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Goal—Understand this:
1 0.5 0 0.5 1

Site (papers, examples, code):
http://compstorylab.org/allotaxonometry/

Foundational papers:

5

A. Rank-turbulence histogram: B. Identical systems:

C. Randomized systems:

D. Disjoint systems:

FIG. 1. A. An example allotaxonomic ‘rank-rank histogram’ comparing word usage ranks on two days of
Twitter, 2016/11/09 and 2017/08/13. These dates are the day after the 2016 US presidential election and the day after
the Charlottesville Unite the Right rally. Words are extracted first as 1-grams from tweets identified as English [39] and then
filtered to match simple latin characters (see Sec. VA). We orient all histograms so that the comparison is left-right removing a
potential misperception of causality. In general, we compare ranked lists of types for two systems Ω1 and Ω2 by first generating
a merged list of types covering both systems. We then bin logarithmic rank-rank pairs (log

10
rτ,1, log10 rτ,2) across all types

and uniformly in logarithmic space. For bin counts, we use the perceptually uniform colormap magma [40], and place a scale in
the bottom left corner. We automatically label words at the fringes of the histogram. Bins on either side of the central vertical
line represent words that are used more often on the corresponding date. For example, ‘Charlottesville’ was ranked 67,220 on
2016/11/09 and 113 on 2017/08/13, while ‘Nazis’ moved from r=9,149 to 129. Words are given alternating shades of gray
for improved readability. The discrete, separated lines of boxes nearest to each bottom axis comprise words that appear on
Twitter on only that side’s date: ‘exclusive types’. Moving up the histogram, the two distinct lines above the ‘exclusive-type
lines’ correspond to words that appear once and twice in the other system. The three horizontal bars in the lower right show
system balances. The top bar indicates the balance of total counts of words for each day: 59.9% versus 40.1%. The middle bar
shows the percentage of the lexicon for the two days combined that appear on each day: 63.2% versus 61.6%. And the bottom
bar shows the percentage of words on each day that are exclusive: 60.8% and 59.8%. B–D. The three rank-rank histograms on
the right show the special, benchmark cases of: B. A Zipf ranking for compared with itself (vertical line; Ω1); C. A ranked list
versus a random shuffling of component types (Ω1); and D. Two Zipf rankings for systems with no shared component types: a
‘vee’ structure (we used Ω1 and Ω2, modifying words to prevent matches). For the cells in the main histograms in this paper,
we use cell side lengths of 1/15 of an order of magnitude; we use 1/5 for plots B–D.

“Allotaxonometry and rank-turbulence
divergence: A universal instrument for
comparing complex systems”
Dodds et al.,
, 2020. [5]
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FIG. 1. Allotaxonograph comparing 2-gram usage in the first and second half of Jane Austen’s Pride and
Prejudice using probability-turbulence divergence with α=3/4, DP

3/4. Histogram on the left: We bin all non-zero
probability pairs (log

10
pτ,1, log10 pτ,2) in logarithmic space. Colors indicate counts of 2-grams per cell, and we highlight example

2-grams along the edges of the histogram. For pairs where one of the probabilities is zero, we add a separate rectangular panel
along the bottom of each axis (lighter gray and lighter blue). Contour lines indicate where probability-turbulence divergence
is constant (the jump to the zero probability region necessitates a break in smoothness). Based on the histogram, we choose
α=3/4 to engineer an approximate fit to the histogram’s periphery. The gray scale for 2-grams is indexed by their percentage
contribution to probability-turbulence divergence, δDP

3/4,τ , showing a mixture of rare and common 2-grams. Ranked list on

the right: We order the most salient 2-grams according to their overall contribution δDP

3/4,τ which we mark by bar length.
We show the rank pair for each 2-gram in light gray opposite each 2-gram. Corresponding Flipbook: Flipbooks S1, S2, and
S3 in the paper’s Online Appendices (compstorylab.org/allotaxonometry/), show how the instrument changes for the same
comparison with α being tuned from 0 to ∞ for 1-, 2-, and 3-grams. See Ref. [1] for a general introduction and motivation for
allotaxonometry and allotaxonographs in the context of rank-turbulence divergence.

The choices of α for the three Twitter examples and the
one from Barro Colorado Island further showcase how
good fits may be achieved by a range of values of α. There
is no universal α characterizing turbulence between Zipf
distributions.

The examples for 2-grams and 3-grams can also be seen
as demonstrations of possible comparisons of features of
complex networks and systems (e.g, 2-grams in text as
directed edges).

As for rank-turbulence divergence [1] but with some
key modifications, our allotaxonographs for probability-
turbulence divergence pair two complimentary visualiza-
tions: A map-like histogram and a ranked list.

In isolation, both the histogram and the ranked list

have important but limited descriptive power. The his-
togram helps us see how well our choice of α performs,
information that is entirely lost by the ranking process.
And the ranked list would be difficult to intuit from the
histogram alone.

Many aspects of our allotaxonographs are configurable.
On Gitlab, we provide our universal code for gener-
ating allotaxonographs for rank-turbulence divergence,
probability-turbulence divergence, and other probability
divergences (see Sec. VB).

In the paper’s Online Appendices (compstory-
lab.org/allotaxonometry/), we complement all of our
allotaxonographs with PDF flipbooks which move sys-
tematically through a range of α values.

“Probability-turbulence divergence: A
tunable allotaxonometric instrument for
comparing heavy-tailed categorical
distributions”
Dodds et al.,
, 2020. [6]
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Basic science = Describe + Explain:
 Dashboards of single scale instruments helps us

understand, monitor, and control systems.
 Archetype: Cockpit dashboard for flying a plane
 Okay if comprehendible.
 Complex systems present two problems for

dashboards:
1. Scale with internal diversity of components: We

need meters for every species, every company,
every word.

2. Tracking change: We need to re-arrange meters
on the fly.

 Goal—Create comprehendible,
dynamically-adjusting, differential dashboards
showing two pieces:1
1. ‘Big picture’ map-like overview,
2. A tunable ranking of components.

1See the lexicocalorimeter
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Baby names, much studied: [12]

How to build a dynamical dashboard that helps sort
through a massive number of interconnected time
series?

Journal of  Computational Science 21  (2017)  24–37

Contents lists  available  at  ScienceDirect

Journal of  Computational Science
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a  b  s t r  a  c  t

Of  basic  interest  is the quantification of  the  long term growth of  a language’s  lexicon as it develops  to

more  completely  cover both a  culture’s  communication requirements and  knowledge  space. Here, we

explore  the usage dynamics of words in the English language as reflected  by the Google Books 2012

English Fiction  corpus.  We critique an earlier method that found decreasing  birth  and  increasing  death

rates  of  words over the second  half  of  the 20th  Century, showing  death rates  to be  strongly  affected  by

the  imposed time  cutoff  of  the arbitrary  present and  not  increasing dramatically.  We provide  a robust,

principled  approach  to examining  lexical evolution by tracking  the volume of  word flux across  various

relative frequency thresholds.  We  show  that  while the overall statistical  structure  of  the  English language

remains  stable over time  in terms  of its raw  Zipf distribution,  we find evidence  of  an enduring  ‘lexical

turbulence’:  The flux  of  words across  frequency  thresholds  from  decade to decade scales superlinearly

with  word  rank  and exhibits  a scaling break we connect  to  that  of Zipf’s law.  To better  understand  the

changing lexicon, we  examine  the contributions to the Jensen-Shannon divergence of  individual  words

crossing frequency thresholds.  We also  find indications that  scholarly  works  about fiction are  strongly

represented in the 2012 English Fiction  corpus, and  suggest  that a future revision of  the corpus should

attempt to separate critical  works  from  fiction itself.

© 2017 Elsevier B.V.  All rights  reserved.

1. Introduction

In studying  any  entity  or  system, a fundamental scientific goal

is the  satisfactory characterization  of temporal dynamics,  whether

empirically observed,  simulated,  or theoretically predicted. For lan-

guage, there  are many kinds and  scales  of temporal dynamics to

consider such as  the  introduction and usage decline of  specific

words [1], the  evolution  of  accents,  the  long  term development  of

individual languages [2],  and  the changes  in the  overall ecology of

human languages  which  has now  moved  well into an  era  of  die off

[3].

Here, we are concerned with  the  dynamics of  the  English  lan-

guage’s lexicon. Primarily, we want to know how the usage of  words

has changed  in time,  and how  this is reflected in the  English lex-

icon’s evolution.  This focus  leads us to several  core questions:  (1)

What are the rates at which words  are born and  at which they

∗ Corresponding  author.

E-mail addresses: eitan.pechenick@gmail.com (E.A. Pechenick),

chris.danforth@uvm.edu (C.M. Danforth), peter.dodds@uvm.edu (P.S.  Dodds).

die?  (2)  How do we reasonably identify  word  births  and deaths

in the  first  place? (3)  As the  English lexicon  has  expanded,  how

have  overall statistical  patterns such  as Zipf’s  law [4] changed, if

at all? We  are especially  interested with revisiting work on  word

“birth”  and “death” rates as performed in [1]. As we will  show, the

methods employed in  [1] suffer  from boundary  effects, and  we pro-

pose and investigate an alternative approach  insensitive to time

range choice. We  also  investigate  lexical changes  at a  range  of  usage

frequency  levels.

We  will  perform  our  analyses using the  Google  Books  corpus

[5,6] whose incredible volume  generated from an extensive cover-

age of  all written works  would seemingly  make it an ideal candidate

for linguistic research. However, there are  two  major caveats that

limit its potency  and we will lay  them out  before proceeding.

In  previous  research [7],  we broadly explored the  characteris-

tics and dynamics of  the unfiltered English and  English  Fiction data

sets from  both  the  2009 and  2012  versions  of  the  Google  Books

corpus. We  showed that the  2009  and  2012 unfiltered  English  data

sets and,  surprisingly, the  2009 English  Fiction data  set, all  become

increasingly influenced by scientific  texts throughout the  1900s,

with  medical research language being especially prevalent.  We

http://dx.doi.org/10.1016/j.jocs.2017.04.020

1877-7503/© 2017  Elsevier B.V. All  rights reserved.

“Is language evolution grinding to a halt? The
scaling of lexical turbulence in English fiction
suggests it is not”
Pechenick, Danforth, Dodds, Alshaabi, Adams,
Dewhurst, Reagan, Danforth, Reagan, and
Danforth.
Journal of Computational Science, 21, 24–37,
2017. [14]
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For language, Zipf’s law has two scaling
regimes: [18] 𝑓 ∼ { 𝑟−𝛼 for 𝑟 ≪ 𝑟b,𝑟−𝛼′ for 𝑟 ≫ 𝑟b,
When comparing two texts, define Lexical
turbulence as flux of words across a frequency
threshold: 𝜙 ∼ { 𝑓−𝜇

thr for 𝑓thr ≪ 𝑓b,𝑓−𝜇′
thr for 𝑓thr ≫ 𝑓b,

Estimates: 𝜇 ≃ 0.77 and 𝜇′ ≃ 1.10, and 𝑓b is the scaling
break point. 𝜙 ∼ { 𝑟𝜈 = 𝑟𝛼𝜇′ for 𝑟 ≪ 𝑟b,𝑟𝜈′ = 𝑟𝛼′𝜇 for 𝑟 ≫ 𝑟b.
Estimates: Lower and upper exponents 𝜈 ≃ 1.23 and𝜈′ ≃ 1.47.
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A. Rank-turbulence histogram: B. Identical systems:

C. Randomized systems:

D. Disjoint systems:
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Zipf-turbulence histogram for probability:
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So, so many ways to compare probability distributions:
Entropy 2010, 12 1542

Table 1. Asymmetric Alpha-divergences and associated convex Csiszár-Morimoto

functions [30].

Divergence D
(α)
A

(P||Q) =

∫

qf (α)
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dµ(x) Csiszár function f (α)(u), u = p/q


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“Families of Alpha- Beta- and Gamma-
Divergences: Flexible and Robust
Measures of Similarities”
Cichocki and Amari,
Entropy, 12, 1532-1568, 2010. [2]

 

 

paper have the shuffling invariant property [6] and thus 

naturally imply the level independency.  

There are two approaches in pdf distance/similarity 

measures: vector and probabilistic. Since each level is 

assumed to be independent from other levels, a histogram or 

pdf can be considered as a vector, i.e., a point in the Euclidean 

space or a Cartesian coordinate system. Hence, numerous 

geometrical distances can be applied to compare two pdf’s. 

There is much literature regarding discrete versions of various 

divergences in probability and information theory fields [7,8]. 

Computing the distance between two pdf’s can be regarded as 

the same as computing the Bayes (or minimum 

misclassification) probability [1]. This is equivalent to 

measuring the overlap between two pdfs as the distance. The 

probabilistic approach is based on the fact that a histogram of 

a measurement provides the basis for an empirical estimate of 

the pdf.  

The rest of the paper is organized as follows. In section 2, 

various distance/similarity measures are enumerated according 

to their syntactic similarities. In order to provide a better 

perspective on distance/similarity measures, section 3 presents 

the hierarchical cluster tree using the correlations between 

different measures. Finally, section 4 concludes this work.  

II. DEFINITIONS 

Table 1. Lp Minkowski family 

1. Euclidean L2 ∑
=

−=
d

i

iiEuc QPd
1

2||  (1) 

2. City block L1 ∑
=

−=
d

i

iiCB QPd
1

||  (2) 

3. Minkowski Lp p

d

i

p

iiMk QPd ∑
=

−=
1

||  (3) 

4. Chebyshev L∞  ||max ii
i

Cheb QPd −=  
(4) 

 

A couple of thousand years ago, Euclid stated that the 

shortest distance between two points is a line and thus the eqn 

(1) is predominantly known as Euclidean distance. It was 

often called Pythagorean metric since it is derived from the 

Pythagorean Theorem. In the late 19th century, Hermann 

Minkowski considered the city block distance [9]. Other 
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 Comparisons are distances, divergences,
similarities, inner products, fidelities ...

 A worry: Subsampled distributions with very
heavy tails

 60ish kinds of comparisons grouped into 10
families
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Quite the festival:

II. DEFINITIONS 
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Table 4. Inner Product family 
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Table 7. Shannon’s entropy family 
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 We want two main
things:
1. A measure of

difference between
systems

2. A way of sorting which
types/species/words
contribute to that
difference

 For sorting, many
comparisons give the
same ordering.

 A few basic building
blocks:
 |𝑃𝑖 − 𝑄𝑖| (dominant)
 max(𝑃𝑖, 𝑄𝑖)
 min(𝑃𝑖, 𝑄𝑖)
 𝑃𝑖𝑄𝑖
 |𝑃 1/2𝑖 − 𝑄1/2𝑖 |

(Hellinger)
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* L1 family  {Intersectoin (13), Wave Hedges (15), 

Czekanowski (16), Ruzicka (21), Tanimoto (23), etc}. 
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 Information theoretic
sortings are more
opaque

 No tunability

II. DEFINITIONS 
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 Shannon’s Entropy:𝐻(𝑃) = ⟨log2 1𝑝𝜏 ⟩ = ∑𝜏∈𝑅1,2;𝛼 𝑝𝜏 log2 1𝑝𝜏 (1)

 Kullback-Liebler (KL) divergence:𝐷KL (𝑃2 ∣∣ 𝑃1) = ⟨log2 1𝑝2,𝜏 − log2 1𝑝1,𝜏 ⟩𝑃2= ∑𝜏∈𝑅1,2;𝛼 𝑝2,𝜏 [log2 1𝑝2,𝜏 − log2 1𝑝1,𝜏 ]= ∑𝜏∈𝑅1,2;𝛼 𝑝2,𝜏 log2 𝑝1,𝜏𝑝2,𝜏 . (2)

 Problem: If just one component type in system 2 is not
present in system 1, KL divergence = ∞.

 Solution: If we can’t compare a spork and a platypus
directly, we create a fictional spork-platypus hybrid.

 New problem: Re-read solution.
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 Jensen-Shannon divergence (JSD): [9, 7, 13, 1]𝐷JS (𝑃1 ∣∣ 𝑃2)= 12 𝐷KL (𝑃1 ∣∣ 12 [𝑃1 + 𝑃2]) + 12 𝐷KL (𝑃2 ∣∣ 12 [𝑃1 + 𝑃2])= 12 ∑𝜏∈𝑅1,2;𝛼 (𝑝1,𝜏 log2 𝑝1,𝜏12 [𝑝1,𝜏 + 𝑝2,𝜏] + 𝑝2,𝜏 log2 𝑝2,𝜏12 [𝑝1,𝜏 + 𝑝2,𝜏] ) .
(3)

 Involving a third intermediate averaged system means JSD is now
finite: 0 ≤ 𝐷JS (𝑃1 ∣∣ 𝑃2) ≤ 1.

 Generalized entropy divergence: [2]𝐷AS2𝛼 (𝑃1 ∣∣ 𝑃2) =1𝛼(𝛼 − 1) ∑𝜏∈𝑅1,2;𝛼 [(𝑝1−𝛼𝜏,1 + 𝑝1−𝛼𝜏,2 ) ( 𝑝𝜏,1 + 𝑝𝜏,22 )𝛼 − (𝑝𝜏,1 + 𝑝𝜏,2)] .
(4)

Produces JSD when 𝛼 → 0.

1.5 1 0.5 0 0.5 1 1.5



A. Rank-turbulence histogram: B. Identical systems:

C. Disjoint systems:

D. Randomized systems:
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Exclusive types:
 We call types that are present in one system only

‘exclusive types’.
 When warranted, we will use expressions of the

form Ω(1)-exclusive and Ω(2)-exclusive to indicate
to which system an exclusive type belongs.
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Desirable rank-turbulence divergence features:
1. Rank-based.
2. Symmetric.
3. Semi-positive: 𝐷R𝛼(Ω1 ∣∣ Ω2) ≥ 0.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any

principled subset may be equally well compared
(e.g., hashtags on Twitter, stock prices of a certain
sector, etc.).

6. Zipfophilic: Able to handle systems with
rank-ordered component size distribution that are
heavy-tailed.

7. Scalable: Allow for sensible comparisons across
system sizes.

8. Tunable.
9. Story-finding: Features 1–8 combine to show

which component types are most ‘important’
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Some good things about ranks:
 Working with ranks is intuitive
 Affords some powerful statistics (e.g., Spearman’s

rank correlation coefficient)
 Can be used to generalize beyond systems with

probabilities

A start: ∣ 1𝑟𝜏,1 − 1𝑟𝜏,2 ∣ . (5)

 Inverse of rank gives an increasing measure of
‘importance’

 High rank means closer to rank 1
 We assign tied ranks for components of equal ‘size’
 Issue: Biases toward high rank components
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We introduce a tuning parameter:∣ 1[𝑟𝜏,1]𝛼 − 1[𝑟𝜏,2]𝛼 ∣1/𝛼 . (6)

 As 𝛼 → 0, high ranked components are
increasingly dampened

 For words in texts, for example, the weight of
common words and rare words move increasingly
closer together.

 As 𝛼 → ∞, high rank components will dominate.
 For texts, the contributions of rare words will

vanish.
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Trouble:
 The limit of 𝛼 → 0 does not behave well for

∣ 1[𝑟𝜏,1]𝛼 − 1[𝑟𝜏,2]𝛼 ∣1/𝛼 .
 The leading order term is:(1 − 𝛿𝑟𝜏,1𝑟𝜏,2) 𝛼1/𝛼 ∣ln𝑟𝜏,1𝑟𝜏,2 ∣1/𝛼 , (7)

which heads toward ∞ as 𝛼 → 0.
 Oops.
 But the insides look nutritious:∣ln𝑟𝜏,1𝑟𝜏,2 ∣

is a nicely interpretable log-ratio of ranks.
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Some reworking:

𝛿𝐷R𝛼,𝜏(𝑅1 ∣∣ 𝑅2) ∝ 𝛼 + 1𝛼 ∣ 1[𝑟𝜏,1]𝛼 − 1[𝑟𝜏,2]𝛼 ∣1/(𝛼+1) .
(8)

 Keeps the core structure.
 Large 𝛼 limit remains the same.
 𝛼 → 0 limit now returns log-ratio of ranks.
 Next: Sum over 𝜏 to get divergence.
 Still have an option for normalization.

Rank-turbulence divergence:𝐷R𝛼(𝑅1 ∣∣ 𝑅2) = 1𝒩1,2;𝛼 ∑𝜏∈𝑅1,2;𝛼 𝛿𝐷R𝛼,𝜏(𝑅1 ∣∣ 𝑅2) (9)
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Normalization:
 Take a data-driven rather than analytic approach

to determining 𝒩1,2;𝛼.
 Compute 𝒩1,2;𝛼 by taking the two systems to be

disjoint while maintaining their underlying Zipf
distributions.

 Ensures: 0 ≤ 𝐷R𝛼(𝑅1 ‖ 𝑅2) ≤ 1
 Limits of 0 and 1 correspond to the two systems

having identical and disjoint Zipf distributions.
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Rank-turbulence divergence:
Summing over all types, dividing by a normalization
prefactor 𝒩1,2;𝛼 we have our prototype:

𝐷R𝛼(𝑅1 ∣∣ 𝑅2) = 1𝒩1,2;𝛼 𝛼 + 1𝛼 ∑𝜏∈𝑅1,2;𝛼 ∣ 1[𝑟𝜏,1]𝛼 − 1[𝑟𝜏,2]𝛼 ∣1/(𝛼+1) .
(10)
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General normalization:
 Iif the Zipf distributions are disjoint, then in Ω(1)’s

merged ranking, the rank of all Ω(2) types will be𝑟 = 𝑁1 + 12𝑁2, where 𝑁1 and 𝑁2 are the number
of distinct types in each system.

 Similarly, Ω(2)’s merged ranking will have all ofΩ(1)’s types in last place with rank 𝑟 = 𝑁2 + 12𝑁1.
 The normalization is then:

𝒩1,2;𝛼 = 𝛼 + 1𝛼 ∑𝜏∈𝑅1 ∣ 1[𝑟𝜏,1]𝛼 − 1[𝑁1 + 12𝑁2]𝛼 ∣1/(𝛼+1)
+ 𝛼 + 1𝛼 ∑𝜏∈𝑅1 ∣ 1[𝑁2 + 12𝑁1]𝛼 − 1[𝑟𝜏,2]𝛼 ∣1/(𝛼+1) .

(11)
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Limit of 𝛼 → 0:
𝐷R0(𝑅1 ‖ 𝑅2) = ∑𝜏∈𝑅1,2;𝛼 𝛿𝐷R0,𝜏 = 1𝒩1,2;0 ∑𝜏∈𝑅1,2;𝛼 ∣ln𝑟𝜏,1𝑟𝜏,2 ∣ ,

(12)
where𝒩1,2;0 = ∑𝜏∈𝑅1 ∣ln 𝑟𝜏,1𝑁1 + 12𝑁2 ∣ + ∑𝜏∈𝑅2 ∣ln 𝑟𝜏,212𝑁1 + 𝑁2 ∣ .

(13)

 Largest rank ratios dominate.
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Limit of 𝛼 → ∞:𝐷R∞(𝑅1 ‖ 𝑅2) = ∑𝜏∈𝑅1,2;𝛼 𝛿𝐷R∞,𝜏= 1𝒩1,2;∞ ∑𝜏∈𝑅1,2;𝛼 (1 − 𝛿𝑟𝜏,1𝑟𝜏,2)max𝜏 { 1𝑟𝜏,1 , 1𝑟𝜏,2 } .
(14)

where 𝒩1,2;∞ = ∑𝜏∈𝑅1
1𝑟𝜏,1 + ∑𝜏∈𝑅2

1𝑟𝜏,2 . (15)

 Highest ranks dominate.

Probability-turbulence divergence:

𝐷P𝛼(𝑃1 ∣∣ 𝑃2) = 1𝒩P1,2;𝛼 𝛼 + 1𝛼 ∑𝜏∈𝑅1,2;𝛼 ∣ [ 𝑝𝜏,1]𝛼−[ 𝑝𝜏,2]𝛼 ∣1/(𝛼+1) .
(16)

 For the unnormalized version (𝒩P1,2;𝛼=1), some
troubles return with 0 probabilities and 𝛼 → 0.

 Weep not: 𝒩P1,2;𝛼 will save the day.
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Normalization:
With no matching types, the probability of a type
present in one system is zero in the other, and the
sum can be split between the two systems’ types:𝒩P1,2;𝛼 = 𝛼 + 1𝛼 ∑𝜏∈𝑅1 [ 𝑝𝜏,1]𝛼/(𝛼+1) + 𝛼 + 1𝛼 ∑𝜏∈𝑅2 [ 𝑝𝜏,2]𝛼/(𝛼+1)

(17)
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Limit of 𝛼=0 for probability-turbulence divergence
 if both 𝑝𝜏,1 > 0 and 𝑝𝜏,2 > 0 then

lim𝛼→0 𝛼 + 1𝛼 ∣ [ 𝑝𝜏,1]𝛼 −[ 𝑝𝜏,2]𝛼 ∣1/(𝛼+1)= ∣ln𝑝𝜏,2𝑝𝜏,1 ∣ .
(18)

 But if 𝑝𝜏,1 = 0 or 𝑝𝜏,2 = 0, limit diverges as 1/𝛼.
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Limit of 𝛼=0 for probability-turbulence divergence
 Normalization:𝒩P1,2;𝛼 → 1𝛼 (𝑁1 + 𝑁2) . (19)

 Because the normalization also diverges as 1/𝛼,
the divergence will be zero when there are no
exclusive types and non-zero when there are
exclusive types.
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Combine these cases into a single expression:𝐷P0(𝑃1 ‖ 𝑃2) = 1(𝑁1 + 𝑁2) ∑𝜏∈𝑅1,2;0 (𝛿𝑝𝜏,1,0 + 𝛿0,𝑝𝜏,2) .
(20)

 The term (𝛿𝑝𝜏,1,0 + 𝛿0,𝑝𝜏,2) returns 1 if either𝑝𝜏,1 = 0 or 𝑝𝜏,2 = 0, and 0 otherwise when both𝑝𝜏,1 > 0 and 𝑝𝜏,2 > 0.
 Ratio of types that are exclusive to one system

relative to the total possible such types,
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Type contribution ordering for the limit of 𝛼=0
 In terms of contribution to the divergence score,

all exclusive types supply a weight of 1/(𝑁1 + 𝑁2).
We can order them by preserving their ordering as𝛼 → 0, which amounts to ordering by descending
probability in the system in which they appear.

 And while types that appear in both systems make
no contribution to 𝐷P0(𝑃1 ‖ 𝑃2), we can still order
them according to the log ratio of their
probabilities.

 The overall ordering of types by divergence
contribution for 𝛼=0 is then: (1) exclusive types by
descending probability and then (2) types
appearing in both systems by descending log ratio.
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Limit of 𝛼=∞ for probability-turbulence
divergence𝐷P∞(𝑃1 ‖ 𝑃2) = 12 ∑𝜏∈𝑅1,2;∞ (1 − 𝛿𝑝𝜏,1,𝑝𝜏,2)max (𝑝𝜏,1, 𝑝𝜏,2)

(21)
where𝒩P1,2;∞ = ∑𝜏∈𝑅1,2;∞ ( 𝑝𝜏,1 + 𝑝𝜏,2 )= 1 + 1 = 2. (22)
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Connections for PTD:
 𝛼 = 0: Similarity measure Sørensen-Dice

coefficient [4, 16, 10], 𝐹1 score of a test’s
accuracy [17, 15].

 𝛼 = 1/2: Hellinger distance [8] and Mautusita
distance [11].

 𝛼 = 1: Many including all 𝐿(𝑝)-norm type
constructions.

 𝛼 = ∞: Motyka distance [3].
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Effect of subsampling:
N=31 N=100 N=316 N=1000 N=10,000 N=100,000 N=1,000,000

T
w
it
t
e
r
:

N=31 N=100 N=316

T
r
e
e
s
p
e
c
ie
s
:

N=31 N=100 N=316 N=1,000 N=10,000 N=31,622

B
a
b
y

g
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l
n
a
m
e
s
:

N=31 N=100 N=316 N=1,000 N=10,000 N=31,622

B
a
b
y

b
o
y

n
a
m
e
s
:

N=31 N=100 N=316 N=1000 N=10,000

M
a
r
k
e
t
c
a
p
s
:

8 6 4 2 0 2 4 6 8

2 1.5 1 0.5 0 0.5 1 1.5 2

0.2 0.1 0 0.1 0.2

5 0 5

6 4 2 0 2 4 6

0.03 0.02 0.01 0 0.01 0.02 0.03

2 1.5 1 0.5 0 0.5 1 1.5 2

Flipbooks:

 Twitter:
instrument-flipbook-1-rank-div.pdf
instrument-flipbook-2-probability-div.pdf
instrument-flipbook-3-gen-entropy-div.pdf

 Market caps:
instrument-flipbook-4-marketcaps-6years-rank-div.pdf

 Baby names:
instrument-flipbook-5-babynames-girls-50years-rank-div.pdf
instrument-flipbook-6-babynames-boys-50years-rank-div.pdf

 Google books:
instrument-flipbook-7-google-books-onegrams-rank-div.pdf
instrument-flipbook-8-google-books-bigrams-rank-div.pdf
instrument-flipbook-9-google-books-trigrams-rank-div.pdf



Flipbooks:

Pride and Prejudice, 1-grams
Pride and Prejudice, 2-grams
Pride and Prejudice, 3-grams
Twitter, 1-grams
Twitter, 2-grams
Twitter, 3-grams
Barro Colorado Island
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Code:
https://gitlab.com/compstorylab/allotaxonometer
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Claims, exaggerations, reminders:
 Needed for comparing large-scale complex

systems:
Comprehendible, dynamically-adjusting,
differential dashboards

 Many measures seem poorly motivated and
largely unexamined (e.g., JSD)

 Of value: Combining big-picture maps with ranked
lists

 Maybe one day: Online tunable version of
rank-turbulence divergence (plus many other
instruments)

5 0 5
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