuations

Models

Nutshell

References

Equipartitioning reexamined: Recall this story:



Equipartitioning

🗞 What about

Since $\tau > 1$, suggests no equipartitioning:

 $aP(a) \sim a^{-\tau+1} \neq \text{const}$

?

 $P(a) \sim a^{-\tau}$

 $\Re P(a)$ overcounts basins within basins ...

Hard neural reboot (sound matters):

while stream ordering separates basins ...

Moving beyond the mean:

🗞 Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_s$$

- line sector and the s between probability distributions
- A Yields rich and full description of branching network structure
- See into the heart of randomness ...

(m) [8] ∽ < < < 49 of 85

PoCS

@pocsvox

Branching

Horton ⇔ Tokunaga

Fluctuations

Models

Nutshell

References

Networks II

PoCS

@pocsvox

Branching

Horton ⇔

Tokunaga

Fluctuations

Models

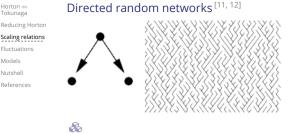
Nutshell

Reducing Horton

Scaling relations

Networks II

A toy model—Scheidegger's model



 $P(\searrow) = P(\swarrow) = 1/2$

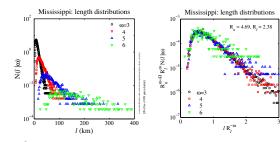
Flow is directed downwards

() ()

PoCS

 $\bigotimes \ \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$ $\widehat{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega})$

Generalizing Horton's laws



- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

•ን < ເ∾ 51 of 85

ି ତ୍ଥ

Generalizing Horton's laws

PoCS

@pocsvox

Branching

Networks I

Models

Nutshell

(III)

PoCS

@pocsvox

Branching

Networks I

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

PoCS

@pocsvox

Branching Networks I

Horton ⇔

Tokunaga

Fluctuations

Models

Nutshell

References

() ()

• n < c + 54 of 85

• n q (२ 53 of 85

km):

basin:

Amazon

Congo

Kansas

Amazon

Nile

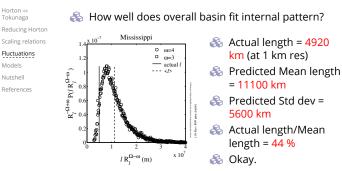
Congo Kansas

Mississippi

Nile

Mississippi

•∕) < (२ 52 of 85



Generalizing Horton's laws

 ℓ_{Ω}

4.92

5.75

6.49

5.07

1.07

 a_{Ω}

2.74

5.40

3.08

3.70

0.14

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10^3

 ℓ_{Ω}

11.10

9.18

2.66

10.13

2.37

 \bar{a}_{Ω}

7.55

9.07

0.96

10.09

0.49

 σ_{ℓ}

5.60

6.85

2.20

5.75

1.74

 σ_a

5.58

8.04

0.79

8.28

0.42

 $\ell_{\Omega}/\ell_{\Omega}$

0.44

0.63

2.44

0.50

0.45

 $a_{\Omega}/\bar{a}_{\Omega}$

0.36

0.60

3.19

0.37

0.28

 σ_{ℓ}

 σ_a/\bar{a}_Ω

0.74

0.89

0.82

0.82

0.86

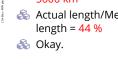
Horton 😅 Tokunaga Reducing Hortor Scaling relations Fluctuations Models Nutshell References

PoCS

@pocsvo>

Branching

Networks I



(III) ୬ ବ. ୧୦ 55 of 85

PoCS

@pocsvox Branching Networks

	Tokunaga
10	Reducing Horto
$\sigma_{\ell}/\ell_{\Omega}$	Scaling relations
0.51	Fluctuations
0.75	Models
0.83	Nutshell
0.57	References
0.73	

(III) ୬ ଏ ୯୦ 56 of 85

Combining stream segments distributions: PoCS @pocsvo> Stream segments sum to give main Reducing Horton Scaling relations stream lengths $\ell_{\omega} = \sum_{\mu=1}^{\prime} s_{\mu}$ $\bigotimes P(\ell_{\omega})$ is a convolution of distributions for the $s_{...}$

Branching Networks I

Tokunaga Reducing Hortor Scaling relations Fluctuations

() () • 𝔍 𝔄 57 of 85

Horton ⇔

Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

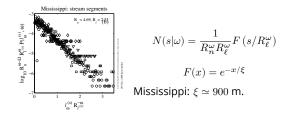
https://twitter.com/round boys/status/951873765964681216

@pocsvox Branching Networks II

Generalizing Horton's laws

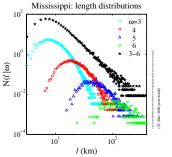
 \circledast Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



Generalizing Horton's laws

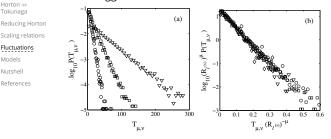
line stream length distributions must combine to give overall distribution for stream length



 $\Re P(\ell) \sim \ell^{-\gamma}$ \delta Another round of convolutions^[3] 🚳 Interesting ...

Generalizing Tokunaga's law

Scheidegger:



 \gtrsim Observe exponential distributions for $T_{\mu,\nu}$ \clubsuit Scaling collapse works using R_s

PoCS

@pocsvox

Branching

Horton ⇔ Tokunaga

Fluctuations

Models

Nutshell

References

Networks II

PoCS

@pocsvox

Branching

Horton ⇔

Tokunaga

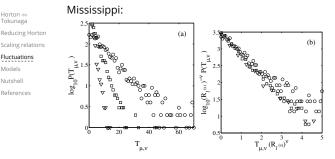
Scaling relations

Fluctuations

Nutshell

Networks II

Generalizing Tokunaga's law



🚳 Same data collapse for Mississippi ...

• 𝔍 𝔄 59 of 85

PoCS

@pocsvox

Branching Networks II

Generalizing Tokunaga's law

```
So
```

$$P(T_{\mu,\nu})=(R_s)^{\mu-\nu-1}P_t\left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1}\right.$$
 Here
$$P_t(z)=\frac{1}{c}e^{-z/\xi_t}.$$

$$\xi_t$$

Exponentials arise from randomness. \clubsuit Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$.

PoCS Generalizing Tokunaga's law @pocsvo> Branching Networks I Horton 😅 Network architecture: Tokunaga Reducing Hortor Scaling relation: \delta Inter-tributary Fluctuations lengths exponentially Nutshell

- distributed References 🙈 Leads to random spatial distribution of stream segments 00 ୬ ବ ୧୦ 61 of 85 • ୨ ۹ (№ 64 of 85 PoCS Generalizing Tokunaga's law @pocsvox Branching Networks Horton 😅 Follow streams segments down stream from their Tokunaga Reducing Horton beginning Reducing Horton
 - Representation of a probability (or rate) of an order μ stream segment terminating is constant:

 $\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1}\xi_s$

- Probability decays exponentially with stream order
- lnter-tributary lengths exponentially distributed
- $\$ \Rightarrow$ random spatial distribution of stream segments

୍ ତା ∙∕) q (२ 62 of 85

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

(in |

୬ < ៚ 63 of 85

PoCS

@pocsvox

Branching

Networks

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

(III)

PoCS

@pocsvox

Branching

Networks

Horton 😄

Tokunaga

Scaling relations

Fluctuations

Models

Nutshell

References

PoCS @pocsvox Branching Networks I

Generalizing Tokunaga's law

loint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

where

- p_{ν} = probability of absorbing an order ν side stream
- $\tilde{p}_{\mu} = \text{probability of an order } \mu \text{ stream terminating}$
- Approximation: depends on distance units of s_{μ}
- ln each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Branching Networks Horton 😅 Tokunaga

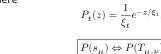
Reducing Hortor Scaling relation Fluctuation Models Nutshell Reference

() () ୬ ବ. ୧୦ 66 of 85

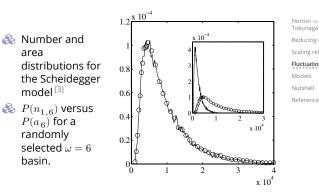
Fluctuations Models Nutshell References

> UM |8 ∽ < C + 60 of 85

Reducing Horton Scaling relations wł



Generalizing Horton's laws



00

• 𝔍 𝔄 65 of 85

PoCS @pocsvox

Scaling relation:

Fluctuations

Models

Nutshell

Reference

Generalizing Tokunaga's law

Now deal with this thing:

- $\mathfrak{Set}(x,y) = (s_{\mu},T_{\mu,\nu}) \text{ and } q = 1 p_{\nu} \tilde{p}_{\mu}$, approximate liberally.
- 🚳 Obtain

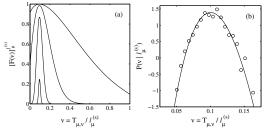
 $P(x,y) = Nx^{-1/2} \left[F(y/x) \right]^x$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

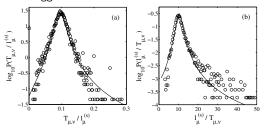
Generalizing Tokunaga's law

\clubsuit Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works: Scheidegger:



Generalizing Tokunaga's law

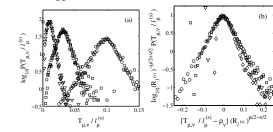
 \clubsuit Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works: Scheidegger:



Generalizing Tokunaga's law

 \bigotimes Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



୬ ଏ ୯୦ 67 of 85

PoCS

@pocsvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

PoCS @pocsvox

Branching

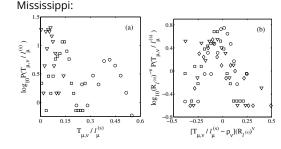
Networks II

Horton ⇔

Nutshell

Generalizing Tokunaga's law

 \clubsuit Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:



PoCS

@pocsvox

Branching Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

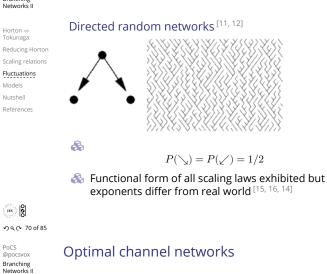
୍ଲା 👸

Models

Random subnetworks on a Bethe lattice ^[13]

- Dominant theoretical concept for several decades.
- 🚳 Bethe lattices are fun and tractable. 🗞 Led to idea of "Statistical inevitability" of river
 - network statistics^[7] But Bethe lattices unconnected with surfaces.
 - & In fact, Bethe lattices \simeq infinite dimensional spaces (oops).
 - 🙈 So let's move on ...

Scheidegger's model



Rodríguez-Iturbe, Rinaldo, et al.^[10]

 \mathbf{R} Landscapes $h(\mathbf{\vec{x}})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8]

PoCS @pocsvox

Theoretical networks

Summary of universality classes:

network	h	d		
Non-convergent flow	1	1		
Directed random	2/3	1		
Undirected random	5/8	5/4		
Self-similar	1/2	1		
OCN's (I)	1/2	1		
OCN's (II)	2/3	1		
OCN's (III)	3/5	1		
Real rivers	0.5-0.7	1.0-1.2		
$h \Rightarrow \ell \propto a^h$ (Hack's law).				
$d \Rightarrow \ell \propto L^d_{\parallel}$ (stream self-affinity).				

PoCS @pocsvo> Branching Networks II

> Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

(III) ୬ ବ 🗠 74 of 85

PoCS @pocsvox Branching Networks I

Horton 😅 Tokunaga Reducing Horton Scaling relation: Fluctuations Models Nutshell References

() ()

PoCS @pocsvox Branching Networks I

Horton 😅 Tokunaga Reducing Horton Scaling relation: Fluctuations Models Nutshell

Reference

() ()

ൗ < ເ∾ 73 of 85

Reducing Horton Scaling relations Fluctuations Models Nutshell References

(in |

PoCS

@pocsvox

Branching

Networks II

Horton ⇔

Tokunaga

Fluctuations

Models

Nutshell

References

(III)

PoCS

@pocsvox

Branching

Networks I

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

∙n q (~ 71 of 85

Branching Networks I

Horton ⇔

Tokunaga

Nutshell

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- For 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- \bigotimes Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- So For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- 🚳 Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

References I

- [1] H. de Vries, T. Becker, and B. Eckhardt. Power law distribution of discharge in ideal networks. Water Resources Research, 30(12):3541-3543, 1994. pdf 🗹
- [2] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf
- P. S. Dodds and D. H. Rothman. [3] Geometry of river networks. II. Distributions of component size and number. Physical Review E, 63(1):016116, 2001. pdf

References II

- [4] P. S. Dodds and D. H. Rothman. Geometry of river networks. III. Characterization of component connectivity. Physical Review E, 63(1):016117, 2001. pdf
- Fluctuations [5] N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics. Addison-Wesley, Reading, Massachusetts, 1992.
- [6] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf

References III

- [7] J. W. Kirchner. Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591–594, 1993. pdf 🗹 [8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar. Universality classes of optimal channel networks. Science, 272:984–986, 1996. pdf
- [9] S. D. Peckham. New results for self-similar trees with applications to river networks. Water Resources Research, 31(4):1023-1029, 1995.

୬ ବ 🖓 77 of 85

PoCS

@pocsvox

Branching

Horton ⇔

Tokunaga

Fluctuations

Models

Nutshell

000

PoCS

@pocsvox

Branching

Networks II

Tokunaga

Fluctuations

Models

Nutshell

References

Reducing Horton

Scaling relations

Reducing Horton

Scaling relations

Networks II

References IV

- [10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997.
- [11] A. E. Scheidegger. A stochastic model for drainage patterns into an intramontane trench. Bull. Int. Assoc. Sci. Hydrol., 12(1):15-20, 1967.
- [12] A. E. Scheidegger. Theoretical Geomorphology. Springer-Verlag, New York, third edition, 1991.

PoCS

@pocsvox

Branching Networks II

Horton ⇔

Tokunaga

Models

Nutshell

References

Reducing Horton

Scaling relations

References V

pdf 🖸

- [13] R. L. Shreve. Infinite topologically random channel networks. Journal of Geology, 75:178–186, 1967. pdf
- [14] H. Takayasu. Steady-state distribution of generalized aggregation system with injection. Physcial Review Letters, 63(23):2563-2565, 1989. pdf 🖸
- [15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection. Physical Review A, 37(8):3110-3117, 1988.

References VI

References VII

[19] E. Tokunaga.

References VIII

[22] G. K. Zipf.

Least-Effort.

PoCS

@pocsvox

Branching

Networks

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

PoCS

@pocsvox

Branching

Networks

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

00

PoCS

@pocsvox

Branching

Networks

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

୬ ବ. ୦୦ ୫୦ of ୫5

- [16] M. Takayasu and H. Takayasu. Apparent independency of an aggregation system with injection. Physical Review A, 39(8):4345–4347, 1989. pdf [17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe.
- Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. Water Resources Research, 26(9):2243-4, 1990. pdf 🖸
- [18] E. Tokunaga. The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University 15:1–19, 1966. pdf 🖸

00

PoCS

@pocsvo>

Branching

Networks

Horton 😅

Tokunaga

Reducing Hortor

Scaling relations

Fluctuations

Models

Nutshell

References

PoCS @pocsvo> Branching Networks

- Horton 😅 Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell
- [20] E. Tokunaga. Ordering of divide segments and law of divide segment numbers. Transactions of the Japanese Geomorphological Union, 5(2):71-77, 1984.

Consideration on the composition of drainage

Geographical Reports of Tokyo Metropolitan

networks and their evolution.

University, 13:G1–27, 1978. pdf

[21] S. D. Willett, S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen. Dynamic reorganization of river basins. Science, 343(6175):1248765, 2014. pdf

Human Behaviour and the Principle of

Addison-Wesley, Cambridge, MA, 1949.

00

PoCS @pocsvo Branching Networks

Horton 😅 Tokunaga Reducing Horton Scaling relation Fluctuation Models Nutshell References

UIN 8 ∽ < C + 82 of 85

• ୨ ۹ (№ 83 of 85

References

(in |S • ୨ ୦ ଦ • 79 of 85