Allotaxonometry

Last updated：2021／10／06，20：25：28 EDT
Principles of Complex Systems，Vols． 1 \＆ 2 CSYS／MATH 300 and 303，2021－2022｜＠pocsvox

Prof．Peter Sheridan Dodds｜＠peterdodds

plenitude of distances

Rank－turbulence
vergence Probability－
turbuilce
divergence Explorations References

Computational Story Lab｜Vermont Complex Systems Center Vermont Advanced Computing Core｜University of Vermont

＠ロ®e

Outline

A plenitude of distances

Rank－turbulence divergence

Probability－turbulence divergence
sac 1 of 65
$\underset{\text {＠ocs }}{\substack{\text { Pocsvox }}}$ Allotaxonometry

Plenitude distances

Rank－turbulenc
divergence
robability－
urbulence
urbulence
divergence
References

Explorations

References
（im $\left\lvert\, \frac{1}{\circ}\right.$
っのc $20 f 65$

Goal—Understand this：

Site（papers，examples，code）：
http：／／compstorylab．org／allotaxonometry／［

oundational papers：

＂Allotaxonometry and rank－turbulence divergence：A universal instrument for comparing complex systems＂$\overline{\text { on }}$

Dodds et al．

2020．${ }^{\text {［5］}}$
＂Probability－turbulence divergence：A tunable allotaxonometric instrument for comparing heavy－tailed categorical distributions＂${ }^{\text {B }}$
Dodds ét al．
2020．${ }^{\text {［6］}}$

Basic science $=$ Describe + Explain：
．Dashboards of single scale instruments helps us understand，monitor，and control systems．
Archetype：Cockpit dashboard for flying a plane
Okay if comprehendible．
Complex systems present two problems for dashboards：
1．Scale with internal diversity of components：We need meters for every species，every company， every word．
2．Tracking change：We need to re－arrange meters on the fly．
Q Goal－Create comprehendible
dynamically－adjusting，differential dashboards showing two pieces：${ }^{1}$

1．＇Big picture＇map－like overview，
2．A tunable ranking of components．
See the lexicocalorimeter ${ }^{3}$
Baby names，much studied：${ }^{[12]}$

How to build a dynamical dashboard that helps sort through a massive number of interconnected time
scaling of lexical turbulence in English fiction Pechenick，Danforth，Dodds，Alshaabi，Adams， Dewhurst，Reagan，Danforth，Reagan，and Danforth．
Journal of Computational Science，21，24－37， 2017．${ }^{[14]}$

$\log _{10}$ Rank r

$$
\phi \sim\left\{\begin{array}{l}
f_{\mathrm{thr}}^{-\mu} \text { for } f_{\mathrm{thr}} \ll f_{\mathrm{b}} \\
f_{\mathrm{thr}}^{-\mu^{\prime}} \text { for } f_{\mathrm{thr}} \gg f_{\mathrm{b}}
\end{array}\right.
$$

Estimates：$\mu \simeq 0.77$ and $\mu^{\prime} \simeq 1.10$ ，and f_{b} is the scaling break point．

$$
\phi \sim\left\{\begin{array}{l}
r^{\nu}=r^{\alpha \mu^{\prime}} \text { for } r \ll r_{\mathrm{b}}, \\
r^{\nu^{\prime}}=r^{\alpha^{\prime} \mu} \text { for } r \gg r_{\mathrm{b}} .
\end{array}\right.
$$

かac 6 of 65
Estimates：Lower and upper exponents $\nu \simeq 1.23$ and $\nu^{\prime} \simeq 1.47$ ．

epocsvox
plenitude of
distances
Rank．turbulence
divergence
robability－
urbulence
urbulence
divergence
ferences

When comparing two texts，define Lexical
turbulence as flux of words across a frequency threshold：
For language，Zipf＇s law has two scaling regimes：${ }^{[18}$

Aplenitude of distances

Rank－turbulence
Probability－
turbulence
divergence
Explorations
References

$\log _{10}$ Relative freq．threshold $f_{\text {thr }}$

${ }_{\log _{10}}^{3}$ Rank r

Zipf－turbulence histogram for probability：

So，so many ways to compare probability distributions：

Families of Alpha－Beta－and Gamma D̄ivergences：F̄exible and Robust
Measures of Similarities＂
C̄ichocki and Ámari，
Entropy，12，1532－1568，2010．${ }^{[2]}$ Comprehensive survey on
stancelsimiarity measures between
probability density functions＂${ }^{\text {® }}$
Sung－Hyuk Cha，
International Journal of Mathematical
Models and Methods in Applied Sciences， 1，300－307，2007．${ }^{[1]}$
－Comparisons are distances，divergences， similarities，inner products，fidelities ．．．
A worry：Subsampled distributions with very heavy tails
60ish kinds of comparisons grouped into 10 families

Quite the festival：

－ $\mid 10$

路 We want two main things：

1．A measure of difference between systems
2．A way of sorting which types／species／words contribute to that difference
婉 For sorting，many comparisons give the same ordering．
A few basic building blocks：
－$\left|P_{i}-Q_{i}\right|$（dominant）
（7） $\max \left(P_{i}, Q_{i}\right)$
（1） $\min \left(P_{i}, Q_{i}\right.$
（7）$P_{i} Q_{i}$
（1）$\left|P_{i}^{1 / 2}-Q_{i}^{1 / 2}\right|$ （Hellinger）

Pocs
＠pocsva
＠pocsvox
Allotaxonometry

Rank．turbulence
divergence
Probability－
turbulence fivergence References

3 Information theoretic sortings are more opaque
No tunability

Shannon＇s Entropy：

Kullback－Liebler（KL）divergence

$$
\begin{align*}
& D^{\mathrm{KL}}\left(P_{2} \| P_{1}\right)=\left\langle\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right\rangle_{P_{2}} \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau}\left[\log _{2} \frac{1}{p_{2, \tau}}-\log _{2} \frac{1}{p_{1, \tau}}\right] \\
& =\sum_{\tau \in R_{1,2 ; \alpha}} p_{2, \tau} \log _{2} \frac{p_{1, \tau}}{p_{2, \tau}} . \tag{2}
\end{align*}
$$

Problem：If just one component type in system 2 is not present in system 1，KL divergence $=\infty$ ．
Solution：If we can＇t compare a spork and a platypus directly，we create a fictional spork－platypus hybrid．
New problem：Re－read solution．
（6ensen－Shannon divergence（ISD）：$[9,7,13,1]$
$D^{15}\left(P_{1} \| P_{2}\right)$

$$
\begin{aligned}
& =\frac{1}{2} D^{\mathrm{KL}}\left(P_{1} \| \frac{1}{2}\left[P_{1}+P_{2}\right]\right)+\frac{1}{2} D^{\mathrm{KL}}\left(P_{2} \| \frac{1}{2}\left[P_{1}+P_{2}\right]\right) \\
& =\frac{1}{2} \sum_{\tau \in R_{1,2 ; \alpha}}\left(p_{1, \tau} \log _{2} \frac{p_{1, \tau}^{2}}{\frac{1}{2}\left[p_{1, \tau}+p_{2, \tau}\right]}+p_{2, \tau} \log _{2} \frac{p_{2, \tau}}{\frac{1}{2}\left[p_{1, \tau}+p_{2, \tau}\right]}\right) .
\end{aligned}
$$

．Involving a third intermediate averaged system means JSD is now finite： $0 \leq D^{15}\left(P_{1} \| P_{2}\right) \leq 1$ ．
Generalized entropy divergence：${ }^{[2]}$
$D_{\alpha}^{\text {AS2 }}\left(P_{1} \| P_{2}\right)=$
$\frac{1}{\alpha(\alpha-1)} \sum_{\tau \in R_{1,2 ; \alpha}}\left[\left(p_{\tau, 1}^{1-\alpha}+p_{\tau, 2}^{1-\alpha}\right)\left(\frac{p_{\tau, 1}+p_{\tau, 2}}{2}\right)^{\alpha}-\left(p_{\tau, 1}+p_{\tau, 2}\right)\right]$.

Produces JSD when $\alpha \rightarrow 0$ ．

Desirable rank－turbulence divergence features：
1．Rank－based．
2．Symmetric．
3．Semi－positive：$D_{\alpha}^{\mathrm{R}}\left(\Omega_{1} \| \Omega_{2}\right) \geq 0$ ．
4．Linearly separable，for interpretability．
5．Subsystem applicable：Ranked lists of any principled subset may be equally well compared （e．g．，hashtags on Twitter，stock prices of a certain sector，etc．）．
6．Zipfophilic：Able to handle systems with rank－ordered component size distribution that are heavy－tailed．
7．Scalable：Allow for sensible comparisons across system sizes．
8．Tunable．
9．Story－finding：Features $1-8$ combine to show which component types are most＇important＇

\qquad pocs
Qpocsvox
Allotaxonom Aplenitude of
distances
 Probability urbulence
divergence Explorations
References

Some good things about ranks：

Working with ranks is intuitive

Affords some powerful statistics（e．g．，Spearman＇s rank correlation coefficient）
Can be used to generalize beyond systems with probabilities

A start

$$
\begin{equation*}
\left|\frac{1}{r_{\tau, 1}}-\frac{1}{r_{\tau, 2}}\right| \tag{5}
\end{equation*}
$$

．Inverse of rank gives an increasing measure of ＇importance＇
．High rank means closer to rank 1
．We assign tied ranks for components of equal ‘size’
Issue：Biases toward high rank components

We introduce a tuning parameter：

$$
\begin{align*}
& \begin{array}{l}
\text { Aplenitude of } \\
\text { distances }
\end{array} \tag{6}
\end{align*}
$$

As $\alpha \rightarrow 0$ ，high ranked components are increasingly dampened
For words in texts，for example，the weight of common words and rare words move increasingly closer together．
As $\alpha \rightarrow \infty$ ，high rank components will dominate．
For texts，the contributions of rare words will vanish．

Trouble：
The limit of $\alpha \rightarrow 0$ does not behave well for

$$
\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 / \alpha}
$$

The leading order term is：

$$
\begin{equation*}
\left(1-\delta_{r_{\tau, 1} r_{\tau, 2}}\right) \alpha^{1 / \alpha}\left|\ln \frac{r_{\tau, 1}}{r_{\tau, 2}}\right|^{1 / \alpha} \tag{7}
\end{equation*}
$$

which heads toward ∞ as $\alpha \rightarrow 0$ ．
B Oops

But the insides look nutritious：

$$
\left|\ln \frac{r_{\tau, 1}}{r_{\tau, 2}}\right|
$$

is a nicely interpretable log－ratio of ranks．

는 ${ }^{\circ} \mid$
macc 23 of 65
Pocs
＠pocsvox
＠pocsvox
Allotaxonometry

Aplenitude of
distances

Probability－
turbuence
divergence
Explorations
References
Pocs
＠possvox
＠pocsvox
Some reworking：
$\stackrel{\text { Pocs }}{\text {＠ocsvo }}$

Aplenitude of
distances

Probability－
turbenc
divergence kxporations

References

（8）
\qquad
Aplenitude of
distances

Probability－
turbulence

$\begin{array}{l}\text { turbulence } \\ \text { divergence }\end{array}$

Explorations
References

Keeps the core structure．

Large α limit remains the same．
$\alpha \rightarrow 0$ limit now returns log－ratio of ranks．
Next：Sum over τ to get divergence．
Still have an option for normalization．
Rank－turbulence divergence：

$$
\begin{equation*}
D_{\alpha}^{\mathrm{R}}\left(R_{1} \| R_{2}\right)=\frac{1}{\mathcal{N}_{1,2 ; \alpha}} \sum_{\tau \in R_{1,2 ; \alpha}} \delta D_{\alpha, \tau}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \tag{9}
\end{equation*}
$$

Normalization：
R Take a data－driven rather than analytic approach to determining $\mathcal{N}_{1,2 ; \alpha}$ ．
．Compute $\mathcal{N}_{1,2 ; \alpha}$ by taking the two systems to be disjoint while maintaining their underlying Zipf distributions． Ranktarbulence
diveriencee nace 26 of 65

Ensures： $0 \leq D_{\alpha}^{\mathrm{R}}\left(R_{1} \| R_{2}\right) \leq 1$
Limits of 0 and 1 correspond to the two systems having identical and disjoint Zipf distributions．
（im）｜ 10
のac 24 of 65
Pocs
Qpocsvox
＠pocsvox
Allotaxonometry

Aplenitude o
distances

reobabiilty－
urbulence
vergence
eferences

Rank－turbulence divergence：
Summing over all types，dividing by a normalization prefactor $\mathcal{N}_{1,2 ; \alpha}$ we have our prototype：
$D_{\alpha}^{\mathrm{R}}\left(R_{1} \| R_{2}\right)=\frac{1}{\mathcal{N}_{1,2 ; \alpha}} \frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1,2 ; \alpha}}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|$
$1 \begin{gathered}\text { Explorations } \\ 1 /(R+1) \\ \text { References }\end{gathered}$
lif the Zipf distributions are disjoint，then in $\Omega^{(1)}$＇s merged ranking，the rank of all $\Omega^{(2)}$ types will be $r=N_{1}+\frac{1}{2} N_{2}$ ，where N_{1} and N_{2} are the number of distinct types in each system．
Similarly，$\Omega^{(2)}$＇s merged ranking will have all of $\Omega^{(1)}$＇s types in last place with rank $r=N_{2}+\frac{1}{2} N_{1}$ ．
The normalization is then：

$$
\begin{aligned}
\mathcal{N}_{1,2 ; \alpha} & =\frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1}}\left|\frac{1}{\left[r_{\tau, 1}\right]^{\alpha}}-\frac{1}{\left[N_{1}+\frac{1}{2} N_{2}\right]^{\alpha}}\right|^{1 /(\alpha} \\
& +\frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1}}\left|\frac{1}{\left[N_{2}+\frac{1}{2} N_{1}\right]^{\alpha}}-\frac{1}{\left[r_{\tau, 2}\right]^{\alpha}}\right|^{1 /(\alpha}
\end{aligned}
$$

（11）

Limit of $\alpha \rightarrow 0$
$D_{0}^{\mathrm{R}}\left(R_{1} \| R_{2}\right)=\sum_{\tau \in R_{1,2 ; \alpha}} \delta D_{0, \tau}^{\mathrm{R}}=\frac{1}{\mathcal{N}_{1,2 ; 0}} \sum_{\tau \in R_{1,2 ; \alpha}}\left|\ln \frac{r_{\tau, 1}}{r_{\tau, 2}}\right|$,
（12）
where

$$
\mathcal{N}_{1,2 ; 0}=\sum_{\tau \in R_{1}}\left|\ln \frac{r_{\tau, 1}}{N_{1}+\frac{1}{2} N_{2}}\right|+\sum_{\tau \in R_{2}}\left|\ln \frac{r_{\tau, 2}}{\frac{1}{2} N_{1}+N_{2}}\right| .
$$

（13）
Largest rank ratios dominate．

	（mi）｜${ }_{\text {\％}}^{0}$	
	wac 30 of 65	
Limit of $\alpha \rightarrow \infty$ ：	pocs ＠pocsvox Allotaxonometry	
$D_{\infty}^{\mathrm{R}}\left(R_{1} \\| R_{2}\right)=\sum_{\tau \in R_{1,2 ; \alpha}} \delta D_{\infty, \tau}^{\mathrm{R}}$	A plenitude of distances Rank－turbulence diverpag ince	
$=\frac{1}{\mathcal{N}_{1,2 ; \infty}} \sum_{\tau \in R_{1,2 ; \alpha}}\left(1-\delta_{r_{\tau, 1} r_{\tau, 2}}\right) \max _{\tau}\left\{\frac{1}{r_{\tau, 1}}, \frac{1}{r_{\tau, 2}}\right\} .$	Probability－ turbulence Explorations	

（능
わac 29 of 65
Pocs
＠pocsvox
Allotaxonometr
1）
where

$$
\begin{equation*}
\mathcal{N}_{1,2 ; \infty}=\sum_{\tau \in R_{1}} \frac{1}{r_{\tau, 1}}+\sum_{\tau \in R_{2}} \frac{1}{r_{\tau, 2}} . \tag{15}
\end{equation*}
$$

（14）

Highest ranks dominate．

Probability－turbulence divergence：
$D_{\alpha}^{\mathrm{P}}\left(P_{1} \| P_{2}\right)=\frac{1}{\mathcal{N}_{1,2 ; \alpha}^{\mathrm{P}}} \frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1,2 ; \alpha}}\left|\left[p_{\tau, 1}\right]^{\alpha}-\left[p_{\tau, 2}\right]^{\alpha}\right|^{1 /(\alpha+1)}$
（16）
For the unnormalized version（ $\mathcal{N}_{1,2 ; \alpha}^{P}=1$ ），some troubles return with 0 probabilities and $\alpha \rightarrow 0$ ．
给 Weep not： $\mathcal{N}_{1,2 ; \alpha}^{P}$ will save the day．

Normalization：

With no matching types，the probability of a type present in one system is zero in the other，and the sum can be split between the two systems＇types：

pocs ＠pocsvox ＠pocssox Allotaxonometry

A plenitude of
distances
Rank－turbulence
divergence
obability－turbuler Noigence Experorations
$\mathcal{N}_{1,2 ; \alpha}^{\mathrm{P}}=\frac{\alpha+1}{\alpha} \sum_{\tau \in R_{1}}\left[p_{\tau, 1}\right]^{\alpha /(\alpha+1)}+\frac{\alpha+1}{\alpha} \sum_{\tau \in R_{2}}\left[p_{\tau, 2}\right]^{\alpha /(\alpha+1)}$
（17）

$$
\begin{aligned}
& \text { ㄴ․ | } \mid \\
& \text { のace } 33 \text { of } 65 \\
& \begin{array}{l}
\text { Pocs } \\
\text { Qpocsvox }
\end{array} \\
& \begin{array}{l}
\text { @pocsvox } \\
\text { Allotaxonometry }
\end{array} \\
& \begin{array}{l}
\text { Aplenitude of } \\
\text { distances }
\end{array} \\
& \begin{array}{l}
\text { Rank-turbulence } \\
\text { divergence }
\end{array} \\
& \begin{array}{l}
\text { Rankeurbiruince } \\
\text { divergence }
\end{array} \\
& \begin{array}{l}
\text { Probabilit-turbuler } \\
\text { Jiverigiñ }
\end{array} \\
& \text { diverepencee- }
\end{aligned}
$$

$$
\begin{align*}
& \text { if both } p_{\tau, 1}>0 \text { and } p_{\tau, 2}>0 \text { then } \\
& \qquad \lim _{\alpha \rightarrow 0} \frac{\alpha+1}{\alpha}\left|\left[p_{\tau, 1}\right]^{\alpha}-\left[p_{\tau, 2}\right]^{\alpha}\right|^{1 /(\alpha+1)}=\left|\ln \frac{p_{\tau, 2}}{p_{\tau, 1}}\right| \tag{Explorations}
\end{align*}
$$

But if $p_{\tau, 1}=0$ or $p_{\tau, 2}=0$ ，limit diverges as $1 / \alpha$ ．

Limit of $\alpha=0$ for probability－turbulence divergence Normalization：

$$
\begin{equation*}
\mathcal{N}_{1,2 ; \alpha}^{\mathrm{P}} \rightarrow \frac{1}{\alpha}\left(N_{1}+N_{2}\right) . \tag{19}
\end{equation*}
$$

Because the normalization also diverges as $1 / \alpha$ ， the divergence will be zero when there are no exclusive types and non－zero when there are exclusive types．

Combine these cases into a single expression：

$$
D_{0}^{\mathrm{P}}\left(P_{1} \| P_{2}\right)=\frac{1}{\left(N_{1}+N_{2}\right)} \sum_{\tau \in R_{1,2 ; 0}}\left(\delta_{p_{\tau, 1}, 0}+\delta_{0, p_{\tau, 2}}\right) .
$$

R The term $\left(\delta_{p_{\tau, 1}, 0}+\delta_{0, p_{\tau, 2}}\right)$ returns 1 if either $p_{\tau, 1}=0$ or $p_{\tau, 2}=0$ ，and 0 otherwise when both $p_{\tau, 1}>0$ and $p_{\tau, 2}>0$.
R Ratio of types that are exclusive to one system relative to the total possible such types，

Type contribution ordering for the limit of $\alpha=0$
\＆In terms of contribution to the divergence score， all exclusive types supply a weight of $1 /\left(N_{1}+N_{2}\right)$ ． We can order them by preserving their ordering as $\alpha \rightarrow 0$ ，which amounts to ordering by descending probability in the system in which they appear．
And while types that appear in both systems make no contribution to $D_{0}^{\mathrm{P}}\left(P_{1} \| P_{2}\right)$ ，we can still order them according to the log ratio of their probabilities．
The overall ordering of types by divergence contribution for $\alpha=0$ is then：（1）exclusive types by descending probability and then（2）types
appearing in both systems by descending log ratio．

Effect of subsampling：

$\underset{\text {＠ocs }}{\text {＠pocsvox }}$

Flipbooks：

s．Twitter：

instrument－flipbook－1－rank－div．pdf睍 instrument－flipbook－2－probability－div．pdf 目 $^{\text {I }}$ instrument－flipbook－3－gen－entropy－div．pdf 䀠 $^{\text {ind }}$

．Market caps：

instrument－flipbook－4－marketcaps－6years－rank－div．pdf䀠

Baby names：

instrument－flipbook－5－babynames－girls－50years－rank－div．pdf䀠 instrument－flipbook－6－babynames－boys－50years－rank－div．pdf

的 Google books：

instrument－flipbook－7－google－books－onegrams－rank－div．pdf睍
instrument－flipbook－8－google－books－bigrams－rank－div．pdf
instrument－flipbook－9－google－books－trigrams－rank－div．pdf

Flipbooks：
References I
Pocs
＠pocsuox
Allotaxonometry

Aplenitude of
distances
Rank．turbulence
divergence
Probabiliy．
turbiline
divergence
Explorations
References

Code：
https：／／gitlab．com／compstorylab／allotaxonometer

Claims，exaggerations，reminders：
，Needed for comparing large－scale complex systems：
Comprehendible，dynamically－adjusting，
differential dashboards
，Many measures seem poorly motivated and largely unexamined（e．g．，JSD）
Of value：Combining big－picture maps with ranked lists
（ini） 10
万ace 57 of 65
Pocs
＠pocsvox
Allotaxoonometry

Aplenitude of
distances
Rank．turbulence
divergence
Probability－
turbulence
turbulence
divergence
eferences

纺 Maybe one day：Online tunable version of rank－turbulence divergence（plus many other instruments）

1］S．－H．Cha．
Comprehensive survey on distance／similarity measures between probability density functions． International Journal of Mathematical Models and Methods in Applied Sciences，1：300－307， 2007 pdf®
［2］A．Cichocki and S．－i．Amari
Families of Alpha－Beta－and Gamma－
divergences：Flexible and robust measures of similarities．
Entropy，12：1532－1568，2010．pdf［＾
［3］M．－M．Deza and E．Deza．
Dictionary of Distances．
Elsevier， 2006.

References II
［4］L．R．Dice．
Measures of the amount of ecologic association between species．
Ecology，26：297－302， 1945.
［5］P．S．Dodds，J．R．Minot，M．V．Arnold，T．Alshaabi， J．L．Adams，D．R．Dewhurst，T．J．Gray，M．R．Frank A．J．Reagan，and C．M．Danforth
Allotaxonometry and rank－turbulence divergence： A universal instrument for comparing complex systems， 2020.
Available online at
https：／／arxiv．org／abs／2002．09770．pdf［ \quad T

References III
［6］P．S．Dodds，J．R．Minot，M．V．Arnold，T．Alshaabi， J．L．Adams，D．R．Dewhurst，A．J．Reagan，and C．M． Danforth．
Probability－turbulence divergence：A tunable allotaxonometric instrument for comparing heavy－tailed categorical distributions， 2020. Available online at
http：／／arxiv．org／abs／2008．13078．pdf［＾
［7］D．M．Endres and J．E．Schindelin
A new metric for probability distributions．
IEEE Transactions on Information theory， 2003 pdf［「
pocs
Qoosvox

plenitude of istances

Rank－turbulence
Rank－urbulence
divergence
Probability－
furineme
fivergence
Eplorations
eferences
ocs
orsvox
Onoct
＠pocsvox
References IV
Pocs
＠pocsvo
［8］E．Hellinger．
Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen．
Journal für die reine und angewandte Mathematik
（Crelles Journal），1909（136）：210－271，1909．pdf［T
［9］J．Lin．
Divergence measures based on the Shannon entropy．
IEEE Transactions on Information theory，
37（1）：145－151，1991．pdf［天
［10］J．Looman and J．B．Campbell．
Adaptation of Sørensen＇s k（1948）for estimating
unit affinities in prairie vegetation．
Ecology，41（3）：409－416，1960．pdf［＾

References V
［11］K．Matusita et al．
Decision rules，based on the distance，for problems of fit，two samples，and estimation．
The Annals of Mathematical Statistics
26（4）：631－640，1955．pdf匚̄
［12］R．Munroe．
How To：Absurd Scientific Advice for Common
Real－World Problems．
Penguin， 2019.
［13］F．Osterreicher and I．Vajda．
A new class of metric divergences on probability spaces and its applicability in statistics．
Annals of the Institute of Statistical Mathematics， 55（3）：639－653， 2003.

References VI
［14］E．A．Pechenick，C．M．Danforth，and P．S．Dodds． Is language evolution grinding to a halt？The scaling of lexical turbulence in English fiction suggests it is not．
Journal of Computational Science，21：24－37， 2017. pdf（3
［15］Y．Sasaki
The truth of the f－measure， 2007
［16］T．Sorensen
A method of establishing groups of equal
amplitude in plant sociology based on similarity
of species content and its application to analyses of the vegetation on Danish commons．
Videnski Selskab Biologiske Skrifter，5：1－34， 1948
[17] C. J. Van Rijsbergen.
Information retrieval.
Butterworth-Heinemann, 2nd edition, 1979.
[18] J. R. Williams, J. P. Bagrow, C. M. Danforth, and P. S. Dodds.

Text mixing shapes the anatomy of
rank-frequency distributions.
Physical Review E, 91:052811, 2015. pdf[a

