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the potential at the nodes by solving the system of linear
equations ik !

P
lRkl"Uk #Ul$, then the currents through

the links Ikl are determined. We use these currents to
determine a first approximation of the optimal conductiv-
ities on the basis of the scaling relation. Then, the currents
are recalculated with this set of conductivities, and the
scaling relation is reused for the next approximation.
These steps are repeated until the values have converged.
We check by perturbing the solution that it actually is a
minimum of the dissipation, which was always the case.

For all !> 1, independently of the initial conditions, the
same conductivity distribution is obtained, which con-
forms to the analytical result of [6]: there exists a unique
minimum which is therefore global.

Furthermore, the distribution of "kl is ‘‘smooth,’’ vary-
ing only on a ‘‘macroscopic scale,’’ as show in Fig. 2(a).
No formation of any particular structure occurs. However,
the conductivity distribution is not isotropic. We can inter-
pret the conductivity distribution as a discrete approxima-
tion of a continuous, macroscopic conductivity tensor (see
also [10]). The smooth aspect of the distribution is con-
served while approaching ! ! 1 while the local anisotropy
increases, while the values of all "kl remain finite, even if
they get very small. For ! ! 1:5 and Ndia ! 15, the con-
ductivity distribution spreads already over eight decades
and becomes still broader as ! ! 1%, in which limit the
number of iteration steps diverges as the minima becomes
less and less steep.

! ! 1 presents a marginal case. The results of the
simulation suggest that the minimum is highly degenerate;
i.e., there are a large number of conductivity distributions
yielding the same minimal dissipation.

For !< 1, the output of the relaxation algorithm is
qualitatively different [Fig. 2(b)]. A large number of con-
ductivities converge to zero so that no loop remains. The
highly redundant network is transformed to a spanning
tree topology and the currents are canalized in a hierarch-
ical manner. This, too, is predicted by the analytical results
[6]. In contrast to !> 1, the conductivity distribution
cannot be interpreted as a discrete approximation of a
conductivity tensor: for Ndia ! 1, the structure becomes
fractal.

For different initial conditions, the relaxation algorithm
yields trees with different topologies: each local minima in
the high-dimensional and continuous space of conductiv-
ities f"klg corresponds to a different tree topology. To find
the global minima with !< 1, we search consequently in
the (exponentially large) space of tree topologies using a
Monte Carlo algorithm. (We start with some initial tree and
then switch links without creating loops and without dis-
connecting a part of the network.) Note that for a tree
topology, the currents do not depend on the values "kl
and, using the scaling relation, one may directly write
down the dissipation rate for a given tree; the iterative
relaxation is not necessary here. This regime has been
widely explored in the context of river networks
[4,5,13,15], mainly for a set of parameters that corre-
sponds, in our case, to ! ! 0:5. An example of a resulting
minimal dissipation tree structure is given in Fig. 2(c).
Note also, that the scaling relations can be seen as some
kind of erosion model: the more currents flows through a
link, the better the link conducts [4].

The qualitative transition is reflected also quantitatively
in the value of the minimal dissipation [Fig. 3(a)]. The
points for !> 1 were obtained with the relaxation algo-
rithm, the points !< 1 by optimizing the tree topologies
with a Monte Carlo algorithm. For ! ! 1, Jmin=Jhomo !
1 by definition; for ! ! 0, Jmin=Jhomo ! 0, because the
vanishing "kl allow the remaining "kl ! 1.

Figure 3(b) shows the behavior of minimal dissipation
rate close to ! ! 1. For ! smaller than 1, the relaxation
method only furnishes a local minimum, the Monte Carlo
algorithm searching for the optimal tree topologies gives
lower dissipation values. The different values correspond-
ing to different realization indicate that the employed
Monte Carlo method does not find the exact global min-
ima. For !> 1, the optimal tree obtained by the
Monte Carlo algorithm is not the optimal solution since
the absolute and only minima has loops. The dissipation
rate which results from the relaxation algorithm is then, of
course, lower than the dissipation of any tree. While the
curve is continuous, the crossover at ! ! 1 shows a clear
change in the slope of Jmin"!$. One could interpret this
behavior as a second order phase transition. (The change in
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FIG. 2. Examples of the optimized conductivity distributions obtained by the relaxation method for (a) ! ! 2:0 and (b) ! ! 0:5. For
!< 1, the relaxation leads in general only to a local minimum. The global minimum can be approached by searching in the space of
tree topologies. The result for ! ! 0:5 is shown in (c). The arrows indicate the localized inlet.

PRL 98, 088702 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 FEBRUARY 2007

088702-3

.
.
.
.
.

.
1 of 48

Optimal Supply Networks III:
Redistribution

Last updated: 2020/09/12, 14:01:53 EDT

Principles of Complex Systems, Vol. 1 | @pocsvox
CSYS/MATH 300, Fall, 2020

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center
Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/teaching/courses/2020-08UVM-300
http://www.twitter.com/@pocsvox
http://www.uvm.edu/pdodds
http://www.twitter.com/@peterdodds
http://compstorylab.org/
http://www.uvm.edu/~cems/complexsystems/
http://www.uvm.edu/~vacc/
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds


PoCS, Vol. 1
@pocsvox

Optimal Supply
Networks III

Distributed
Sources
Size-density law

Cartograms

A reasonable derivation

Global redistribution

Public versus Private

References

the potential at the nodes by solving the system of linear
equations ik !

P
lRkl"Uk #Ul$, then the currents through

the links Ikl are determined. We use these currents to
determine a first approximation of the optimal conductiv-
ities on the basis of the scaling relation. Then, the currents
are recalculated with this set of conductivities, and the
scaling relation is reused for the next approximation.
These steps are repeated until the values have converged.
We check by perturbing the solution that it actually is a
minimum of the dissipation, which was always the case.

For all !> 1, independently of the initial conditions, the
same conductivity distribution is obtained, which con-
forms to the analytical result of [6]: there exists a unique
minimum which is therefore global.

Furthermore, the distribution of "kl is ‘‘smooth,’’ vary-
ing only on a ‘‘macroscopic scale,’’ as show in Fig. 2(a).
No formation of any particular structure occurs. However,
the conductivity distribution is not isotropic. We can inter-
pret the conductivity distribution as a discrete approxima-
tion of a continuous, macroscopic conductivity tensor (see
also [10]). The smooth aspect of the distribution is con-
served while approaching ! ! 1 while the local anisotropy
increases, while the values of all "kl remain finite, even if
they get very small. For ! ! 1:5 and Ndia ! 15, the con-
ductivity distribution spreads already over eight decades
and becomes still broader as ! ! 1%, in which limit the
number of iteration steps diverges as the minima becomes
less and less steep.

! ! 1 presents a marginal case. The results of the
simulation suggest that the minimum is highly degenerate;
i.e., there are a large number of conductivity distributions
yielding the same minimal dissipation.

For !< 1, the output of the relaxation algorithm is
qualitatively different [Fig. 2(b)]. A large number of con-
ductivities converge to zero so that no loop remains. The
highly redundant network is transformed to a spanning
tree topology and the currents are canalized in a hierarch-
ical manner. This, too, is predicted by the analytical results
[6]. In contrast to !> 1, the conductivity distribution
cannot be interpreted as a discrete approximation of a
conductivity tensor: for Ndia ! 1, the structure becomes
fractal.

For different initial conditions, the relaxation algorithm
yields trees with different topologies: each local minima in
the high-dimensional and continuous space of conductiv-
ities f"klg corresponds to a different tree topology. To find
the global minima with !< 1, we search consequently in
the (exponentially large) space of tree topologies using a
Monte Carlo algorithm. (We start with some initial tree and
then switch links without creating loops and without dis-
connecting a part of the network.) Note that for a tree
topology, the currents do not depend on the values "kl
and, using the scaling relation, one may directly write
down the dissipation rate for a given tree; the iterative
relaxation is not necessary here. This regime has been
widely explored in the context of river networks
[4,5,13,15], mainly for a set of parameters that corre-
sponds, in our case, to ! ! 0:5. An example of a resulting
minimal dissipation tree structure is given in Fig. 2(c).
Note also, that the scaling relations can be seen as some
kind of erosion model: the more currents flows through a
link, the better the link conducts [4].

The qualitative transition is reflected also quantitatively
in the value of the minimal dissipation [Fig. 3(a)]. The
points for !> 1 were obtained with the relaxation algo-
rithm, the points !< 1 by optimizing the tree topologies
with a Monte Carlo algorithm. For ! ! 1, Jmin=Jhomo !
1 by definition; for ! ! 0, Jmin=Jhomo ! 0, because the
vanishing "kl allow the remaining "kl ! 1.

Figure 3(b) shows the behavior of minimal dissipation
rate close to ! ! 1. For ! smaller than 1, the relaxation
method only furnishes a local minimum, the Monte Carlo
algorithm searching for the optimal tree topologies gives
lower dissipation values. The different values correspond-
ing to different realization indicate that the employed
Monte Carlo method does not find the exact global min-
ima. For !> 1, the optimal tree obtained by the
Monte Carlo algorithm is not the optimal solution since
the absolute and only minima has loops. The dissipation
rate which results from the relaxation algorithm is then, of
course, lower than the dissipation of any tree. While the
curve is continuous, the crossover at ! ! 1 shows a clear
change in the slope of Jmin"!$. One could interpret this
behavior as a second order phase transition. (The change in
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FIG. 2. Examples of the optimized conductivity distributions obtained by the relaxation method for (a) ! ! 2:0 and (b) ! ! 0:5. For
!< 1, the relaxation leads in general only to a local minimum. The global minimum can be approached by searching in the space of
tree topologies. The result for ! ! 0:5 is shown in (c). The arrows indicate the localized inlet.
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the potential at the nodes by solving the system of linear
equations ik !

P
lRkl"Uk #Ul$, then the currents through

the links Ikl are determined. We use these currents to
determine a first approximation of the optimal conductiv-
ities on the basis of the scaling relation. Then, the currents
are recalculated with this set of conductivities, and the
scaling relation is reused for the next approximation.
These steps are repeated until the values have converged.
We check by perturbing the solution that it actually is a
minimum of the dissipation, which was always the case.

For all !> 1, independently of the initial conditions, the
same conductivity distribution is obtained, which con-
forms to the analytical result of [6]: there exists a unique
minimum which is therefore global.

Furthermore, the distribution of "kl is ‘‘smooth,’’ vary-
ing only on a ‘‘macroscopic scale,’’ as show in Fig. 2(a).
No formation of any particular structure occurs. However,
the conductivity distribution is not isotropic. We can inter-
pret the conductivity distribution as a discrete approxima-
tion of a continuous, macroscopic conductivity tensor (see
also [10]). The smooth aspect of the distribution is con-
served while approaching ! ! 1 while the local anisotropy
increases, while the values of all "kl remain finite, even if
they get very small. For ! ! 1:5 and Ndia ! 15, the con-
ductivity distribution spreads already over eight decades
and becomes still broader as ! ! 1%, in which limit the
number of iteration steps diverges as the minima becomes
less and less steep.

! ! 1 presents a marginal case. The results of the
simulation suggest that the minimum is highly degenerate;
i.e., there are a large number of conductivity distributions
yielding the same minimal dissipation.

For !< 1, the output of the relaxation algorithm is
qualitatively different [Fig. 2(b)]. A large number of con-
ductivities converge to zero so that no loop remains. The
highly redundant network is transformed to a spanning
tree topology and the currents are canalized in a hierarch-
ical manner. This, too, is predicted by the analytical results
[6]. In contrast to !> 1, the conductivity distribution
cannot be interpreted as a discrete approximation of a
conductivity tensor: for Ndia ! 1, the structure becomes
fractal.

For different initial conditions, the relaxation algorithm
yields trees with different topologies: each local minima in
the high-dimensional and continuous space of conductiv-
ities f"klg corresponds to a different tree topology. To find
the global minima with !< 1, we search consequently in
the (exponentially large) space of tree topologies using a
Monte Carlo algorithm. (We start with some initial tree and
then switch links without creating loops and without dis-
connecting a part of the network.) Note that for a tree
topology, the currents do not depend on the values "kl
and, using the scaling relation, one may directly write
down the dissipation rate for a given tree; the iterative
relaxation is not necessary here. This regime has been
widely explored in the context of river networks
[4,5,13,15], mainly for a set of parameters that corre-
sponds, in our case, to ! ! 0:5. An example of a resulting
minimal dissipation tree structure is given in Fig. 2(c).
Note also, that the scaling relations can be seen as some
kind of erosion model: the more currents flows through a
link, the better the link conducts [4].

The qualitative transition is reflected also quantitatively
in the value of the minimal dissipation [Fig. 3(a)]. The
points for !> 1 were obtained with the relaxation algo-
rithm, the points !< 1 by optimizing the tree topologies
with a Monte Carlo algorithm. For ! ! 1, Jmin=Jhomo !
1 by definition; for ! ! 0, Jmin=Jhomo ! 0, because the
vanishing "kl allow the remaining "kl ! 1.

Figure 3(b) shows the behavior of minimal dissipation
rate close to ! ! 1. For ! smaller than 1, the relaxation
method only furnishes a local minimum, the Monte Carlo
algorithm searching for the optimal tree topologies gives
lower dissipation values. The different values correspond-
ing to different realization indicate that the employed
Monte Carlo method does not find the exact global min-
ima. For !> 1, the optimal tree obtained by the
Monte Carlo algorithm is not the optimal solution since
the absolute and only minima has loops. The dissipation
rate which results from the relaxation algorithm is then, of
course, lower than the dissipation of any tree. While the
curve is continuous, the crossover at ! ! 1 shows a clear
change in the slope of Jmin"!$. One could interpret this
behavior as a second order phase transition. (The change in
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FIG. 2. Examples of the optimized conductivity distributions obtained by the relaxation method for (a) ! ! 2:0 and (b) ! ! 0:5. For
!< 1, the relaxation leads in general only to a local minimum. The global minimum can be approached by searching in the space of
tree topologies. The result for ! ! 0:5 is shown in (c). The arrows indicate the localized inlet.
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the potential at the nodes by solving the system of linear
equations ik !

P
lRkl"Uk #Ul$, then the currents through

the links Ikl are determined. We use these currents to
determine a first approximation of the optimal conductiv-
ities on the basis of the scaling relation. Then, the currents
are recalculated with this set of conductivities, and the
scaling relation is reused for the next approximation.
These steps are repeated until the values have converged.
We check by perturbing the solution that it actually is a
minimum of the dissipation, which was always the case.

For all !> 1, independently of the initial conditions, the
same conductivity distribution is obtained, which con-
forms to the analytical result of [6]: there exists a unique
minimum which is therefore global.

Furthermore, the distribution of "kl is ‘‘smooth,’’ vary-
ing only on a ‘‘macroscopic scale,’’ as show in Fig. 2(a).
No formation of any particular structure occurs. However,
the conductivity distribution is not isotropic. We can inter-
pret the conductivity distribution as a discrete approxima-
tion of a continuous, macroscopic conductivity tensor (see
also [10]). The smooth aspect of the distribution is con-
served while approaching ! ! 1 while the local anisotropy
increases, while the values of all "kl remain finite, even if
they get very small. For ! ! 1:5 and Ndia ! 15, the con-
ductivity distribution spreads already over eight decades
and becomes still broader as ! ! 1%, in which limit the
number of iteration steps diverges as the minima becomes
less and less steep.

! ! 1 presents a marginal case. The results of the
simulation suggest that the minimum is highly degenerate;
i.e., there are a large number of conductivity distributions
yielding the same minimal dissipation.

For !< 1, the output of the relaxation algorithm is
qualitatively different [Fig. 2(b)]. A large number of con-
ductivities converge to zero so that no loop remains. The
highly redundant network is transformed to a spanning
tree topology and the currents are canalized in a hierarch-
ical manner. This, too, is predicted by the analytical results
[6]. In contrast to !> 1, the conductivity distribution
cannot be interpreted as a discrete approximation of a
conductivity tensor: for Ndia ! 1, the structure becomes
fractal.

For different initial conditions, the relaxation algorithm
yields trees with different topologies: each local minima in
the high-dimensional and continuous space of conductiv-
ities f"klg corresponds to a different tree topology. To find
the global minima with !< 1, we search consequently in
the (exponentially large) space of tree topologies using a
Monte Carlo algorithm. (We start with some initial tree and
then switch links without creating loops and without dis-
connecting a part of the network.) Note that for a tree
topology, the currents do not depend on the values "kl
and, using the scaling relation, one may directly write
down the dissipation rate for a given tree; the iterative
relaxation is not necessary here. This regime has been
widely explored in the context of river networks
[4,5,13,15], mainly for a set of parameters that corre-
sponds, in our case, to ! ! 0:5. An example of a resulting
minimal dissipation tree structure is given in Fig. 2(c).
Note also, that the scaling relations can be seen as some
kind of erosion model: the more currents flows through a
link, the better the link conducts [4].

The qualitative transition is reflected also quantitatively
in the value of the minimal dissipation [Fig. 3(a)]. The
points for !> 1 were obtained with the relaxation algo-
rithm, the points !< 1 by optimizing the tree topologies
with a Monte Carlo algorithm. For ! ! 1, Jmin=Jhomo !
1 by definition; for ! ! 0, Jmin=Jhomo ! 0, because the
vanishing "kl allow the remaining "kl ! 1.

Figure 3(b) shows the behavior of minimal dissipation
rate close to ! ! 1. For ! smaller than 1, the relaxation
method only furnishes a local minimum, the Monte Carlo
algorithm searching for the optimal tree topologies gives
lower dissipation values. The different values correspond-
ing to different realization indicate that the employed
Monte Carlo method does not find the exact global min-
ima. For !> 1, the optimal tree obtained by the
Monte Carlo algorithm is not the optimal solution since
the absolute and only minima has loops. The dissipation
rate which results from the relaxation algorithm is then, of
course, lower than the dissipation of any tree. While the
curve is continuous, the crossover at ! ! 1 shows a clear
change in the slope of Jmin"!$. One could interpret this
behavior as a second order phase transition. (The change in
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FIG. 2. Examples of the optimized conductivity distributions obtained by the relaxation method for (a) ! ! 2:0 and (b) ! ! 0:5. For
!< 1, the relaxation leads in general only to a local minimum. The global minimum can be approached by searching in the space of
tree topologies. The result for ! ! 0:5 is shown in (c). The arrows indicate the localized inlet.
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Many sources, many sinks

How do we distribute sources?
 Focus on 2-d (results generalize to higher

dimensions).
 Sources = hospitals, post offices, pubs, …
 Key problem: How do we cope with uneven

population densities?
 Obvious: if density is uniform then sources are

best distributed uniformly.
 Which lattice is optimal? The hexagonal lattice
 Q2: Given population density is uneven, what do

we do?
 We’ll follow work by Stephan (1977, 1984) [4, 5],

Gastner and Newman (2006) [2], Um et al. (2009) [6],
and work cited by them.
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Optimal source allocation

Solidifying the basic problem
 Given a region with some population distribution

𝜌, most likely uneven.
 Given resources to build and maintain 𝑁 facilities.
 Q: How do we locate these 𝑁 facilities so as to

minimize the average distance between an
individual’s residence and the nearest facility?
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Optimal design of spatial distribution networks

Michael T. Gastner1,2 and M. E. J. Newman2,3

1Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

3Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109, USA
�Received 13 April 2006; published 24 July 2006�

We consider the problem of constructing facilities such as hospitals, airports, or malls in a country with a
nonuniform population density, such that the average distance from a person’s home to the nearest facility is
minimized. We review some previous approximate treatments of this problem that indicate that the optimal
distribution of facilities should have a density that increases with population density, but does so slower than
linearly, as the two-thirds power. We confirm this result numerically for the particular case of the United States
with recent population data using two independent methods, one a straightforward regression analysis, the
other based on density-dependent map projections. We also consider strategies for linking the facilities to form
a spatial network, such as a network of flights between airports, so that the combined cost of maintenance of
and travel on the network is minimized. We show specific examples of such optimal networks for the case of
the United States.

DOI: 10.1103/PhysRevE.74.016117 PACS number�s�: 89.65.�s, 01.75.�m, 89.75.Da, 89.75.Hc

I. INTRODUCTION

Suppose we are given the population density ��r� of a
country or province, by which we mean the number of
people per unit area as a function of geographical position r.
And suppose we are charged with choosing the sites of p
facilities, such as hospitals, post offices, supermarkets, gas
stations, or schools, so that the mean distance to the nearest
facility averaged over the population is minimized. In most
countries, population density is highly nonuniform, in which
case a uniform distribution of facilities would be a poor
choice: it benefits us little to build a lot of facilities in
sparsely populated areas. A more sensible choice would be to
distribute facilities in proportion to population density, so
that a region with twice as many people has twice as many
facilities. But this distribution too turns out to be suboptimal,
because we also gain little by having closely spaced facilities
in the highly populated areas—when facilities are closely
spaced the typical person is not much farther from their
second-closest facility than from their closest, so one or the
other can often be removed with little penalty and substantial
savings.

Although an exact analytic solution to this optimal loca-
tion problem has yet to be found, a variety of approximate
treatments have been given, which suggest that the ideal so-
lution lies somewhere between these two extremes, with the
density of facilities increasing as the two-thirds power of
population density, a prediction that we verify here using
simulations and visualizations based on cartograms, with ac-
tual population data for the United States. In addition, one is
often interested in connections between facilities, such as
flights between airports �1� or transmission lines between
power stations �2�. In the second half of this paper, we gen-
erate networks based on a simple model that optimizes net-
work topology with respect to the cost of maintaining and
traveling across the network. Depending on the benefit func-
tion chosen, we find structures ranging from completely de-
centralized networks to hub-and-spoke networks.

II. OPTIMAL DISTRIBUTION OF FACILITIES

We wish to distribute p facilities over a two-dimensional
area A such that the objective function

f�r1, . . . ,rp� = �
A

��r� min
i��1¯p�

�r − ri�d2r �1�

is minimized. Here �r1 , . . . ,rp� is the set of positions of the
facilities and ��r� is the population density within the region
A of interest. This objective function is proportional to the
mean distance that a person will have to travel to reach their
nearest facility.

Seemingly simple, this so-called p-median problem has
been shown to be NP-hard �3�, so in practice most studies
rely either on approximate numerical optimization or ap-
proximate analytic treatments �4�. A number of different ap-
proaches have been used �5–9�; the calculation given here is
essentially that of Gusein-Zade �10�.

Our p facilities naturally partition the area A into Voronoi
cells. �The Voronoi cell Vi for the ith facility is defined as the
set of points that are closer to ri than to any other facility.�
Let us define s�r� to be the area of the Voronoi cell to which
the point r belongs. In two dimensions, a person living at
point r will on average be a distance g�s�r��1/2 from the
nearest facility, where g is a geometric factor of order 1,
whose exact value depends on the shape of the Voronoi cell,
but which will in any case drop out of the final result. The
distance to the nearest facility averaged over all members of
the population is proportional to

f = g�
A

��r��s�r��1/2d2r , �2�

where we are making an approximation by neglecting varia-
tion of the geometric factor g between cells.

PHYSICAL REVIEW E 74, 016117 �2006�

1539-3755/2006/74�1�/016117�6� ©2006 The American Physical Society016117-1

“Optimal design of spatial distribution
networks”
Gastner and Newman,
Phys. Rev. E, 74, 016117, 2006. [2]

The value of s!r" is constrained by the requirement that
there be p facilities in total. Noting that s!r" is constant and
equal to s!ri" within Voronoi cell Vi, we see that the integral
of #s!r"$−1 over Vi is

%
Vi

#s!r"$−1d2r = #s!ri"$−1%
Vi

d2r = 1. !3"

Summing over all Vi, we can then express the constraint on
the number of facilities in the form

%
A

#s!r"$−1d2r = p . !4"

Subject to this constraint, optimization of the mean dis-
tance f above gives

!

!s!r"&g%
A

"!r"#s!r"$1/2d2r − #'p − %
A

#s!r"$−1d2r() = 0,

!5"

where # is a Lagrange multiplier. Performing the functional
derivatives and rearranging for s!r", we find s!r"
= #2# / !g"!r""$2/3. The Lagrange multiplier can be evaluated
by substituting into Eq. !4", and we arrive at the result

D!r" =
1

s!r"
= p

#"!r"$2/3

% #"!r"$2/3d2r

, !6"

where we have introduced the notation D!r"= #s!r"$−1 for the
density of the facilities.

Thus, if facilities are distributed optimally for the given
population distribution, their density should increase with
population density but it should do so slower than linearly, as
a power law with exponent 2

3 #29$. In addition to the argu-
ment given here, which roughly follows Ref. #10$, this result
has also been derived previously by a number of other meth-
ods #5–9$, although all are approximate.

Equation !6" places most facilities in the densely popu-
lated areas where most people live while still providing rea-
sonable service to those in sparsely populated areas where a
strictly population-proportional allocation might leave inhab-
itants with little or nothing. Its derivation makes two ap-
proximations: it assumes that the geometric factor g is the
same for all Voronoi cells and that s!r" is a continuous func-
tion. Neither assumption is strictly true, but we expect them
to be approximately valid if " varies little over the typical
size of a Voronoi cell. As a test of these assumptions, we
have optimized numerically the distribution of p=5000 fa-
cilities over the lower 48 states of the United States !Fig. 1"
using population data from the most recent U.S. Census #11$,
which counts the number of residents within more than 8
million blocks across the study region. To create a continu-
ous density function ", we convolved these data with a nor-
malized Gaussian distribution of width 20 km #30$. The fa-
cility locations were then determined by optimizing the full
p-median objective function !1" by simulated annealing #12$.

The relation D$"2/3 can be tested as follows. First, we
determine the Voronoi cell around each facility. Then we

calculate D!r" as the inverse of the area of the corresponding
cell and " as the number of people living in the cell divided
by its area. Figure 2 shows a scatter plot of the resulting data
on doubly logarithmic scales. If the anticipated 2

3-power re-
lation holds, we expect the data to fall along a line of slope
2
3 . And indeed a least-squares fit !solid line in the figure"
yields a slope 0.66 with r2=0.94.

Some statistical concerns might be raised about this
method. First, we used the Voronoi cell area to calculate both
D and ", so the measurements of x and y values in the plot
are not independent, and one might argue that a positive
slope could thus be a result of artificial correlations between
the values rather than a real result #13$. Second, it is known
that estimating the exponent of a power law such as Eq. !6"
from a log-log plot can introduce systematic biases #14,15$.
In the next section, we introduce an entirely different test of
Eq. !6" that, in addition to being of interest in its own right,
suffers from neither of these problems.

III. DENSITY-EQUALIZING PROJECTIONS

If we neglect finite-size effects, it is straightforward to
demonstrate that optimally located facilities in a uniformly

FIG. 1. !Color online" Facility locations determined by simu-
lated annealing and the corresponding Voronoi tessellation for p
=5000 facilities located in the lower 48 United States, based on
population data from the U.S. Census for the year 2000.

FIG. 2. !Color online" Facility density D from Fig. 1 vs popu-
lation density " on a log-log plot. A least-squares linear fit to the
data gives a slope of 0.66 !solid line, r2=0.94".

MICHAEL T. GASTNER AND M. E. J. NEWMAN PHYSICAL REVIEW E 74, 016117 !2006"

016117-2

 Approximately optimal location of 5000 facilities.
 Based on 2000 Census data.
 Simulated annealing + Voronoi tessellation.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/gastner2006c.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/gastner2006c.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/gastner2006c.pdf


PoCS, Vol. 1
@pocsvox

Optimal Supply
Networks III

Distributed
Sources
Size-density law

Cartograms

A reasonable derivation

Global redistribution

Public versus Private

References

.
.
.
.
.

.
9 of 48

Optimal source allocation

The value of s!r" is constrained by the requirement that
there be p facilities in total. Noting that s!r" is constant and
equal to s!ri" within Voronoi cell Vi, we see that the integral
of #s!r"$−1 over Vi is

%
Vi

#s!r"$−1d2r = #s!ri"$−1%
Vi

d2r = 1. !3"

Summing over all Vi, we can then express the constraint on
the number of facilities in the form

%
A

#s!r"$−1d2r = p . !4"

Subject to this constraint, optimization of the mean dis-
tance f above gives

!

!s!r"&g%
A

"!r"#s!r"$1/2d2r − #'p − %
A

#s!r"$−1d2r() = 0,

!5"

where # is a Lagrange multiplier. Performing the functional
derivatives and rearranging for s!r", we find s!r"
= #2# / !g"!r""$2/3. The Lagrange multiplier can be evaluated
by substituting into Eq. !4", and we arrive at the result

D!r" =
1

s!r"
= p

#"!r"$2/3

% #"!r"$2/3d2r

, !6"

where we have introduced the notation D!r"= #s!r"$−1 for the
density of the facilities.

Thus, if facilities are distributed optimally for the given
population distribution, their density should increase with
population density but it should do so slower than linearly, as
a power law with exponent 2

3 #29$. In addition to the argu-
ment given here, which roughly follows Ref. #10$, this result
has also been derived previously by a number of other meth-
ods #5–9$, although all are approximate.

Equation !6" places most facilities in the densely popu-
lated areas where most people live while still providing rea-
sonable service to those in sparsely populated areas where a
strictly population-proportional allocation might leave inhab-
itants with little or nothing. Its derivation makes two ap-
proximations: it assumes that the geometric factor g is the
same for all Voronoi cells and that s!r" is a continuous func-
tion. Neither assumption is strictly true, but we expect them
to be approximately valid if " varies little over the typical
size of a Voronoi cell. As a test of these assumptions, we
have optimized numerically the distribution of p=5000 fa-
cilities over the lower 48 states of the United States !Fig. 1"
using population data from the most recent U.S. Census #11$,
which counts the number of residents within more than 8
million blocks across the study region. To create a continu-
ous density function ", we convolved these data with a nor-
malized Gaussian distribution of width 20 km #30$. The fa-
cility locations were then determined by optimizing the full
p-median objective function !1" by simulated annealing #12$.

The relation D$"2/3 can be tested as follows. First, we
determine the Voronoi cell around each facility. Then we

calculate D!r" as the inverse of the area of the corresponding
cell and " as the number of people living in the cell divided
by its area. Figure 2 shows a scatter plot of the resulting data
on doubly logarithmic scales. If the anticipated 2

3-power re-
lation holds, we expect the data to fall along a line of slope
2
3 . And indeed a least-squares fit !solid line in the figure"
yields a slope 0.66 with r2=0.94.

Some statistical concerns might be raised about this
method. First, we used the Voronoi cell area to calculate both
D and ", so the measurements of x and y values in the plot
are not independent, and one might argue that a positive
slope could thus be a result of artificial correlations between
the values rather than a real result #13$. Second, it is known
that estimating the exponent of a power law such as Eq. !6"
from a log-log plot can introduce systematic biases #14,15$.
In the next section, we introduce an entirely different test of
Eq. !6" that, in addition to being of interest in its own right,
suffers from neither of these problems.

III. DENSITY-EQUALIZING PROJECTIONS

If we neglect finite-size effects, it is straightforward to
demonstrate that optimally located facilities in a uniformly

FIG. 1. !Color online" Facility locations determined by simu-
lated annealing and the corresponding Voronoi tessellation for p
=5000 facilities located in the lower 48 United States, based on
population data from the U.S. Census for the year 2000.

FIG. 2. !Color online" Facility density D from Fig. 1 vs popu-
lation density " on a log-log plot. A least-squares linear fit to the
data gives a slope of 0.66 !solid line, r2=0.94".

MICHAEL T. GASTNER AND M. E. J. NEWMAN PHYSICAL REVIEW E 74, 016117 !2006"

016117-2

 Optimal facility density 𝜌fac vs. population density
𝜌pop.

 Fit is 𝜌fac ∝ 𝜌0.66
pop with 𝑟2 = 0.94.

 Looking good for a 2/3 power …

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS, Vol. 1
@pocsvox

Optimal Supply
Networks III

Distributed
Sources
Size-density law

Cartograms

A reasonable derivation

Global redistribution

Public versus Private

References

.
.
.
.
.

.
11 of 48

Optimal source allocation

Size-density law:


𝜌fac ∝ 𝜌2/3
pop

 Why?
 Again: Different story to branching networks

where there was either one source or one sink.
 Now sources & sinks are distributed throughout

region.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Optimal source allocation

previous experimental results are plotted
in Fig. 2. These limits correspond to 1
starddard deviation, that is, a confidence
level of 67 percent. For 95 percent con-
fidence levels, each limit must be ad-
justed upward by a factor of 3, as in-
dicated on the plot. In addition, we have
taken the calculations of Zeldovich et al.
(8) and, after scaling them appropriately
with energy, plotted the predicted qlp ra-
tios. For several regions coffesponding to
integral values ofZ and m, the intensity
from known ions (such as 2H2+ and '4N2+)
was sufficiently high to require the re-
moval of the silicon detectors from the
beam. As a result there are regions, gen-
erally less than 1 percent wide in mass, in
which we were unable to search for
quarks. These regions are indicated in
Fig. 2 by short vertical bars. The exis-
tence of these beams served the useful
purpose ofproving that the cyclotron was
still in tune and that if there were quarks
at concentrations greater than the limits
we have placed, they would have been
observed.

RICHARD A. MULLER
Luis W. ALVAREZ

WILLIAM R. HOLLEY
EDWARD J. STEPHENSON

Lawrence Berkeley Laboratory,
Berkeley, California 94720
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Territorial Division: The Least-Time Constraint
Behind the Formation ofSubnational Boundaries

Abstract. Nations usually locate their smaller administrative subdivisions in re-

gions of highest population density. This report derives a precise form of the size-
density relationshipfrom the general assumption that social structures evolve in such
a way as to minimize the total time expended by society in their operation. The result is
confirmed empirically.

All modern societies are subdivided in-
to sets of primary political divisions (for
example, states, counties, departments).
Where societies exhibit internal variation
in population density, the smaller territo-
rial units tend to be located in the more
densely settled regions (1). This negative
relationship between size and density can
be derived from the general assumption
that social structures evolve under the
constraint ofminimizing the total societal
time expended in their operation.

Territorial subdivision results from the
necessity for people to travel between
dispersed residences and some central
place (for example, a county seat) under
limiting conditions of time (the 24-hour
day) and time-saving technology (the av-
erage velocity of the means of trans-
portation). If territorial divisions are too
large, portions of the population will not
be able to interact with a center. If divi-
sions are too small, the cost of maintain-
ing the centers would be unnecessarily
high, assuming there were enough local
resources to maintain them at all. The
theoretical derivation will develop
equivalencies between these opposing
cost factors and societal time expendi-
ture, determine the condition under
which total time expenditure would be a
minimum, and show that the negative
size-density relationship follows from
this condition.

Imagine an undifferentiated plane
which is to be divided into territorial
units, each containing a center designed
to serve the population associated with it.
Select an imaginary unit and call its area
A and its population P. Now let S repre-
sent the average travel distance to the
center, given the distribution ofthe popu-
lation within the unit. This average dis-
tance, divided by the velocity of the
means of transportation v, gives us the
average travel time expended by the pop-
ulation in using the center.
Maintenance of the center and provi-

sion of its services to the population will
require a further time expenditure, both
in direct man-hours of work and in the
form of indirect costs paid by the popu-
lation to support such work. If we let h
represent the time cost ofmaintaining the
center, divide this cost by the total popu-

lation, and add the result to the term Slv,
we obtain the expression

T = S/v + h/P (1)

where T is the average societal time ex-
pended in using and maintaining the serv-
ice center of the territorial unit.

Since our task is to find the area which
will minimize average time expenditure,
we must introduce A in both right-hand
terms of Eq. 1. Simple dimensional analy-
sis (2) suggests that the average distance
S will be proportional to the square root
of the area A, regardless of the shape of
the territorial unit. Thus, with g as the
constant of proportionality, we have the
substitution S = gVW for the first term.
The constant has been evaluated for cer-
tain regular polygons which occur fre-
quently in the study of spatial relation-
ships (3); its exact value will not be essen-
tial in the present derivation. The
definition ofdensity, D, as population per
unit area (D = P/A) permits substitution
ofAD forP in the second term of Eq. 1 to
yield

T= gVA7/v + h/AD (2)
from which we obtain the derivative

dT/dA = g/(2v%fA) - h/A2D (3)

which, set equal to zero and solved forA,
gives us

A = (2vhIgD)2/3 (4)

as the condition under which T will be a
minimum (the second derivative of Eq. 2
can be shown to be greater than zero).

Holding v, h, and g constant, we can
obtain a linear form of Eq. 4, relating
areal size to density,

logA = K -2/3(logD) (5)
where K is the log of 2vhlg to the two-
thirds power. Equation 5 readily lends it-
self to empirical test with a least-squares
estimator to determine the slope relating
log-size to log-density.
Such an analysis has been carried out

for 98 modern nations (4). While the
slopes for individual nations vary some-
what around the expected -2/3 value
(and in some cases the number of subdivi-
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“Territorial Division: The Least-Time
Constraint Behind the Formation of
Subnational Boundaries”
G. Edward Stephan,
Science, 196, 523–524, 1977. [4]

 We first examine Stephan’s treatment (1977) [4, 5]

 Zipf-like approach: invokes principle of minimal
effort.

 Also known as the Homer Simpson principle.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/stephan1977a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/stephan1977a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/stephan1977a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/stephan1977a.pdf
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Optimal source allocation

 Consider a region of area 𝐴 and population 𝑃 with
a single functional center that everyone needs to
access every day.

 Build up a general cost function based on time
expended to access and maintain center.

 Write average travel distance to center as ̄𝑑 and
assume average speed of travel is ̄𝑣.

 Assume isometry: average travel distance ̄𝑑 will be
on the length scale of the region which is ∼ 𝐴1/2

 Average time expended per person in accessing
facility is therefore

̄𝑑/ ̄𝑣 = 𝑐𝐴1/2/ ̄𝑣

where 𝑐 is an unimportant shape factor.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Optimal source allocation

 Next assume facility requires regular maintenance
(person-hours per day).

 Call this quantity 𝜏 .
 If burden of mainenance is shared then average

cost per person is 𝜏/𝑃 where 𝑃 = population.
 Replace 𝑃 by 𝜌pop𝐴 where 𝜌pop is density.
 Important assumption: uniform density.
 Total average time cost per person:

𝑇 = ̄𝑑/ ̄𝑣 + 𝜏/(𝜌pop𝐴) = 𝑐𝐴1/2/ ̄𝑣 + 𝜏/(𝜌pop𝐴).

 Now Minimize with respect to 𝐴 …

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Optimal source allocation
 Differentiating …

𝜕𝑇
𝜕𝐴 = 𝜕

𝜕𝐴 (𝑐𝐴1/2/ ̄𝑣 + 𝜏/(𝜌pop𝐴))

= 𝑐
2 ̄𝑣𝐴1/2 − 𝜏

𝜌pop𝐴2 = 0

 Rearrange:

𝐴 = ( 2 ̄𝑣𝜏
𝑐𝜌pop

)
2/3

∝ 𝜌−2/3
pop

 # facilities per unit area 𝜌fac:

𝜌fac ∝ 𝐴−1 ∝ 𝜌2/3
pop

 Groovy …

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Optimal source allocation

An issue:
 Maintenance (𝜏 ) is assumed to be independent of

population and area (𝑃 and 𝐴)

 Stephan’s online book
“The Division of Territory in Society” is here.

 (It used to be here.)
 The Readme is well worth reading (1995).

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.edstephan.org/Book/contents.html
http://www.ac.wwu.edu/~stephan/Book/contents.html
http://www.edstephan.org/Book/chap0/0.html
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Cartograms

Standard world map:

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS, Vol. 1
@pocsvox

Optimal Supply
Networks III

Distributed
Sources
Size-density law

Cartograms

A reasonable derivation

Global redistribution

Public versus Private

References

.
.
.
.
.

.
19 of 48

Cartograms

Cartogram of countries ‘rescaled’ by population:

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Cartograms
Diffusion-based cartograms:
 Idea of cartograms is to distort areas to more

accurately represent some local density 𝜌pop (e.g.
population).

 Many methods put forward—typically involve
some kind of physical analogy to spreading or
repulsion.

 Algorithm due to Gastner and Newman (2004) [1] is
based on standard diffusion:

∇2𝜌pop − 𝜕𝜌pop
𝜕𝑡 = 0.

 Allow density to diffuse and trace the movement
of individual elements and boundaries.

 Diffusion is constrained by boundary condition of
surrounding area having density ̄𝜌pop.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Cartograms

Child mortality:

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Cartograms

Energy consumption:

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Cartograms

Gross domestic product:

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Cartograms

Greenhouse gas emissions:

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Cartograms

Spending on healthcare:

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Cartograms

People living with HIV:

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Cartograms

 The preceding sampling of Gastner & Newman’s
cartograms lives here.

 A larger collection can be found at
worldmapper.org.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www-personal.umich.edu/~mejn/cartograms/
http://www.worldmapper.org/
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Size-density law
Optimal design of spatial distribution networks

Michael T. Gastner1,2 and M. E. J. Newman2,3

1Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

3Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109, USA
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We consider the problem of constructing facilities such as hospitals, airports, or malls in a country with a
nonuniform population density, such that the average distance from a person’s home to the nearest facility is
minimized. We review some previous approximate treatments of this problem that indicate that the optimal
distribution of facilities should have a density that increases with population density, but does so slower than
linearly, as the two-thirds power. We confirm this result numerically for the particular case of the United States
with recent population data using two independent methods, one a straightforward regression analysis, the
other based on density-dependent map projections. We also consider strategies for linking the facilities to form
a spatial network, such as a network of flights between airports, so that the combined cost of maintenance of
and travel on the network is minimized. We show specific examples of such optimal networks for the case of
the United States.
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I. INTRODUCTION

Suppose we are given the population density ��r� of a
country or province, by which we mean the number of
people per unit area as a function of geographical position r.
And suppose we are charged with choosing the sites of p
facilities, such as hospitals, post offices, supermarkets, gas
stations, or schools, so that the mean distance to the nearest
facility averaged over the population is minimized. In most
countries, population density is highly nonuniform, in which
case a uniform distribution of facilities would be a poor
choice: it benefits us little to build a lot of facilities in
sparsely populated areas. A more sensible choice would be to
distribute facilities in proportion to population density, so
that a region with twice as many people has twice as many
facilities. But this distribution too turns out to be suboptimal,
because we also gain little by having closely spaced facilities
in the highly populated areas—when facilities are closely
spaced the typical person is not much farther from their
second-closest facility than from their closest, so one or the
other can often be removed with little penalty and substantial
savings.

Although an exact analytic solution to this optimal loca-
tion problem has yet to be found, a variety of approximate
treatments have been given, which suggest that the ideal so-
lution lies somewhere between these two extremes, with the
density of facilities increasing as the two-thirds power of
population density, a prediction that we verify here using
simulations and visualizations based on cartograms, with ac-
tual population data for the United States. In addition, one is
often interested in connections between facilities, such as
flights between airports �1� or transmission lines between
power stations �2�. In the second half of this paper, we gen-
erate networks based on a simple model that optimizes net-
work topology with respect to the cost of maintaining and
traveling across the network. Depending on the benefit func-
tion chosen, we find structures ranging from completely de-
centralized networks to hub-and-spoke networks.

II. OPTIMAL DISTRIBUTION OF FACILITIES

We wish to distribute p facilities over a two-dimensional
area A such that the objective function

f�r1, . . . ,rp� = �
A

��r� min
i��1¯p�

�r − ri�d2r �1�

is minimized. Here �r1 , . . . ,rp� is the set of positions of the
facilities and ��r� is the population density within the region
A of interest. This objective function is proportional to the
mean distance that a person will have to travel to reach their
nearest facility.

Seemingly simple, this so-called p-median problem has
been shown to be NP-hard �3�, so in practice most studies
rely either on approximate numerical optimization or ap-
proximate analytic treatments �4�. A number of different ap-
proaches have been used �5–9�; the calculation given here is
essentially that of Gusein-Zade �10�.

Our p facilities naturally partition the area A into Voronoi
cells. �The Voronoi cell Vi for the ith facility is defined as the
set of points that are closer to ri than to any other facility.�
Let us define s�r� to be the area of the Voronoi cell to which
the point r belongs. In two dimensions, a person living at
point r will on average be a distance g�s�r��1/2 from the
nearest facility, where g is a geometric factor of order 1,
whose exact value depends on the shape of the Voronoi cell,
but which will in any case drop out of the final result. The
distance to the nearest facility averaged over all members of
the population is proportional to

f = g�
A

��r��s�r��1/2d2r , �2�

where we are making an approximation by neglecting varia-
tion of the geometric factor g between cells.
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populated space lie on the vertices of a regular triangular
lattice !16". It has been conjectured that for a non uniform
population there is a general class of map projections that
will transform the pattern of facilities to a similarly regular
structure !17". The obvious candidate projections are popu-
lation density equalizing maps or cartograms, i.e., maps in
which the sizes of geographic regions are proportional to the
populations of those regions !18–21". Densely populated re-
gions appear larger on a cartogram than on an equal-area
map such as Fig. 1, and the opposite is true for sparsely
populated regions. Since most facilities are located where the
population density is high, a cartogram projection will effec-
tively reduce the facility density in populated areas and in-
crease it where the population density is low. Therefore, one
might expect that a cartogram leads to a more uniform facil-
ity density than that shown in Fig. 1. And indeed some au-
thors have used population density equalizing projections as
the basis for facility location methods !22,23".

In Fig. 3#a$, we show the facilities of Fig. 1 on a popula-
tion density equalizing cartogram created using the
diffusion-based technique of !24". Although the population
density is now equal everywhere, the facility density is ob-
viously far from uniform. A comparison between Figs. 1 and
3#a$ reveals that we have overshot the mark since the facili-
ties are now concentrated in areas where there are few in
actual space.

Equation #6$ makes clear what is wrong with this ap-
proach. Since D grows slower than linearly with !, a projec-
tion that equalizes ! will necessarily overcorrect the density
of facilities. On the other hand, based on our earlier result,
we would expect a projection equalizing !2/3 instead of ! to
spread out the facilities approximately uniformly. Hence, one
way to determine the actual exponent for the density of fa-
cilities is to create cartograms that equalize !x, x"0, and
find the value of x that minimizes the variation of the
Voronoi cell sizes on the cartogram. This approach does not
suffer from the shortcomings of our previous method based
on the doubly logarithmic plot in Fig. 2, since we neither use
the Voronoi cells to calculate the population density nor take
logarithms. One might argue that the Voronoi cells on the
cartogram are not equal to the projections of the Voronoi
cells in actual space, which is true—the cells generally will
not even remain polygons under the cartogram transforma-
tion. The difference, however, is small if the density does not
vary much between neighboring facilities.

In Fig. 4, we show the measured coefficient of variation
#i.e., the ratio of the standard deviation to the mean$ for
Voronoi cell sizes on !x cartograms as a function of the ex-

ponent x #solid curve$. As the figure shows, the minimum is
indeed attained at or close to the predicted value of x= 2

3 .
Figure 3#b$ shows the corresponding cartogram for this ex-
ponent. This projection finds a considerably better compro-
mise between regions of high and low population density
than either Fig. 1 or Fig. 3#a$.

For comparison, we have also made the same measure-
ment for 5000 points distributed randomly in proportion to
population. Since the density of these points is by definition
equal to !, we expect the minimum standard deviation of the
cell areas to occur on a cartogram with x=1. Our numerical
results for this case #dashed curve in Fig. 4$ agree well with
this prediction. Comparing the solid and the dashed curves in
the plot, we see that not only the positions of the minima
differ, but also the minimal values themselves. The lower
standard deviation for the p-median distribution indicates
that optimally located facilities are not randomly distributed
with a density #!2/3. Instead, the optimally located facilities
occupy space in a relatively regular fashion reminiscent of
the triangular lattice of the uniform population case !16,25".
We can confirm this observation by measuring the interior
angles formed by the edges of the Voronoi cells. The Voronoi
cells of a triangular lattice are regular hexagons and hence all
the interior angles are 120°. Figure 5 shows a histogram of
the angles for the cells in the equal-area projection of Fig. 1.
Since the population is nonuniform, the cells are not exactly
regular hexagons, but, as Fig. 5 shows, the angles are none-

FIG. 3. #Color online$ Near-
optimal facility location on #a$ a
cartogram equalizing the popula-
tion density ! and #b$ a cartogram
equalizing !2/3.

FIG. 4. #Color online$ The coefficient of variation #i.e., the ratio
of the standard deviation to the mean$ for Voronoi cell areas as they
appear on a cartogram, against the exponent x of the underlying
density !x for a p-median #solid curve$ and a random population-
proportional distribution #dashed curve$. Inset: An expanded view
of the minimum for the p-median distribution.
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 Left: population density-equalized cartogram.
 Right: (population density)2/3-equalized

cartogram.

 Facility density is uniform for 𝜌2/3
pop cartogram.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/gastner2006c.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/gastner2006c.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/gastner2006c.pdf
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theless narrowly distributed around 120°—more so than for
the cells of the random distribution.

IV. OPTIMAL NETWORKS OF FACILITIES

In many cases of practical interest, finding the optimal
location of facilities is only half the problem. Often facilities
are interconnected to form networks, such as airports con-
nected by flights or warehouses connected by truck deliver-
ies. In these cases, one would also like to find the best way to
connect the facilities so as to optimize the performance of the
system as a whole.

Consider then a situation in which our facilities form the
nodes or vertices of a network and connections between
them form the edges. The efficiency of this network, as we
will consider it here, depends on two factors. On the one
hand, the smaller the sum of the lengths of all edges, the
cheaper the network is to construct and maintain. On the
other hand, the shorter the distances through the network
between vertices, the faster the network can perform its in-
tended function !e.g., transportation of passengers between
nodes or distribution of mail or cargo". These two objectives
generally oppose each other: a network with few and short
connections will not provide many direct links between dis-
tant points, and paths through the network will tend to be
circuitous, while a network with a large number of direct
links is usually expensive to build and operate. The optimal
solution lies somewhere between these extremes.

Let us define lij to be the shortest geographic distance
between two vertices i and j measured along the edges in the
network. If there is no path between i and j, we formally set
lij =!. Introducing the adjacency matrix A with elements
Aij =1 if there is an edge between i and j and Aij =0 other-
wise, we can write the total length of all edges as

T = #
i"j

Aijlij . !7"

We assume this quantity to be proportional to the cost of
maintaining the network. Clearly this assumption is only ap-
proximately correct; networked systems in the real world
will have many factors affecting their maintenance costs that
are not accounted for here. It is, however, the obvious first
assumption to make and, as we will see, can provide us with
good insight about network structure.

The typical cost of shipping a commodity or traveling
through the network depends on the distances lij as well as
the amount of traffic wij !e.g., weight of cargo, number of
passengers, etc." that flows between vertices i and j $26%. In
a spirit similar to our assumption about maintenance costs,
we assume that the total travel cost is proportional to

Z = #
i"j

wijlij . !8"

We assume that wij is proportional to the product of popula-
tions in the Voronoi cells Vi and Vj around i and j, so that

wij = &
Vi

#!r"d2r&
Vj

#!r!"d2r! !9"

in appropriate units. And the total cost of running the net-
work is proportional to the sum T+$Z with $%0 a constant
that measures the relative importance of the two terms. Then
the optimal network is the one minimizing this sum $27,28%.

Using again the contiguous 48 states of the United States
as an example, we have first determined the optimal place-
ment of p=200 facilities, which we then try to connect to-
gether optimally. The number of edges in the network de-
pends on the parameter $. If $→0, the cost of travel $Z
vanishes and the optimal network is the one that simply
minimizes the total length of edges. That is, it is the mini-
mum spanning tree, with exactly p−1 edges between the p
vertices. Conversely, if $→!, then Z dominates the optimi-
zation, regardless of the cost T of maintaining the network,
so that the optimum is a fully connected network or clique
with all 1

2 p!p−1" possible edges present. For intermediate
values of $, finding the optimal network is a nontrivial com-
binatorial optimization problem. The number of edges in-
creases with $, but it is difficult to determine the exact set of
edges optimizing the cost. Nevertheless, we can derive good,
though usually not perfect, solutions using again the method
of simulated annealing $31%.

There is, however, another complicating factor. In Eq. !8",
we assumed that travel costs are proportional to geometric
distances between vertices, which is a plausible starting
point. In a road network, for example, the quickest and
cheapest route is usually not very different from the shortest
route measured in kilometers. But in other networks, travel
costs can also depend on the number of legs in a journey. In
an airline network, for instance, passengers often spend a lot
of time waiting for connecting flights, so that they care both
about the total distance they travel and the number of stop-
overs they have to make. Similarly, the total time required
for an Internet packet to reach its destination depends on two
factors, the propagation delay proportional to the physical
distance between vertices !computers and routers" and the
store and forward delays introduced by the routers, which
grow with the number of intermediate vertices.

To account for such situations, we generalize our defini-
tion of the length of an edge and assign to each edge an
effective length

FIG. 5. !Color online" The distribution of angles in the Voronoi
diagram for a p-median and a random population-proportional dis-
tribution of facilities.
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 Cartogram’s Voronoi cells are somewhat
hexagonal.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Size-density law
Deriving the optimal source distribution:
 Basic idea: Minimize the average distance from a

random individual to the nearest facility. [2]

 Assume given a fixed population density 𝜌pop
defined on a spatial region Ω.

 Formally, we want to find the locations of 𝑛
sources { ⃗𝑥1, … , ⃗𝑥𝑛} that minimizes the cost
function

𝐹({ ⃗𝑥1, … , ⃗𝑥𝑛}) = ∫
Ω

𝜌pop( ⃗𝑥)min𝑖|| ⃗𝑥 − ⃗𝑥𝑖||d ⃗𝑥 .

 Also known as the p-median problem.
 Not easy …in fact this one is an NP-hard

problem. [2]

 Approximate solution originally due to
Gusein-Zade [3].

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Size-density law

Approximations:
 For a given set of source placements { ⃗𝑥1, … , ⃗𝑥𝑛},

the region Ω is divided up into Voronoi cells,
one per source.

 Define 𝐴( ⃗𝑥) as the area of the Voronoi cell
containing ⃗𝑥.

 As per Stephan’s calculation, estimate typical
distance from ⃗𝑥 to the nearest source (say 𝑖) as

𝑐𝑖𝐴( ⃗𝑥)1/2

where 𝑐𝑖 is a shape factor for the 𝑖th Voronoi cell.
 Approximate 𝑐𝑖 as a constant 𝑐.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Voronoi_diagram
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Size-density law

Carrying on:
 The cost function is now

𝐹 = 𝑐 ∫
Ω

𝜌pop( ⃗𝑥)𝐴( ⃗𝑥)1/2d ⃗𝑥 .

 We also have that the constraint that Voronoi cells
divide up the overall area of Ω: ∑𝑛

𝑖=1 𝐴( ⃗𝑥𝑖) = 𝐴Ω.
 Sneakily turn this into an integral constraint:

∫
Ω

d ⃗𝑥
𝐴( ⃗𝑥) = 𝑛.

 Within each cell, 𝐴( ⃗𝑥) is constant.
 So …integral over each of the 𝑛 cells equals 1.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Now a Lagrange multiplier story:
 By varying { ⃗𝑥1, … , ⃗𝑥𝑛}, minimize

𝐺(𝐴) = 𝑐 ∫
Ω

𝜌pop( ⃗𝑥)𝐴( ⃗𝑥)1/2d ⃗𝑥 −𝜆 (𝑛 − ∫
Ω

[𝐴( ⃗𝑥)]−1 d ⃗𝑥 )

 I Can Haz Calculus of Variations?
 Compute 𝛿𝐺/𝛿𝐴, the functional derivative of the

functional 𝐺(𝐴).
 This gives

∫
Ω

[𝑐
2𝜌pop( ⃗𝑥)𝐴( ⃗𝑥)−1/2 − 𝜆 [𝐴( ⃗𝑥)]−2]d ⃗𝑥 = 0.

 Setting the integrand to be zilch, we have:

𝜌pop( ⃗𝑥) = 2𝜆𝑐−1𝐴( ⃗𝑥)−3/2.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/Functional_derivative


PoCS, Vol. 1
@pocsvox

Optimal Supply
Networks III

Distributed
Sources
Size-density law

Cartograms

A reasonable derivation

Global redistribution

Public versus Private

References

.
.
.
.
.

.
35 of 48

Size-density law
Now a Lagrange multiplier story:
 Rearranging, we have

𝐴( ⃗𝑥) = (2𝜆𝑐−1)2/3𝜌−2/3
pop .

 Finally, we indentify 1/𝐴( ⃗𝑥) as 𝜌fac( ⃗𝑥), an
approximation of the local source density.

 Substituting 𝜌fac = 1/𝐴, we have

𝜌fac( ⃗𝑥) = ( 𝑐
2𝜆𝜌pop)

2/3
.

 Normalizing (or solving for 𝜆):

𝜌fac( ⃗𝑥) = 𝑛 [𝜌pop( ⃗𝑥)]2/3

∫Ω[𝜌pop( ⃗𝑥)]2/3d ⃗𝑥 ∝ [𝜌pop( ⃗𝑥)]2/3.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Global redistribution networks
One more thing:
 How do we supply these facilities?
 How do we best redistribute mail? People?
 How do we get beer to the pubs?
 Gastner and Newman model: cost is a function of

basic maintenance and travel time:

𝐶maint + 𝛾𝐶travel.

 Travel time is more complicated: Take ‘distance’
between nodes to be a composite of shortest path
distance ℓ𝑖𝑗 and number of legs to journey:

(1 − 𝛿)ℓ𝑖𝑗 + 𝛿(#hops).

 When 𝛿 = 1, only number of hops matters.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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l̃i j = !1 − !"lij + ! !10"

with 0"!"1. The parameter ! determines the user’s pref-
erence for measuring distance in terms of kilometers or legs.
Now we define the effective distance between two !not nec-
essarily adjacent" vertices to be the sum of the effective
lengths of all edges along a path between them, minimized
over all paths. The travel cost is then proportional to the sum
of all effective path lengths

Z = #
i#j

wijl̃ij , !11"

and the optimal network for given $ and ! is again the one
that minimizes the total cost T+$Z. Since the second term in
Eq. !10" is dimensionless, we normalize the length appearing
in the first term by setting the average “crow flies” distance
between a vertex and its nearest neighbor equal to 1.

What is a realistic value for $? We can make an order of
magnitude estimate as follows. The sum in Eq. !7" has m
nonzero terms, where m is the number of edges in the net-
work. Most real networks are sparse, with m=O!p". Further-
more, edges are of typical length 1 in our length scale, so
that T=O!p", with p$200 in the examples studied here. The
sum in Eq. !11", on the other hand, contains 1

2 p!p−1"
=O!p2" nonzero terms. If P is the total population, the
weights wij have typical value !P / p"2. Thus Z=O!P2"
$1017 for the U.S. with a current population of P$2.8
%108. Assuming that our investments in maintenance and
travel costs are of the same order of magnitude and setting
T%$Z then leads to an estimate for $ of order 10−15or 10−14.

In Fig. 6, we show the results for $=10−14. When !=0,
passengers !or cargo shippers" care only about total kilome-
ters traveled and the optimal network strongly resembles a
network of roads, such as the U.S. interstate network. As !
increases, the number of legs in a journey starts playing a
more important role and the approximate symmetry between
the vertices is broken as the network begins to form hubs.

Around !=0.5, we see networks emerging that constitute a
compromise between the convenience of direct local connec-
tions and the efficiency of hubs, while by !=0.8 the network
is dominated by a few large hubs in Philadelphia, Columbus,
Chicago, Kansas City, and Atlanta that handle the bulk of the
traffic. On the highly populated California coast, two smaller
hubs around San Francisco and Los Angeles are visible. In
the extreme case !=1, where the user cares only about num-
ber of legs and not about distance at all, the network is domi-
nated by a single central hub in Cincinnati, with a few
smaller local hubs in other locations such as Los Angeles.

V. CONCLUSIONS

We have studied the problem of optimal facility location,
also called the p-median problem, which consists of choos-
ing positions for p facilities in geographic space such that the
mean distance between a member of the population and the
nearest facility is minimized. Analytic arguments indicate
that the optimal density of facilities should be proportional to
the population density to the two-thirds power. We have con-
firmed this relation by solving the p-median problem numeri-
cally and projecting the facility locations on density-
equalizing maps. We have also considered the design of
optimal networks to connect our facilities together. Given
optimally located facilities, we have searched numerically
for the network configuration that minimizes the sum of
maintenance and travel costs. A simple two-parameter model
allows us to take different user preferences into account. The
model gives us intuition about a number of situations of
practical interest, such as the design of transportation net-
works, parcel delivery services, and the Internet backbone.
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FIG. 6. !Color online" Optimal
networks for the population distri-
bution of the United States with
p=200 vertices and $=10−14 for
different values of !.
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Public versus private facilities
Beyond minimizing distances:
 “Scaling laws between population and facility

densities” by Um et al., Proc. Natl. Acad. Sci.,
2009. [6]

 Um et al. find empirically and argue theoretically
that the connection between facility and
population density

𝜌fac ∝ 𝜌𝛼
pop

does not universally hold with 𝛼 = 2/3.
 Two idealized limiting classes:

1. For-profit, commercial facilities: 𝛼 = 1;
2. Pro-social, public facilities: 𝛼 = 2/3.

 Um et al. investigate facility locations in the United
States and South Korea.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Public versus private facilities: evidence
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Fig. 1. Scatter plots of population and facility density obtained from empir-
ical data. (A) Facility density D versus population density ρ for ambulatory
hospitals in the US. (B) D versus ρ for the public schools in the US. For ambula-
tory hospital the exponent is 1.13 close to 1, which shows clearly a different
distribution from the exponent 0.69 for public schools. The public school
shows roughly 2 regimes of different exponents around ρ ∼ 100/km2. The
region above 100/km2 of population density shows the exponent as ≈1, and
the region below 100/km2 shows 2/3. The population density 100/km2 corre-
sponds to the cross-over point of the facility density 0.03/km2, which means
that 1 school covers about 33 km2. If we assume the geometry is nearly a
circle, the radius of the attending distance is ≈3 km. For attending distances
<3 km, public school distribution also shows similar behaviors to those of the
private schools.

Voronoi cell. However, due to the resolution limitation of the facil-
ity positions, we measure the scaling relation by using the number
of people and facilities of each county instead as a coarse-grained
scheme (see the Materials and Methods for details). From an analy-
sis of the data, it was found in both the US and SK that although
the commercial facilities tend to have an exponent α ≈ 1, the pub-
lic facilities commonly have an exponent α ≈ 2/3. For commercial
facilities such as ambulatory hospitals, the exponent α was found
to be 1.13 (top), for public facilities such as schools, the exponent
was 0.69 (bottom), as shown in Fig. 1. The other results for various
facilities in US and SK are summarized in Table 1.

Interestingly, as a border of exponent 0.8 in Table 1, each facility
is clearly classified into 2 categories, commercial and public. In the
US data, ‘ambulatory hospital,’ ‘beauty care,’ ‘laundry,’ ‘automo-
tive repair,’ ‘private school,’ ‘restaurant,’ ‘accommodation,’ ‘bank,’
and ‘gas station’ are categorized as commercial facilities more
or less, whereas ‘death care,’ ‘fire station,’ ‘police station,’ and
‘public school’ are categorized as public facilities, which provide

social welfare services. Even though the 2 countries have very
different physical, economic, sociocultural, and political environ-
ments, (such as different topography, urban formations, popula-
tion densities, standards of living, and cultures), similar facilities,
like the ambulatory hospital in the US and the primary clinic in
SK, have similar exponents.

It should be noted, however, that due to the differences in the
educational systems in the US and SK, the result-related school
system is somewhat different. Because the US has a K-12 educa-
tional system both in the public and private sectors, the table shows
the exponent 0.95 for private schools and 0.69 for public schools. In
SK, even though there is a distinction between public and private
schools, this distinction is deceptive, as most students are allocated
to public and private schools by the ministry of education without
any preference between private and public school. Therefore, the
exponent of primary and secondary schools in SK is the same, 0.77,
close to the public facilities and proving no distinction between pri-
vate and public schools in SK. However, ‘university/college,’ which
is a more profit-driven type of school in SK shows α ∼ 0.93, close
to the commercial facility.

As a result, the social facilities, such as police and fire stations
and government offices, have respectively low exponents close
to 2/3. One of major differences between public and commer-
cial facilities is probably the distance between these facilities and
their clients. This is especially the case with respect to social facili-
ties. For example, fire stations need to be located close to people’s
residences, so that fire fighters can serve quickly if needed, and
the same applies to police stations. For a school student, the com-
mute distance is also important. As an extreme case, public health

Table 1. Summary of the exponents

US facility α (SE) R2

Ambulatory hospital 1.13(1) 0.93
Beauty care 1.08(1) 0.86
Laundry 1.05(1) 0.90
Automotive repair 0.99(1) 0.92
Private school 0.95(1) 0.82
Restaurant 0.93(1) 0.89
Accommodation 0.89(1) 0.70
Bank 0.88(1) 0.89
Gas station 0.86(1) 0.94

Death care 0.79(1) 0.80
* Fire station 0.78(3) 0.93
* Police station 0.71(6) 0.75
Public school 0.69(1) 0.87

SK facility α (SE) R2

Bank 1.18(2) 0.96
Parking place 1.13(2) 0.91
* Primary clinic 1.09(2) 1.00
* Hospital 0.96(5) 0.97
* University/college 0.93(9) 0.89
Market place 0.87(2) 0.90

* Secondary school 0.77(3) 0.98
* Primary school 0.77(3) 0.97
Social welfare org. 0.75(2) 0.84
* Police station 0.71(5) 0.94
Government office 0.70(1) 0.93
* Fire station 0.60(4) 0.93
* Public health center 0.09(5) 0.19

Summary of the values of α in D ∼ ρα for various facilities in the US and
SK. The coefficient of determination R2 is obtained through the least-squares
analysis. The value for each facility type is obtained from information in the
county level, except for the asterisk(*)-marked values, which are from the
state level (US) and the province level (SK). The numbers in parentheses are
the standard errors in the last digits.
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Fig. 1. Scatter plots of population and facility density obtained from empir-
ical data. (A) Facility density D versus population density ρ for ambulatory
hospitals in the US. (B) D versus ρ for the public schools in the US. For ambula-
tory hospital the exponent is 1.13 close to 1, which shows clearly a different
distribution from the exponent 0.69 for public schools. The public school
shows roughly 2 regimes of different exponents around ρ ∼ 100/km2. The
region above 100/km2 of population density shows the exponent as ≈1, and
the region below 100/km2 shows 2/3. The population density 100/km2 corre-
sponds to the cross-over point of the facility density 0.03/km2, which means
that 1 school covers about 33 km2. If we assume the geometry is nearly a
circle, the radius of the attending distance is ≈3 km. For attending distances
<3 km, public school distribution also shows similar behaviors to those of the
private schools.

Voronoi cell. However, due to the resolution limitation of the facil-
ity positions, we measure the scaling relation by using the number
of people and facilities of each county instead as a coarse-grained
scheme (see the Materials and Methods for details). From an analy-
sis of the data, it was found in both the US and SK that although
the commercial facilities tend to have an exponent α ≈ 1, the pub-
lic facilities commonly have an exponent α ≈ 2/3. For commercial
facilities such as ambulatory hospitals, the exponent α was found
to be 1.13 (top), for public facilities such as schools, the exponent
was 0.69 (bottom), as shown in Fig. 1. The other results for various
facilities in US and SK are summarized in Table 1.

Interestingly, as a border of exponent 0.8 in Table 1, each facility
is clearly classified into 2 categories, commercial and public. In the
US data, ‘ambulatory hospital,’ ‘beauty care,’ ‘laundry,’ ‘automo-
tive repair,’ ‘private school,’ ‘restaurant,’ ‘accommodation,’ ‘bank,’
and ‘gas station’ are categorized as commercial facilities more
or less, whereas ‘death care,’ ‘fire station,’ ‘police station,’ and
‘public school’ are categorized as public facilities, which provide

social welfare services. Even though the 2 countries have very
different physical, economic, sociocultural, and political environ-
ments, (such as different topography, urban formations, popula-
tion densities, standards of living, and cultures), similar facilities,
like the ambulatory hospital in the US and the primary clinic in
SK, have similar exponents.

It should be noted, however, that due to the differences in the
educational systems in the US and SK, the result-related school
system is somewhat different. Because the US has a K-12 educa-
tional system both in the public and private sectors, the table shows
the exponent 0.95 for private schools and 0.69 for public schools. In
SK, even though there is a distinction between public and private
schools, this distinction is deceptive, as most students are allocated
to public and private schools by the ministry of education without
any preference between private and public school. Therefore, the
exponent of primary and secondary schools in SK is the same, 0.77,
close to the public facilities and proving no distinction between pri-
vate and public schools in SK. However, ‘university/college,’ which
is a more profit-driven type of school in SK shows α ∼ 0.93, close
to the commercial facility.

As a result, the social facilities, such as police and fire stations
and government offices, have respectively low exponents close
to 2/3. One of major differences between public and commer-
cial facilities is probably the distance between these facilities and
their clients. This is especially the case with respect to social facili-
ties. For example, fire stations need to be located close to people’s
residences, so that fire fighters can serve quickly if needed, and
the same applies to police stations. For a school student, the com-
mute distance is also important. As an extreme case, public health

Table 1. Summary of the exponents

US facility α (SE) R2

Ambulatory hospital 1.13(1) 0.93
Beauty care 1.08(1) 0.86
Laundry 1.05(1) 0.90
Automotive repair 0.99(1) 0.92
Private school 0.95(1) 0.82
Restaurant 0.93(1) 0.89
Accommodation 0.89(1) 0.70
Bank 0.88(1) 0.89
Gas station 0.86(1) 0.94

Death care 0.79(1) 0.80
* Fire station 0.78(3) 0.93
* Police station 0.71(6) 0.75
Public school 0.69(1) 0.87

SK facility α (SE) R2

Bank 1.18(2) 0.96
Parking place 1.13(2) 0.91
* Primary clinic 1.09(2) 1.00
* Hospital 0.96(5) 0.97
* University/college 0.93(9) 0.89
Market place 0.87(2) 0.90

* Secondary school 0.77(3) 0.98
* Primary school 0.77(3) 0.97
Social welfare org. 0.75(2) 0.84
* Police station 0.71(5) 0.94
Government office 0.70(1) 0.93
* Fire station 0.60(4) 0.93
* Public health center 0.09(5) 0.19

Summary of the values of α in D ∼ ρα for various facilities in the US and
SK. The coefficient of determination R2 is obtained through the least-squares
analysis. The value for each facility type is obtained from information in the
county level, except for the asterisk(*)-marked values, which are from the
state level (US) and the province level (SK). The numbers in parentheses are
the standard errors in the last digits.
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 Left plot: ambulatory hospitals in the U.S.
 Right plot: public schools in the U.S.
 Note: break in scaling for public schools.

Transition from 𝛼 ≃ 2/3 to 𝛼 = 1 around
𝜌pop ≃ 100.
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Fig. 1. Scatter plots of population and facility density obtained from empir-
ical data. (A) Facility density D versus population density ρ for ambulatory
hospitals in the US. (B) D versus ρ for the public schools in the US. For ambula-
tory hospital the exponent is 1.13 close to 1, which shows clearly a different
distribution from the exponent 0.69 for public schools. The public school
shows roughly 2 regimes of different exponents around ρ ∼ 100/km2. The
region above 100/km2 of population density shows the exponent as ≈1, and
the region below 100/km2 shows 2/3. The population density 100/km2 corre-
sponds to the cross-over point of the facility density 0.03/km2, which means
that 1 school covers about 33 km2. If we assume the geometry is nearly a
circle, the radius of the attending distance is ≈3 km. For attending distances
<3 km, public school distribution also shows similar behaviors to those of the
private schools.

Voronoi cell. However, due to the resolution limitation of the facil-
ity positions, we measure the scaling relation by using the number
of people and facilities of each county instead as a coarse-grained
scheme (see the Materials and Methods for details). From an analy-
sis of the data, it was found in both the US and SK that although
the commercial facilities tend to have an exponent α ≈ 1, the pub-
lic facilities commonly have an exponent α ≈ 2/3. For commercial
facilities such as ambulatory hospitals, the exponent α was found
to be 1.13 (top), for public facilities such as schools, the exponent
was 0.69 (bottom), as shown in Fig. 1. The other results for various
facilities in US and SK are summarized in Table 1.

Interestingly, as a border of exponent 0.8 in Table 1, each facility
is clearly classified into 2 categories, commercial and public. In the
US data, ‘ambulatory hospital,’ ‘beauty care,’ ‘laundry,’ ‘automo-
tive repair,’ ‘private school,’ ‘restaurant,’ ‘accommodation,’ ‘bank,’
and ‘gas station’ are categorized as commercial facilities more
or less, whereas ‘death care,’ ‘fire station,’ ‘police station,’ and
‘public school’ are categorized as public facilities, which provide

social welfare services. Even though the 2 countries have very
different physical, economic, sociocultural, and political environ-
ments, (such as different topography, urban formations, popula-
tion densities, standards of living, and cultures), similar facilities,
like the ambulatory hospital in the US and the primary clinic in
SK, have similar exponents.

It should be noted, however, that due to the differences in the
educational systems in the US and SK, the result-related school
system is somewhat different. Because the US has a K-12 educa-
tional system both in the public and private sectors, the table shows
the exponent 0.95 for private schools and 0.69 for public schools. In
SK, even though there is a distinction between public and private
schools, this distinction is deceptive, as most students are allocated
to public and private schools by the ministry of education without
any preference between private and public school. Therefore, the
exponent of primary and secondary schools in SK is the same, 0.77,
close to the public facilities and proving no distinction between pri-
vate and public schools in SK. However, ‘university/college,’ which
is a more profit-driven type of school in SK shows α ∼ 0.93, close
to the commercial facility.

As a result, the social facilities, such as police and fire stations
and government offices, have respectively low exponents close
to 2/3. One of major differences between public and commer-
cial facilities is probably the distance between these facilities and
their clients. This is especially the case with respect to social facili-
ties. For example, fire stations need to be located close to people’s
residences, so that fire fighters can serve quickly if needed, and
the same applies to police stations. For a school student, the com-
mute distance is also important. As an extreme case, public health

Table 1. Summary of the exponents

US facility α (SE) R2

Ambulatory hospital 1.13(1) 0.93
Beauty care 1.08(1) 0.86
Laundry 1.05(1) 0.90
Automotive repair 0.99(1) 0.92
Private school 0.95(1) 0.82
Restaurant 0.93(1) 0.89
Accommodation 0.89(1) 0.70
Bank 0.88(1) 0.89
Gas station 0.86(1) 0.94

Death care 0.79(1) 0.80
* Fire station 0.78(3) 0.93
* Police station 0.71(6) 0.75
Public school 0.69(1) 0.87

SK facility α (SE) R2

Bank 1.18(2) 0.96
Parking place 1.13(2) 0.91
* Primary clinic 1.09(2) 1.00
* Hospital 0.96(5) 0.97
* University/college 0.93(9) 0.89
Market place 0.87(2) 0.90

* Secondary school 0.77(3) 0.98
* Primary school 0.77(3) 0.97
Social welfare org. 0.75(2) 0.84
* Police station 0.71(5) 0.94
Government office 0.70(1) 0.93
* Fire station 0.60(4) 0.93
* Public health center 0.09(5) 0.19

Summary of the values of α in D ∼ ρα for various facilities in the US and
SK. The coefficient of determination R2 is obtained through the least-squares
analysis. The value for each facility type is obtained from information in the
county level, except for the asterisk(*)-marked values, which are from the
state level (US) and the province level (SK). The numbers in parentheses are
the standard errors in the last digits.
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Fig. 1. Scatter plots of population and facility density obtained from empir-
ical data. (A) Facility density D versus population density ρ for ambulatory
hospitals in the US. (B) D versus ρ for the public schools in the US. For ambula-
tory hospital the exponent is 1.13 close to 1, which shows clearly a different
distribution from the exponent 0.69 for public schools. The public school
shows roughly 2 regimes of different exponents around ρ ∼ 100/km2. The
region above 100/km2 of population density shows the exponent as ≈1, and
the region below 100/km2 shows 2/3. The population density 100/km2 corre-
sponds to the cross-over point of the facility density 0.03/km2, which means
that 1 school covers about 33 km2. If we assume the geometry is nearly a
circle, the radius of the attending distance is ≈3 km. For attending distances
<3 km, public school distribution also shows similar behaviors to those of the
private schools.

Voronoi cell. However, due to the resolution limitation of the facil-
ity positions, we measure the scaling relation by using the number
of people and facilities of each county instead as a coarse-grained
scheme (see the Materials and Methods for details). From an analy-
sis of the data, it was found in both the US and SK that although
the commercial facilities tend to have an exponent α ≈ 1, the pub-
lic facilities commonly have an exponent α ≈ 2/3. For commercial
facilities such as ambulatory hospitals, the exponent α was found
to be 1.13 (top), for public facilities such as schools, the exponent
was 0.69 (bottom), as shown in Fig. 1. The other results for various
facilities in US and SK are summarized in Table 1.

Interestingly, as a border of exponent 0.8 in Table 1, each facility
is clearly classified into 2 categories, commercial and public. In the
US data, ‘ambulatory hospital,’ ‘beauty care,’ ‘laundry,’ ‘automo-
tive repair,’ ‘private school,’ ‘restaurant,’ ‘accommodation,’ ‘bank,’
and ‘gas station’ are categorized as commercial facilities more
or less, whereas ‘death care,’ ‘fire station,’ ‘police station,’ and
‘public school’ are categorized as public facilities, which provide

social welfare services. Even though the 2 countries have very
different physical, economic, sociocultural, and political environ-
ments, (such as different topography, urban formations, popula-
tion densities, standards of living, and cultures), similar facilities,
like the ambulatory hospital in the US and the primary clinic in
SK, have similar exponents.

It should be noted, however, that due to the differences in the
educational systems in the US and SK, the result-related school
system is somewhat different. Because the US has a K-12 educa-
tional system both in the public and private sectors, the table shows
the exponent 0.95 for private schools and 0.69 for public schools. In
SK, even though there is a distinction between public and private
schools, this distinction is deceptive, as most students are allocated
to public and private schools by the ministry of education without
any preference between private and public school. Therefore, the
exponent of primary and secondary schools in SK is the same, 0.77,
close to the public facilities and proving no distinction between pri-
vate and public schools in SK. However, ‘university/college,’ which
is a more profit-driven type of school in SK shows α ∼ 0.93, close
to the commercial facility.

As a result, the social facilities, such as police and fire stations
and government offices, have respectively low exponents close
to 2/3. One of major differences between public and commer-
cial facilities is probably the distance between these facilities and
their clients. This is especially the case with respect to social facili-
ties. For example, fire stations need to be located close to people’s
residences, so that fire fighters can serve quickly if needed, and
the same applies to police stations. For a school student, the com-
mute distance is also important. As an extreme case, public health

Table 1. Summary of the exponents

US facility α (SE) R2

Ambulatory hospital 1.13(1) 0.93
Beauty care 1.08(1) 0.86
Laundry 1.05(1) 0.90
Automotive repair 0.99(1) 0.92
Private school 0.95(1) 0.82
Restaurant 0.93(1) 0.89
Accommodation 0.89(1) 0.70
Bank 0.88(1) 0.89
Gas station 0.86(1) 0.94

Death care 0.79(1) 0.80
* Fire station 0.78(3) 0.93
* Police station 0.71(6) 0.75
Public school 0.69(1) 0.87

SK facility α (SE) R2

Bank 1.18(2) 0.96
Parking place 1.13(2) 0.91
* Primary clinic 1.09(2) 1.00
* Hospital 0.96(5) 0.97
* University/college 0.93(9) 0.89
Market place 0.87(2) 0.90

* Secondary school 0.77(3) 0.98
* Primary school 0.77(3) 0.97
Social welfare org. 0.75(2) 0.84
* Police station 0.71(5) 0.94
Government office 0.70(1) 0.93
* Fire station 0.60(4) 0.93
* Public health center 0.09(5) 0.19

Summary of the values of α in D ∼ ρα for various facilities in the US and
SK. The coefficient of determination R2 is obtained through the least-squares
analysis. The value for each facility type is obtained from information in the
county level, except for the asterisk(*)-marked values, which are from the
state level (US) and the province level (SK). The numbers in parentheses are
the standard errors in the last digits.
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Rough transition
between public
and private at
𝛼 ≃ 0.8.
Note: * indicates
analysis is at
state/province
level; otherwise
county level.
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Public versus private facilities: evidence

Fig. 2. Distribution of public and private facilities. Density plot for ambulatory hospitals (A) and public schools (B) in the US. Voronoi cell diagram from model
simulation for commercial (C) and public facilities (D). Note that the spatial distribution in B and D for public facilities is more uniform than that in A and C for
commercial facilities.

centers in SK show the exponent 0.09. Public health centers are dis-
tributed almost evenly independent of population density because
their role is to support the medical service to persons who live in
a very backward part of the country with no hospital. However,
a commercial facility does not care much about how long their
clients need to travel, only about how many clients come.

Microdynamics Model for Economic Activity
In our model, we consider the microdynamics for each facility
of 2 different types, namely commercial and public. Let us con-
sider that there exist several identical facilities on a given area A
where populations are allocated unevenly. We assume that peo-
ple visit their nearest facility following the first law of geography:
“Everything is related to everything else, but near things are more
related than distant things” (12). For convenience, we introduce
the Voronoi cell Vi as the set of points closer to the ith facility
than to any other facilities within the area A (11). Therefore, the
number of visitors to the ith facility is the number of people living
in the ith Voronoi cell Vi. We define the area of Vi as si and the
population living in Vi as ni.

First, for the commercial facilities, the profit of the ith facility
would be proportional to ni, the number of potential customers,
as we discussed above. We assume that every facility has a similar
maintenance expense ignoring the spatial inequality; therefore, a
owner of the facility having lower ni is better off moving his/her
facility to the location near the facility that gets the higher profit.
It is natural procedure following the efficient market hypothesis,
which is well known in economics. For example, when facilities are
evenly distributed, the facilities in a highly populated area should
make higher profits because ni is proportional to the population
density. Consequently, we expect that the owners of facilities in a
place with a low population density will want to move their facili-
ties to a location with a higher population density. After relocating
these facilities, more facilities will exist in the highly populated
places than the sparsely populated ones. It is notable that the relo-
cation of facilities in this way should result in almost the same profit
for every facility, i.e., ni ≈ Np/Nf for all facilities, where Np is the
total population and Nf is the number of facilities. If the positions
of facilities are optimized by consecutive relocations according to

ni, the number of visitor ni becomes almost the same with each
other, and facilities no longer have to change their location. By
using the Voronoi cell and its area si, we obtain the expressions
of the population density at certain position r, ρ(r) = n(r)/s(r)
in continuous form and the facility density D(r) = 1/s(r), where
n(r) = ni and s(r) = si if r ∈ Vi. At the steady state, n(r) ≈ Np/Nf
leads to

D(r) ≈ Nf

Np
ρ(r). [1]

From Eq. 1, we reach the conclusion that the exponent α =
1 for the commercial facilities is consistent with the empirical
data.

Now, we expand the above argument to the public facility.
For the positioning of public facilities, however, the government
should consider not the profit but a social opportunity cost caused
by the distance between visitors and facilities. The summation
of travel distance (cost) ci from each visitor to the ith facility is
written as

ci =
∑

k∈P(Vi)

|rik| = ni〈ri〉, [2]

where P(Vi) is the set of a population within Vi and |rik| represents
the distance from visitor k to the ith facility. Here, 〈ri〉 is defined as
the average distance to the ith facility, 〈ri〉 ≡ (1/ni)

∑
k∈P(Vi)

|rik|.
To reduce the cost, the government should move a facility in the
jth Vonoroi cell with the lowest cj to a location near the Vi which
has the highest ci. Even though the commercial facilities compete
with other facilities for larger ni, the public facilities endeavor to
minimize ci, of which optimization, however, results in the same
equalization of ni and ci.

If optimization of facility positions is achieved by consecutive
relocations of facilities to positions near the facility of the highest
cost, the cost of every facility becomes the same in the steady state,
i.e., ci = c. With a plausible assumption that 〈ri〉 ≈ g

√
si with a

geometrical constant g (∼ O(1)), the summation of travel distance
for Vi can be written as ci = nig

√
si. By using ρ(r) = n(r)/s(r) and

D(r) = 1/s(r), we get the following expression from c = nig
√

si,

14238 www.pnas.org / cgi / doi / 10.1073 / pnas.0901898106 Um et al.

A, C: ambulatory hospitals in the U.S.; B, D: public
schools in the U.S.; A, B: data; C, D: Voronoi diagram
from model simulation.
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Public versus private facilities: the story
So what’s going on?

 Social institutions seek to minimize distance of travel.

 Commercial institutions seek to maximize the number
of visitors.

 Defns: For the 𝑖th facility and its Voronoi cell 𝑉𝑖, define

 𝑛𝑖 = population of the 𝑖th cell;
 ⟨𝑟𝑖⟩ = the average travel distance to the 𝑖th facility.
 𝐴𝑖 = area of 𝑖th cell (𝑠𝑖 in Um et al. [6])

 Objective function to maximize for a facility (highly
constructed):

𝑣𝑖 = 𝑛𝑖⟨𝑟𝑖⟩𝛽 with 0 ≤ 𝛽 ≤ 1.

 Limits:

 𝛽 = 0: purely commercial.
 𝛽 = 1: purely social.
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Public versus private facilities: the story

 Either proceeding as per the
Gastner-Newman-Gusein-Zade calculation or, as
Um et al. do, observing that the cost for each cell
should be the same, we have:

𝜌fac( ⃗𝑥) = 𝑛 [𝜌pop( ⃗𝑥)]2/(𝛽+2)

∫Ω[𝜌pop( ⃗𝑥)]2/(𝛽+2)d ⃗𝑥 ∝ [𝜌pop( ⃗𝑥)]2/(𝛽+2).

 For 𝛽 = 0, 𝛼 = 1: commercial scaling is linear.
 For 𝛽 = 1, 𝛼 = 2/3: social scaling is sublinear.
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http://www.uvm.edu/pdodds


PoCS, Vol. 1
@pocsvox

Optimal Supply
Networks III

Distributed
Sources
Size-density law

Cartograms

A reasonable derivation

Global redistribution

Public versus Private

References

.
.
.
.
.

.
47 of 48

References I

[1] M. T. Gastner and M. E. J. Newman.
Diffusion-based method for producing
density-equalizing maps.
Proc. Natl. Acad. Sci., 101:7499–7504, 2004. pdf

[2] M. T. Gastner and M. E. J. Newman.
Optimal design of spatial distribution networks.
Phys. Rev. E, 74:016117, 2006. pdf

[3] S. M. Gusein-Zade.
Bunge’s problem in central place theory and its
generalizations.
Geogr. Anal., 14:246–252, 1982. pdf

[4] G. E. Stephan.
Territorial division: The least-time constraint
behind the formation of subnational boundaries.
Science, 196:523–524, 1977. pdf

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/2004/gastner2004a.pdf
http://www.uvm.edu/pdodds/research/papers/others/2006/gastner2006c.pdf
http://www.uvm.edu/pdodds/research/papers/others/1982/gusein-zade1982a.pdf
http://www.uvm.edu/pdodds/research/papers/others/1977/stephan1977a.pdf


PoCS, Vol. 1
@pocsvox

Optimal Supply
Networks III

Distributed
Sources
Size-density law

Cartograms

A reasonable derivation

Global redistribution

Public versus Private

References

.
.
.
.
.

.
48 of 48

References II

[5] G. E. Stephan.
Territorial subdivision.
Social Forces, 63:145–159, 1984. pdf

[6] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim.
Scaling laws between population and facility
densities.
Proc. Natl. Acad. Sci., 106:14236–14240, 2009.
pdf

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/1984/stephan1984a.pdf
http://www.uvm.edu/pdodds/research/papers/others/2009/um2009a.pdf

	Distributed Sources
	Size-density law
	Cartograms
	A reasonable derivation
	Global redistribution
	Public versus Private

	References

