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Many sources, many sinks

How do we distribute sources?
 Focus on 2-d (results generalize to higher

dimensions).
 Sources = hospitals, post offices, pubs, …
 Key problem: How do we cope with uneven

population densities?
 Obvious: if density is uniform then sources are

best distributed uniformly.
 Which lattice is optimal? The hexagonal lattice
 Q2: Given population density is uneven, what do

we do?
 We’ll follow work by Stephan (1977, 1984) [4, 5],

Gastner and Newman (2006) [2], Um et al. (2009) [6],
and work cited by them.
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Optimal source allocation

Solidifying the basic problem
 Given a region with some population distribution𝜌, most likely uneven.
 Given resources to build and maintain 𝑁 facilities.
 Q: How do we locate these 𝑁 facilities so as to

minimize the average distance between an
individual’s residence and the nearest facility?
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Optimal design of spatial distribution networks
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We consider the problem of constructing facilities such as hospitals, airports, or malls in a country with a

nonuniform population density, such that the average distance from a person’s home to the nearest facility is

minimized. We review some previous approximate treatments of this problem that indicate that the optimal

distribution of facilities should have a density that increases with population density, but does so slower than

linearly, as the two-thirds power. We confirm this result numerically for the particular case of the United States

with recent population data using two independent methods, one a straightforward regression analysis, the

other based on density-dependent map projections. We also consider strategies for linking the facilities to form

a spatial network, such as a network of flights between airports, so that the combined cost of maintenance of

and travel on the network is minimized. We show specific examples of such optimal networks for the case of

the United States.

DOI: 10.1103/PhysRevE.74.016117 PACS number�s�: 89.65.�s, 01.75.�m, 89.75.Da, 89.75.Hc

I. INTRODUCTION

Suppose we are given the population density ��r� of a

country or province, by which we mean the number of

people per unit area as a function of geographical position r.

And suppose we are charged with choosing the sites of p

facilities, such as hospitals, post offices, supermarkets, gas

stations, or schools, so that the mean distance to the nearest

facility averaged over the population is minimized. In most

countries, population density is highly nonuniform, in which

case a uniform distribution of facilities would be a poor

choice: it benefits us little to build a lot of facilities in

sparsely populated areas. A more sensible choice would be to

distribute facilities in proportion to population density, so

that a region with twice as many people has twice as many

facilities. But this distribution too turns out to be suboptimal,

because we also gain little by having closely spaced facilities

in the highly populated areas—when facilities are closely

spaced the typical person is not much farther from their

second-closest facility than from their closest, so one or the

other can often be removed with little penalty and substantial

savings.

Although an exact analytic solution to this optimal loca-

tion problem has yet to be found, a variety of approximate

treatments have been given, which suggest that the ideal so-

lution lies somewhere between these two extremes, with the

density of facilities increasing as the two-thirds power of

population density, a prediction that we verify here using

simulations and visualizations based on cartograms, with ac-

tual population data for the United States. In addition, one is

often interested in connections between facilities, such as

flights between airports �1� or transmission lines between

power stations �2�. In the second half of this paper, we gen-

erate networks based on a simple model that optimizes net-

work topology with respect to the cost of maintaining and

traveling across the network. Depending on the benefit func-

tion chosen, we find structures ranging from completely de-

centralized networks to hub-and-spoke networks.

II. OPTIMAL DISTRIBUTION OF FACILITIES

We wish to distribute p facilities over a two-dimensional

area A such that the objective function

f�r1, . . . ,rp� = �
A

��r� min
i��1¯p�

�r − ri�d
2r �1�

is minimized. Here �r1 , . . . ,rp� is the set of positions of the

facilities and ��r� is the population density within the region

A of interest. This objective function is proportional to the

mean distance that a person will have to travel to reach their

nearest facility.

Seemingly simple, this so-called p-median problem has

been shown to be NP-hard �3�, so in practice most studies

rely either on approximate numerical optimization or ap-

proximate analytic treatments �4�. A number of different ap-

proaches have been used �5–9�; the calculation given here is

essentially that of Gusein-Zade �10�.
Our p facilities naturally partition the area A into Voronoi

cells. �The Voronoi cell Vi for the ith facility is defined as the

set of points that are closer to ri than to any other facility.�
Let us define s�r� to be the area of the Voronoi cell to which

the point r belongs. In two dimensions, a person living at

point r will on average be a distance g�s�r��1/2 from the

nearest facility, where g is a geometric factor of order 1,

whose exact value depends on the shape of the Voronoi cell,

but which will in any case drop out of the final result. The

distance to the nearest facility averaged over all members of

the population is proportional to

f = g�
A

��r��s�r��1/2d2r , �2�

where we are making an approximation by neglecting varia-

tion of the geometric factor g between cells.

PHYSICAL REVIEW E 74, 016117 �2006�

1539-3755/2006/74�1�/016117�6� ©2006 The American Physical Society016117-1

“Optimal design of spatial distribution
networks”
Gastner and Newman,
Phys. Rev. E, 74, 016117, 2006. [2]

 Approximately optimal location of 5000 facilities.
 Based on 2000 Census data.
 Simulated annealing + Voronoi tessellation.
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Optimal source allocation

 Optimal facility density 𝜌fac vs. population density𝜌pop.
 Fit is 𝜌fac ∝ 𝜌0.66

pop with 𝑟2 = 0.94.
 Looking good for a 2/3 power …
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Optimal source allocation

Size-density law:
 𝜌fac ∝ 𝜌2/3

pop

 Why?
 Again: Different story to branching networks

where there was either one source or one sink.
 Now sources & sinks are distributed throughout

region.
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Optimal source allocation

previous experimental results are plotted
in Fig. 2. These limits correspond to 1
starddard deviation, that is, a confidence
level of 67 percent. For 95 percent con-
fidence levels, each limit must be ad-
justed upward by a factor of 3, as in-
dicated on the plot. In addition, we have
taken the calculations of Zeldovich et al.
(8) and, after scaling them appropriately
with energy, plotted the predicted qlp ra-
tios. For several regions coffesponding to
integral values ofZ and m, the intensity
from known ions (such as 2H2+ and '4N2+)
was sufficiently high to require the re-
moval of the silicon detectors from the
beam. As a result there are regions, gen-
erally less than 1 percent wide in mass, in
which we were unable to search for
quarks. These regions are indicated in
Fig. 2 by short vertical bars. The exis-
tence of these beams served the useful
purpose ofproving that the cyclotron was
still in tune and that if there were quarks
at concentrations greater than the limits
we have placed, they would have been
observed.

RICHARD A. MULLER
Luis W. ALVAREZ

WILLIAM R. HOLLEY
EDWARD J. STEPHENSON

Lawrence Berkeley Laboratory,
Berkeley, California 94720
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Territorial Division: The Least-Time Constraint

Behind the Formation ofSubnational Boundaries

Abstract. Nations usually locate their smaller administrative subdivisions in re-

gions of highest population density. This report derives a precise form of the size-
density relationshipfrom the general assumption that social structures evolve in such
a way as to minimize the total time expended by society in their operation. The result is
confirmed empirically.

All modern societies are subdivided in-
to sets of primary political divisions (for
example, states, counties, departments).
Where societies exhibit internal variation
in population density, the smaller territo-
rial units tend to be located in the more
densely settled regions (1). This negative
relationship between size and density can
be derived from the general assumption
that social structures evolve under the
constraint ofminimizing the total societal
time expended in their operation.

Territorial subdivision results from the
necessity for people to travel between
dispersed residences and some central
place (for example, a county seat) under
limiting conditions of time (the 24-hour
day) and time-saving technology (the av-
erage velocity of the means of trans-
portation). If territorial divisions are too
large, portions of the population will not
be able to interact with a center. If divi-
sions are too small, the cost of maintain-
ing the centers would be unnecessarily
high, assuming there were enough local
resources to maintain them at all. The
theoretical derivation will develop
equivalencies between these opposing
cost factors and societal time expendi-
ture, determine the condition under
which total time expenditure would be a
minimum, and show that the negative
size-density relationship follows from
this condition.

Imagine an undifferentiated plane
which is to be divided into territorial
units, each containing a center designed
to serve the population associated with it.
Select an imaginary unit and call its area
A and its population P. Now let S repre-
sent the average travel distance to the
center, given the distribution ofthe popu-
lation within the unit. This average dis-
tance, divided by the velocity of the
means of transportation v, gives us the
average travel time expended by the pop-
ulation in using the center.
Maintenance of the center and provi-

sion of its services to the population will
require a further time expenditure, both
in direct man-hours of work and in the
form of indirect costs paid by the popu-
lation to support such work. If we let h
represent the time cost ofmaintaining the
center, divide this cost by the total popu-

lation, and add the result to the term Slv,
we obtain the expression

T = S/v + h/P (1)

where T is the average societal time ex-
pended in using and maintaining the serv-
ice center of the territorial unit.

Since our task is to find the area which
will minimize average time expenditure,
we must introduce A in both right-hand
terms of Eq. 1. Simple dimensional analy-
sis (2) suggests that the average distance
S will be proportional to the square root
of the area A, regardless of the shape of
the territorial unit. Thus, with g as the
constant of proportionality, we have the
substitution S = gVW for the first term.
The constant has been evaluated for cer-
tain regular polygons which occur fre-
quently in the study of spatial relation-
ships (3); its exact value will not be essen-
tial in the present derivation. The
definition ofdensity, D, as population per
unit area (D = P/A) permits substitution
ofAD forP in the second term of Eq. 1 to
yield

T= gVA7/v + h/AD (2)

from which we obtain the derivative

dT/dA = g/(2v%fA) - h/A2D (3)

which, set equal to zero and solved forA,
gives us

A = (2vhIgD)2/3 (4)

as the condition under which T will be a
minimum (the second derivative of Eq. 2
can be shown to be greater than zero).

Holding v, h, and g constant, we can
obtain a linear form of Eq. 4, relating
areal size to density,

logA = K -2/3(logD) (5)

where K is the log of 2vhlg to the two-
thirds power. Equation 5 readily lends it-
self to empirical test with a least-squares
estimator to determine the slope relating
log-size to log-density.
Such an analysis has been carried out

for 98 modern nations (4). While the
slopes for individual nations vary some-
what around the expected -2/3 value
(and in some cases the number of subdivi-
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“Territorial Division: The Least-Time
Constraint Behind the Formation of
Subnational Boundaries”
G. Edward Stephan,
Science, 196, 523–524, 1977. [4]

 We first examine Stephan’s treatment (1977) [4, 5]

 Zipf-like approach: invokes principle of minimal
effort.

 Also known as the Homer Simpson principle.



PoCS, Vol. 1
@pocsvox

Optimal Supply
Networks III

Distributed
Sources
Size-density law

Cartograms

A reasonable derivation

Global redistribution

Public versus Private

References

.
.
.
.
.

.
11 of 46

Optimal source allocation

 Consider a region of area 𝐴 and population 𝑃 with
a single functional center that everyone needs to
access every day.

 Build up a general cost function based on time
expended to access and maintain center.

 Write average travel distance to center as ̄𝑑 and
assume average speed of travel is ̄𝑣.

 Assume isometry: average travel distance ̄𝑑 will be
on the length scale of the region which is ∼ 𝐴1/2

 Average time expended per person in accessing
facility is therefore ̄𝑑/ ̄𝑣 = 𝑐𝐴1/2/ ̄𝑣
where 𝑐 is an unimportant shape factor.
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Optimal source allocation

 Next assume facility requires regular maintenance
(person-hours per day).

 Call this quantity 𝜏 .
 If burden of mainenance is shared then average

cost per person is 𝜏/𝑃 where 𝑃 = population.
 Replace 𝑃 by 𝜌pop𝐴 where 𝜌pop is density.
 Important assumption: uniform density.
 Total average time cost per person:𝑇 = ̄𝑑/ ̄𝑣 + 𝜏/(𝜌pop𝐴) = 𝑐𝐴1/2/ ̄𝑣 + 𝜏/(𝜌pop𝐴).
 Now Minimize with respect to 𝐴 …
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Optimal source allocation
 Differentiating …𝜕𝑇𝜕𝐴 = 𝜕𝜕𝐴 (𝑐𝐴1/2/ ̄𝑣 + 𝜏/(𝜌pop𝐴))= 𝑐2 ̄𝑣𝐴1/2 − 𝜏𝜌pop𝐴2 = 0
 Rearrange:

𝐴 = ( 2 ̄𝑣𝜏𝑐𝜌pop)2/3 ∝ 𝜌−2/3
pop

 # facilities per unit area 𝜌fac:𝜌fac ∝ 𝐴−1 ∝ 𝜌2/3
pop

 Groovy …
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Optimal source allocation

An issue:
 Maintenance (𝜏 ) is assumed to be independent of

population and area (𝑃 and 𝐴)
 Stephan’s online book

“The Division of Territory in Society” is here.
 (It used to be here.)
 The Readme is well worth reading (1995).

PoCS, Vol. 1
@pocsvox

Optimal Supply
Networks III

Distributed
Sources
Size-density law

Cartograms

A reasonable derivation

Global redistribution

Public versus Private

References

.
.
.
.
.

.
16 of 46

Cartograms

Standard world map:
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Cartograms

Cartogram of countries ‘rescaled’ by population:
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Cartograms
Diffusion-based cartograms:
 Idea of cartograms is to distort areas to more

accurately represent some local density 𝜌pop (e.g.
population).

 Many methods put forward—typically involve
some kind of physical analogy to spreading or
repulsion.

 Algorithm due to Gastner and Newman (2004) [1] is
based on standard diffusion:∇2𝜌pop − 𝜕𝜌pop𝜕𝑡 = 0.

 Allow density to diffuse and trace the movement
of individual elements and boundaries.

 Diffusion is constrained by boundary condition of
surrounding area having density ̄𝜌pop.
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Cartograms

Child mortality:
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Cartograms

Energy consumption:
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Cartograms

Gross domestic product:
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Cartograms

Greenhouse gas emissions:
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Cartograms

Spending on healthcare:
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Cartograms

People living with HIV:
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Cartograms

 The preceding sampling of Gastner & Newman’s
cartograms lives here.

 A larger collection can be found at
worldmapper.org.
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Size-density law
Optimal design of spatial distribution networks
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We consider the problem of constructing facilities such as hospitals, airports, or malls in a country with a

nonuniform population density, such that the average distance from a person’s home to the nearest facility is

minimized. We review some previous approximate treatments of this problem that indicate that the optimal

distribution of facilities should have a density that increases with population density, but does so slower than

linearly, as the two-thirds power. We confirm this result numerically for the particular case of the United States

with recent population data using two independent methods, one a straightforward regression analysis, the

other based on density-dependent map projections. We also consider strategies for linking the facilities to form

a spatial network, such as a network of flights between airports, so that the combined cost of maintenance of

and travel on the network is minimized. We show specific examples of such optimal networks for the case of

the United States.

DOI: 10.1103/PhysRevE.74.016117 PACS number�s�: 89.65.�s, 01.75.�m, 89.75.Da, 89.75.Hc

I. INTRODUCTION

Suppose we are given the population density ��r� of a

country or province, by which we mean the number of

people per unit area as a function of geographical position r.

And suppose we are charged with choosing the sites of p

facilities, such as hospitals, post offices, supermarkets, gas

stations, or schools, so that the mean distance to the nearest

facility averaged over the population is minimized. In most

countries, population density is highly nonuniform, in which

case a uniform distribution of facilities would be a poor

choice: it benefits us little to build a lot of facilities in

sparsely populated areas. A more sensible choice would be to

distribute facilities in proportion to population density, so

that a region with twice as many people has twice as many

facilities. But this distribution too turns out to be suboptimal,

because we also gain little by having closely spaced facilities

in the highly populated areas—when facilities are closely

spaced the typical person is not much farther from their

second-closest facility than from their closest, so one or the

other can often be removed with little penalty and substantial

savings.

Although an exact analytic solution to this optimal loca-

tion problem has yet to be found, a variety of approximate

treatments have been given, which suggest that the ideal so-

lution lies somewhere between these two extremes, with the

density of facilities increasing as the two-thirds power of

population density, a prediction that we verify here using

simulations and visualizations based on cartograms, with ac-

tual population data for the United States. In addition, one is

often interested in connections between facilities, such as

flights between airports �1� or transmission lines between

power stations �2�. In the second half of this paper, we gen-

erate networks based on a simple model that optimizes net-

work topology with respect to the cost of maintaining and

traveling across the network. Depending on the benefit func-

tion chosen, we find structures ranging from completely de-

centralized networks to hub-and-spoke networks.

II. OPTIMAL DISTRIBUTION OF FACILITIES

We wish to distribute p facilities over a two-dimensional

area A such that the objective function

f�r1, . . . ,rp� = �
A

��r� min
i��1¯p�

�r − ri�d
2r �1�

is minimized. Here �r1 , . . . ,rp� is the set of positions of the

facilities and ��r� is the population density within the region

A of interest. This objective function is proportional to the

mean distance that a person will have to travel to reach their

nearest facility.

Seemingly simple, this so-called p-median problem has

been shown to be NP-hard �3�, so in practice most studies

rely either on approximate numerical optimization or ap-

proximate analytic treatments �4�. A number of different ap-

proaches have been used �5–9�; the calculation given here is

essentially that of Gusein-Zade �10�.
Our p facilities naturally partition the area A into Voronoi

cells. �The Voronoi cell Vi for the ith facility is defined as the

set of points that are closer to ri than to any other facility.�
Let us define s�r� to be the area of the Voronoi cell to which

the point r belongs. In two dimensions, a person living at

point r will on average be a distance g�s�r��1/2 from the

nearest facility, where g is a geometric factor of order 1,

whose exact value depends on the shape of the Voronoi cell,

but which will in any case drop out of the final result. The

distance to the nearest facility averaged over all members of

the population is proportional to

f = g�
A

��r��s�r��1/2d2r , �2�

where we are making an approximation by neglecting varia-

tion of the geometric factor g between cells.
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“Optimal design of spatial distribution
networks”
Gastner and Newman,
Phys. Rev. E, 74, 016117, 2006. [2]

 Left: population density-equalized cartogram.
 Right: (population density)2/3-equalized

cartogram.

 Facility density is uniform for 𝜌2/3
pop cartogram.
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Size-density law

From Gastner and Newman (2006) [2]

 Cartogram’s Voronoi cells are somewhat
hexagonal.
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Size-density law
Deriving the optimal source distribution:
 Basic idea: Minimize the average distance from a

random individual to the nearest facility. [2]

 Assume given a fixed population density 𝜌pop
defined on a spatial region Ω.

 Formally, we want to find the locations of 𝑛
sources { ⃗𝑥1, … , ⃗𝑥𝑛} that minimizes the cost
function𝐹({ ⃗𝑥1, … , ⃗𝑥𝑛}) = ∫Ω 𝜌pop( ⃗𝑥)min𝑖|| ⃗𝑥 − ⃗𝑥𝑖||d ⃗𝑥 .

 Also known as the p-median problem.
 Not easy …in fact this one is an NP-hard

problem. [2]

 Approximate solution originally due to
Gusein-Zade [3].
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Size-density law

Approximations:
 For a given set of source placements { ⃗𝑥1, … , ⃗𝑥𝑛},

the region Ω is divided up into Voronoi cells,
one per source.

 Define 𝐴( ⃗𝑥) as the area of the Voronoi cell
containing ⃗𝑥.

 As per Stephan’s calculation, estimate typical
distance from ⃗𝑥 to the nearest source (say 𝑖) as𝑐𝑖𝐴( ⃗𝑥)1/2
where 𝑐𝑖 is a shape factor for the 𝑖th Voronoi cell.

 Approximate 𝑐𝑖 as a constant 𝑐.
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Size-density law

Carrying on:
 The cost function is now𝐹 = 𝑐 ∫Ω 𝜌pop( ⃗𝑥)𝐴( ⃗𝑥)1/2d ⃗𝑥 .
 We also have that the constraint that Voronoi cells

divide up the overall area of Ω: ∑𝑛𝑖=1 𝐴( ⃗𝑥𝑖) = 𝐴Ω.
 Sneakily turn this into an integral constraint:∫Ω d ⃗𝑥𝐴( ⃗𝑥) = 𝑛.
 Within each cell, 𝐴( ⃗𝑥) is constant.
 So …integral over each of the 𝑛 cells equals 1.
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Now a Lagrange multiplier story:
 By varying { ⃗𝑥1, … , ⃗𝑥𝑛}, minimize𝐺(𝐴) = 𝑐 ∫Ω 𝜌pop( ⃗𝑥)𝐴( ⃗𝑥)1/2d ⃗𝑥 −𝜆 (𝑛 − ∫Ω [𝐴( ⃗𝑥)]−1 d ⃗𝑥 )
 I Can Haz Calculus of Variations?
 Compute 𝛿𝐺/𝛿𝐴, the functional derivative of the

functional 𝐺(𝐴).
 This gives∫Ω [𝑐2𝜌pop( ⃗𝑥)𝐴( ⃗𝑥)−1/2 − 𝜆 [𝐴( ⃗𝑥)]−2]d ⃗𝑥 = 0.
 Setting the integrand to be zilch, we have:𝜌pop( ⃗𝑥) = 2𝜆𝑐−1𝐴( ⃗𝑥)−3/2.
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Size-density law
Now a Lagrange multiplier story:
 Rearranging, we have𝐴( ⃗𝑥) = (2𝜆𝑐−1)2/3𝜌−2/3

pop .
 Finally, we indentify 1/𝐴( ⃗𝑥) as 𝜌fac( ⃗𝑥), an

approximation of the local source density.
 Substituting 𝜌fac = 1/𝐴, we have𝜌fac( ⃗𝑥) = ( 𝑐2𝜆𝜌pop)2/3 .
 Normalizing (or solving for 𝜆):𝜌fac( ⃗𝑥) = 𝑛 [𝜌pop( ⃗𝑥)]2/3∫Ω[𝜌pop( ⃗𝑥)]2/3d ⃗𝑥 ∝ [𝜌pop( ⃗𝑥)]2/3.
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Global redistribution networks
One more thing:
 How do we supply these facilities?
 How do we best redistribute mail? People?
 How do we get beer to the pubs?
 Gastner and Newman model: cost is a function of

basic maintenance and travel time:𝐶maint + 𝛾𝐶travel.
 Travel time is more complicated: Take ‘distance’

between nodes to be a composite of shortest path
distance ℓ𝑖𝑗 and number of legs to journey:(1 − 𝛿)ℓ𝑖𝑗 + 𝛿(#hops).

 When 𝛿 = 1, only number of hops matters.
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Global redistribution networks

From Gastner and Newman (2006) [2]
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Public versus private facilities
Beyond minimizing distances:
 “Scaling laws between population and facility

densities” by Um et al., Proc. Natl. Acad. Sci.,
2009. [6]

 Um et al. find empirically and argue theoretically
that the connection between facility and
population density 𝜌fac ∝ 𝜌𝛼

pop

does not universally hold with 𝛼 = 2/3.
 Two idealized limiting classes:

1. For-profit, commercial facilities: 𝛼 = 1;
2. Pro-social, public facilities: 𝛼 = 2/3.

 Um et al. investigate facility locations in the United
States and South Korea.
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Public versus private facilities: evidence

 Left plot: ambulatory hospitals in the U.S.
 Right plot: public schools in the U.S.
 Note: break in scaling for public schools.

Transition from 𝛼 ≃ 2/3 to 𝛼 = 1 around𝜌pop ≃ 100.
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Public versus private facilities: evidence
US facility α (SE) R

2

Ambulatory hospital 1.13(1) 0.93

Beauty care 1.08(1) 0.86

Laundry 1.05(1) 0.90

Automotive repair 0.99(1) 0.92

Private school 0.95(1) 0.82

Restaurant 0.93(1) 0.89

Accommodation 0.89(1) 0.70

Bank 0.88(1) 0.89

Gas station 0.86(1) 0.94

Death care 0.79(1) 0.80

* Fire station 0.78(3) 0.93

* Police station 0.71(6) 0.75

Public school 0.69(1) 0.87

SK facility α (SE) R
2

Bank 1.18(2) 0.96

Parking place 1.13(2) 0.91

* Primary clinic 1.09(2) 1.00

* Hospital 0.96(5) 0.97

* University/college 0.93(9) 0.89

Market place 0.87(2) 0.90

* Secondary school 0.77(3) 0.98

* Primary school 0.77(3) 0.97

Social welfare org. 0.75(2) 0.84

* Police station 0.71(5) 0.94

Government office 0.70(1) 0.93

* Fire station 0.60(4) 0.93

* Public health center 0.09(5) 0.19

Rough transition
between public
and private at𝛼 ≃ 0.8.
Note: * indicates
analysis is at
state/province
level; otherwise
county level.
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Public versus private facilities: evidence

A, C: ambulatory hospitals in the U.S.; B, D: public
schools in the U.S.; A, B: data; C, D: Voronoi diagram
from model simulation.
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Public versus private facilities: the story
So what’s going on?

 Social institutions seek to minimize distance of travel.

 Commercial institutions seek to maximize the number
of visitors.

 Defns: For the 𝑖th facility and its Voronoi cell 𝑉𝑖, define
 𝑛𝑖 = population of the 𝑖th cell;
 ⟨𝑟𝑖⟩ = the average travel distance to the 𝑖th facility.
 𝐴𝑖 = area of 𝑖th cell (𝑠𝑖 in Um et al. [6])

 Objective function to maximize for a facility (highly
constructed): 𝑣𝑖 = 𝑛𝑖⟨𝑟𝑖⟩𝛽 with 0 ≤ 𝛽 ≤ 1.

 Limits:

 𝛽 = 0: purely commercial.
 𝛽 = 1: purely social.

PoCS, Vol. 1
@pocsvox

Optimal Supply
Networks III

Distributed
Sources
Size-density law

Cartograms

A reasonable derivation

Global redistribution

Public versus Private

References

.
.
.
.
.

.
44 of 46

Public versus private facilities: the story

 Either proceeding as per the
Gastner-Newman-Gusein-Zade calculation or, as
Um et al. do, observing that the cost for each cell
should be the same, we have:𝜌fac( ⃗𝑥) = 𝑛 [𝜌pop( ⃗𝑥)]2/(𝛽+2)∫Ω[𝜌pop( ⃗𝑥)]2/(𝛽+2)d ⃗𝑥 ∝ [𝜌pop( ⃗𝑥)]2/(𝛽+2).

 For 𝛽 = 0, 𝛼 = 1: commercial scaling is linear.
 For 𝛽 = 1, 𝛼 = 2/3: social scaling is sublinear.
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