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Some things really stick:

wtf + geeky + omg:

9

Why social contagion works so well:

LOOK AT THESE PEOPLE. GLASSY-EYED AUTOMATONS
GOING ABOUT THEIR DAILY LIVES, NEVER STOPPING
TO LOOK AROUND AND ZZ&7 TM THE ONLY

CONSCIOUS HUMAN IN A WORLD OF SHEEP
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Examples abound

Social Contagion

& fashion & Harry Potter b

& striking & voting

& smoking(F'" < gossip

& residential & Rubik's cube ¥ References
segregation ** < religious beliefs

& iPhones and iThings &, school shootings

& obesity(F & leaving lectures

SIR and SIRS type contagion possible

&% Classes of behavior versus specific behavior :
dieting, horror movies, getting married, invading
countries, ...

Qv 160f 109
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Models

Mixed messages: Please copy, but also, don't
copy ...

& Cindy Harrell appeared (7 in the (terrifying) music video for Ray
Parker Jr.'s Gho te
& In Stranger Things 2 (7, Steve Harrington reveals his Fabergé

References
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Market much?

&% Advertisement enjoyed during “Herstory of

Framingham heart study:

Evolving network stories (Christakis and Fowler):
The spread of quitting smoking (Z'["!
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Controversy:
& Are your friends making you fat?(£ (Clive

Thomspon, NY Times, September 10, 2009).
&% Everything is contagious ('—Doubts about the

social plague stir in the human superorganism
(Dave Johns, Slate, April 8, 2010).

Social Contagion

Two focuses for us
&> Widespread media influence
&> Word-of-mouth influence

We need to understand influence
<& Who influences whom? Very hard to measure...

What kinds of influence response functions are
there?

&% Are some individuals super influencers?

Highly popularized by Gladwell '*! as ‘connectors’

The infectious idea of opinion leaders (Katz and
Lazarsfeld) !
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The hypodermic model of influence grotves. Why do things spread socially? @pocav The completely unpredicted fall of Eastern @pocev
TSN &) Because of properties of special individuals? SocelContzgen— Europe: Socalcantagion
Social Contagion &% Or system level properties? Social Contagion ‘ Social Contagion

d &% Is the match that lights the fire important? o sacground
&% Yes. But only because we are storytellers:
homo narrativus (2. :
References &> We like to think things happened for reasons ... References References
&% Reasons for success are usually ascribed to
intrinsic properties (examples next).
<% Teleological stories of fame are often easy to
generate and believe.
&> System/group dynamics harder to understand

because most of our stories are built around
individuals.

Always good to examine what is said before and
after the fact ...

Timunr Kuran: 2% 2" “Now Out of Never: The Element dwi
of Surprise in the East European Revolution of 1989” e

&
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Gpoisvox The Mona Lisa Gpotsvox The dismal predictive powers of editors... &
Social Contagion Social Contagion Social Contagion
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Models
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Models
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Social Contagion
Models

Background d

References References References

& “Becoming Mona Lisa: The Making of a Global
Icon"—David Sassoon

<> Not the world's greatest painting from the start...
&% Escalation through theft, vandalism, parody, ...
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The general model of influence: the Social Zﬁfosgsvvi‘ﬂ Tattooed Guy' Was Pivotal in Armstrong Case ;aopcosc's\cg‘xW fmopcosc's\cg‘xW

W| |d Social Contagion fﬁ)ftiﬁﬁééj C};l 7777777777777777777777777777 Social Contagion From a 2013 B@U@VQE Mﬁaigia]j D? g 'Ut,e,r,v,'e,v,v,vyl,th Social Contagion

,,,,,,,, Maurice Sendak (%"

Social Contagion

Models s contegon - BLVR: Did the success of Where the Wild Things Are ever Social Contagion

Models

feel like an albatross?

MS: It's a nice book. It's perfectly nice. | can’t complain
E aboutit. | remember Herman Melville said, “When | die no
References one is going to mention Moby-Dick. They're all going to References

References
talk about my first book, about #x++ing maidens in Tahiti.”
He was right.  No mention of Moby-Dick then. Everyone
wanted another Tahitian book, a beach book. Butthen he
kept writing deeper and deeper and then came Moby-Dick
and people hated it. The only ones who liked it were Mr.
and Mrs. Nathaniel Hawthorne. Moby-Dick didn't get
famous until 1930.
<% Sendak named his dog Herman.
Bl M & The essential Colbert interview: Pt. 1(Z'and Pt. 2(Z. .19
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Drafting success in the NFL: (2"

Top Players by Round, 1995-2012

X§ F s

Peyton Manning  Drew Brees. Terrell Owens Jared Allen Zach Thomas.
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Social Contagion

Messing with social connections

&> Ads based on message content
(e.g., Google and email)

& BzzAgent@

B

Tom Brady

Donald Driver

& Harnessing of BzzAgents to directly market

through social ties.

& Generally: BzzAgents did not reveal their BzzAgent

status and did not want to be paid.
& NYT, 2004-12-05: “The Hidden (in Plain Sight)

Persuaders"Z'

&> One of Facebook’s early advertising attempts:

Beacon®@

&% All of Facebook’s advertising attempts.

&% Seriously, Facebook. What could go wrong?

Getting others to do things for you

Avery good book: ‘Influence’®! by Robert Cialdini (£

Six modes of influence:

1. Reciprocation: The Old Give and Take... and Take;
e.g., Free samples, Hare Krishnas.

2. Commitment and Consistency: Hobgoblins of the

Mind; e.g., Hazing.
3. Social Proof: Truths Are Us;
e.g., Jonestown (@,

4. Liking: The Friendly Thief; e.g., Separation into
groups is enough to cause problems.

5. Authority: Directed Deference;

e.g., Milgram's obedience to authority

6. Scarcity: The Rule of the Few; e.g., Prohibition.
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Social contagion @pocav

<% Cialdini's modes are heuristics that help up us get

Social Contagion

Social Contagion
Models
Background

through life.

&% Useful but can be leveraged... References

Other acts of influence:
<> Conspicuous Consumption (Veblen, 1912)
&% Conspicuous Destruction (Potlatch)

wa 350f109

Social Contagion Gpocsvor.
Social Contagion
Some important models: Socla) contaglon
< Tipping models—Schelling (1971) 22 23241 s
& Simulation on checker boards
&) Idea of thresholds o
© Polygon-themed online visualization. (Includes feferences
optional diversity-seeking proclivity.) ('
@ Explore the Netlogo(Z' online
implementation (')
&2 Threshold models—Granovetter (1978)['°]
&> Herding models—Bikhchandani, Hirschleifer,

Welch (1992) 2 3]
& Social learning theory, Informational cascades,...

o 370f 109

Social contagion models Gpoisvex

Social Contagion

Thresholds Social Contagion

Models

&
&

&
&
&
&

Basic idea: individuals adopt a behavior when a
certain fraction of others have adopted

‘Others’ may be everyone in a population, an
individual's close friends, any reference group. References

Response can be probabilistic or deterministic.
Individual thresholds can vary

Assumption: order of others’ adoption does not
matter... (unrealistic).

Assumption: level of influence per person is
uniform

(unrealistic).

v 380f 109

Social Contagion

Some possible origins of thresholds:

&> Inherent, evolution-devised inclination to
coordinate, to conform, to imitate. ["!

&% Lack of information: impute the worth of a good
or behavior based on degree of adoption (social
proof)

&> Economics: Network effects or network
externalities

&0 Externalities = Effects on others not directly
involved in a transaction

& Examples: telephones, fax machine, Facebook,
operating systems

& Anindividual's utility increases with the adoption
level among peers and the population in general

Threshold models—response functions

04| 04|

04| 04|
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& Example threshold influence response functions:

deterministic and stochastic
&> ¢ = fraction of contacts ‘on’ (e.g., rioting)
&5 Two states: Sand I.

Threshold models

Action based on perceived behavior of others:

1 2 1
A B c
_. 08 2 ~. 08
W £
706 g s 06
< 04 = =04
& o 05 o2 ii
% ¢ 1 0 05 1 0 05
- n [
it o) t

<> Two states: Sand |.

&> ¢ = fraction of contacts ‘on’ (e.g., rioting)
<% Discrete time update (strong assumption!)
& This is a Critical mass model
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Threshold models

Another example of critical mass model:

15 0.8}

0.6}
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Threshold models

Example of single stable state model:

2.5
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= ¥
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Y @

Threshold models

Chaotic behavior possible 7162 18]

FX,)

Period doubling arises as map amplitude r is
increased.

Synchronous update assumption is crucial

0.2 04 06 08 1 0.2 04 0.6 08 1
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Threshold models—Nutshell

Implications for collective action theory:
1. Collective uniformity - individual uniformity
2. Small individual changes = large global changes

3. The stories/dynamics of complex systems are
conceptually inaccessible for individual-centric
narratives.

4. System stories live in left null space of our
stories—we can't even see them.

5. But we happily impose simplistic,
individual-centric stories—we can't help
ourselves.

Many years after Granovetter and Soong's work:

“A simple model of global cascades on random
networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 [2°]

Mean field model — network model
Individuals now have a limited view of the world

We'll also explore:

“Seed size strongly affects cascades on random
networks” 4]
Gleeson and Cahalane, Phys. Rev. E, 2007.

“Direct, phyiscally motivated derivation of the
contagion condition for spreading processes on
generalized random networks” "% Dodds, Harris, and
Payne, Phys. Rev. E, 2011

“Influentials, Networks, and Public Opinion
Formation”[27]
Watts and Dodds, J. Cons. Res., 2007.

Threshold model on a network

All nodes have threshold ¢ = 0.2.
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Threshold model on a network

Interactions between individuals now represented
by a network.

Network is sparse.
Individual i has k,; contacts.

Influence on each link is reciprocal and of unit
weight.

Each individual i has a fixed threshold ¢,.
Individuals repeatedly poll contacts on network.
Synchronous, discrete time updating.

Individual i becomes active when
fraction of active contacts 7+ > ¢,.

i

Individuals remain active when switched (no
recovery = SI model).

Snowballing

First study random networks:

Start with N nodes with a degree distribution P,
Nodes are randomly connected (carefully so)
Aim: Figure out when activation will propagate
Determine a cascade condition

The Cascade Condition:

1. If one individual is initially activated, what is the
probability that an activation will spread over a
network?

2. What features of a network determine whether a
cascade will occur or not?

Example random network structure:

chit = QvuIn =
critical mass =
global
vulnerable
component
Qtrig =
triggering
component
innal =
potential
extent of
spread

Q = entire
network

Qerie C Qtrig? Qerit C Qina; and Qtrig:innaI ca.
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Snowballing @pocvox Cascade condition @pocsvox Cascade condition Brocsvax

Social Contagion Social Contagion Social Contagion

Social Contagion Social Contagion Social Contagion
M <

. Mo
o Next: Vulnerability of linked node Two special cases: .
Follow active links

An active link is a link connected to an activated e .
node. References 1/k References

Linked node is vulnerable with probability (1) Simple disease-like spreading succeeds: 8, = 8

kPk References

=
. . . = ! ! . k—1)- —=>1.
If an infected link leads to at least 1 more infected B Jyr—o F(@0)dg. p ;( ) (k)
link, then activation spreads. ’ . .
We need to understand which nodes can be If linked node is vulnerable, it produces k — 1 new (2) Giant component exists: § = 1
activated when only one of their neigbors outgoing active links o P
becomes active. If linked node is not vulnerable, it produces no 1> (k=1)- <T;“ > 1.
active links. k=1
e [8)
¥a v 53 0f 109 ¥ v 56 of 109 ¥va v 59 of 109
The most gullible Grocsver. Cascade condition Gpoisvox Cascades on random networks Gpocsvox
Social Contagion Social Contagion Social Contagion
Vulnerables: Social Contagion Putting things together' Social Contagion Social Contagion
Models . Models Models
We call individuals who can be activated by just gound Expected number of active edges produced by an sy 1 Sacgrone
one contact being active vulnerables P ) gesp y 08 wFinal Cascades occur
o N ) , active edge: : only if size of
The vulnerability condition for node i:
S o 0 06 P max vulnerable o
1/](;, > ¢ . ) . 7 8 Fraction of cluster > 0. o
Y = kP kP > Vnerables System may be
k k
Which means # contacts k; < [1/¢; ] R=|> (k=1)-B- W T 0-(1—B4)- I0) 02 Coscaes o ‘robust-yet-
k=1 Jasca 'ossible ascadps . ,
For global cascades on random networks, must success P e fragile’.
have a global cluster of vulnerables 1*°! z Highinfuuence ‘Ignorance’
Cluster of vulnerables = critical mass _ i(k —1) B, - kP facilitates
Network story: 1 node — critical mass — k=1 (k) o spreading.
everyone.
&
v 540f109 “a v 570of 109 Qv 600of 109
Cascade condition Grocsver. Cascade condition Grocsver. Cascade window for random networks Gpoisvox
Social Contagion Social Contagion Social Contagion
Back to following a link:
& Social Contagion Social Contagion 30 Social Contagion
A randomly chosen link, traversed in a random Mod Models Models
racti i : 25 P
dlrroegglsili},tleadks;o a degree k node with So... for random networks with fixed degree no cascades B
P Y oc il . distributions, cacades take off when: : 2 K
Eglcljcéwvii;‘rr]o(jrr;gtt\:gibelng k ways to connect to a B - P Aeforences N 15 N References
Lo Z(k—l)'ﬁk'ﬁ>1- g 10
Normalization: st E )
‘E 5 cascades 1
[es) = =
l;)kPk = (k) By = probabl‘llbw a degree k node is vulnerable. O o1 om0 o
Py, = probability a node has degree . @ = uniform individual threshold
So
. kP, ) )
P(linked node has degree k) = W ‘Cascade window’ widens as threshold ¢
decreases.

Lower thresholds enable spreading.
“a ¢ 550f 109 “a ¢~ 580f 109 “a ¢ 610f 109



Cascade window for random networks

70 cascades

All-to-all versus random networks

all-to-all networks random networks

kO

Cascade window—summary

For our simple model of a uniform threshold:

1. Low (k): No cascades in poorly connected
networks.
No global clusters of any kind.

2. High (k): Giant component exists but not enough
vulnerables.

3. Intermediate (k): Global cluster of vulnerables
exists.
Cascades are possible in “Cascade window.”
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Threshold contagion on random networks

Next: Find expected fractional size of spread.
Not obvious even for uniform threshold problem.

Difficulty is in figuring out if and when nodes that
need > 2 hits switch on.

Problem beautifully solved for infinite seed case
by Gleeson and Cahalane:

“Seed size strongly affects cascades on random
networks,” Phys. Rev. E, 2007. [

Developed further by Gleeson in “Cascades on
correlated and modular random networks,” Phys.
Rev. E, 2008."3!

Determining expected size of spread:

Randomly turn on a fraction ¢, of nodes at time
t=0

Capitalize on local branching network structure of
random networks (again)

Now think about what must happen for a specific
node i to become active at time ¢:

e t =0: i is one of the seeds (prob = ¢)

e ¢ =1: i was not a seed but enough of i's friends
switched on at time ¢ = 0 so that i's threshold is
now exceeded.

e t =2: enough of i's friends and friends-of-friends
switched on at time ¢ = 0 so that i's threshold is
now exceeded.

e ¢ = n: enough nodes within n hops of i switched
on att = 0 and their effects have propagated to
reach i.

Expected size of spread

@ =active, ¢ =1/3
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Expected size of spread

@ -=activeatt=0
O =ativeatt=1
@ =activeart=2
@ =activeat t=3
@ =activeatt=4

Expected size of spread

Notes:

Calculations are possible if nodes do not become
inactive (strong restriction).

Not just for threshold model—works for a wide
range of contagion processes.

We can analytically determine the entire time
evolution, not just the final size.

We can in fact determine
Pr(node of degree k switching on at time ¢).

Asynchronous updating can be handled too.

Expected size of spread

Pleasantness:

Taking off from a single seed story is about
expansion away from a node.

Extent of spreading story is about contraction at a
node.

A

7
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Expected size of spread
Notation:
¢y, = Pr(a degree k node is active at time ¢).

Notation: By,; = Pr (a degree k node becomes active if
j neighbors are active).

Our starting point: ¢, o = ;.
<§)¢g<1 — ¢o)* 7 =Pr (j of a degree k node’s
neighbors were seeded at time ¢ = 0).

Probability a degree k node was aseed at¢ =0 is ¢
(as above).

Probability a degree k node was notaseedatt =0 s
(1= o).

Combining everything, we have:
k

1—d0)> <j)¢d(1 — 60)* I By;.

j=0

¢kl_¢)0

For general ¢, we need to know the probability an edge
coming into a degree k node at time ¢ is active.

Notation: call this probability 6,.
We already know 6, = ¢,.

Story analogous to t = 1 case. For node 4:
bi o1 = b0+ (1 700)2 ( )91(1 —6,)57IB, ;.

Average over all nodes to obtain expression for ¢, :

Guas = b0+ vaPkZ() (1- 0,59 B,

So we need to compute 6,... massive excitement...

Expected size of spread

First connect 6, to 6,:

0y = ¢o+
kP, .
(1-— Z SRS Z( ) —00)" 1By
’ 7=0
k,f* = R,, = Pr (edge connects to a degree k node).

Zk 3 piece gives Pr(degree node k activates) of its

ne|ghbors k — 1 incoming neighbors are active.

¢o and (1 — ¢,) terms account for state of node at
timet=0.

See this all generalizes to give 6, in terms of ¢,...
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Social Contagion

Expected size of spread

Two pieces: edges first, and then nodes

1' 9t+1 = ibvg ngr:da‘ Contagion
exogenous -
+1-9¢ )i kﬁkf (k_l)ej(pe V1= B,
0 k=1 <k> 4=0 .7 ¢ ‘ kj References
social effects
with 6y = ¢g.
2. Gpy1 =
9o +(1=dg) Y Py Z < ,>9g(179t)k—aBkj‘
exogenous k=0 j=o \J

social effects

va v 750f 109
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Social Contagion
Models

Iterative map for 6, is key:

1 = 4_59
exogenous References
1 o~ kP = (k-1 07(1—0,)-1-iB
+( _(Z)O)I;WZ j ;(1—6,) ki
= j=0

social effects

=G(0;;¢0)
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Social Contagion

Expected size of spread:

Retrieve cascade condition for spreading from a
single seed in limit ¢, — 0.

Dependsonmap 0,,, = G(0,; ¢).
First: if self-starters are present, some activation is
assured:

Social Contagion

References

kP,

® By > 0.
1 (k)
meaning B, > 0 for at least one value of & > 1.
If = 0 is a fixed point of G (i.e., G(0; ¢,) = 0) then
spreading occurs if

M8

G(0;¢9) =

k

00

G’ (05 ¢o =

—1)eBy; > 1.

v 77 of 109

Expected size of spread:

In words:

If G(0; ¢o) > 0, spreading must occur because
some nodes turn on for free.

If G has an unstable fixed point at @ = 0, then
cascades are also always possible.

Non-vanishing seed case:

Cascade condition is more complicated for ¢, > 0.

If G has a stable fixed pointat = 0, and an
unstable fixed point for some 0 < 6, < 1, then for
0o > 0., spreading takes off.

Tricky point: G depends on ¢, so as we change
@0, We also change G.

A version of a critical mass model again.

General fixed point story:

G0 00!

beis = Gl6; 00)

6

0 & 0 ™

0 1 0 0
o [ O

Given 0y (= ¢q), 0, Will be the nearest stable fixed
point, either above or below.

n.b., adjacent fixed points must have opposite
stability types.

Important: Actual form of G depends on ¢,,.

So choice of ¢, dictates both G and starting
point—can't start anywhere for a given G.

Early adopters—degree distributions

t=0 t=1 t=2 t=3
t=4 t=26 t=28 t=10
t=12 t=14 t =16 t=18

P, , versus k

Unpublished?
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“Influentials, Networks, and Public Opinion

Watts and Dodds,
J. Consum. Res., 34, 441-458, 2007.127]

Exploration of threshold model of social contagion
on various networks.

“Influentials” are limited in power.

Connected groups of weakly
influential-vulnerable” individuals are key.

Average individuals can have more power than
well connected ones.

The multiplier effect:

Top 10% individuals
Cascade size ratio

A B 4 )
Degree|fafio
3
g §
o 2
© Average
] N
5 individuals (1: 3 >
N JRS
% ~--- |
. o )
2 1 2 3 4 5 6 T 2 5 4 5 6 can
O Influence My Influence M4

Fairly uniform levels of individual influence.

Multiplier effect is mostly below 1.

The multiplier effect:

Top 10% individuals Cascade size ratio

1 12
A B '/
08 9 .
Degree ratio
%’0'6 ‘
6
D 04
S
Z 02 3
S ) s I s’
S 0l o \
@ 1 2 3 4\ 5 6 1 2 3 4 5% 6
O Influence Ny Navg
Average Gain
Individuals

Skewed influence distribution example.
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Special subnetworks can act as triggers

A
i

‘ B

References

S

gl ¢ = 1/3 for all nodes
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The power of groups...
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“A few harmless
flakes working

an avalanche of
destruction.”

A Few HARMIESS FLAKES WORKING TOGETHER CAN
UNLEASH AN AVALANCHE OF DESTRUCTION.

despair.com
“a 830f109
PoCS, Vol. 1 H
@pocsvox Extensions

Social Contagion

“Threshold Models of Social Influence” 4
Watts and Dodds,
The Oxford Handbook of Analytical

Sociology, 34, 475-497, 20009. (%]

References

Assumption of sparse interactions is good

Degree distribution is (generally) key to a
network’s function

Still, random networks don't represent all
networks

Major element missing: group structure

¥y (v 840f 109
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Group structure—Ramified random
networks

p = intergroup connection probability
q = intragroup connection probability.

Bipartite networks

[contexts]
[individuals |

unipartite

network

e
Context distance
occupation
education health care

high school
teacher

kindergarten

teacher doctor
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Generalized affiliation model

geography

occupation age

(Blau & Schwartz, Simmel, Breiger)

Generalized affiliation model networks
with triadic closure

Connect nodes with probability oc e~ ¢
where

a = homophily parameter

and

d = distance between nodes (height of lowest
common ancestor)

7, = intergroup probability of friend-of-friend
connection

T4 = intragroup probability of friend-of-friend
connection

Cascade windows for group-based
networks

Random
Group networks

Generalized Affiliation

Model networks

Random set seed

Single seed Coherent group seed

of
005 01 ol 02 025
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Multiplier effect for group-based networks:

Degree ratio

; Cascade
size ratio

Cascade

/ size ratio < 1!

Multiplier almost always below 1.

Assortativity in group-based networks

0.8 -

Average o
06 Cascade size 05 .

| 0
e 0 4 8 12
0.4 Y o °. k
° ®,000%0°)

0.2 Degreeldistribution

o

Local influence K

The most connected nodes aren't always the most

‘influential.’

[ ]
v / for initi]lly infected node

0 5 10

15 20

Degree assortativity is the reason.

Social contagion

Summary

‘Influential vulnerables’ are key to spread.
Early adopters are mostly vulnerables.

Vulnerable nodes important but not necessary.

Groups may greatly facilitate spread.
Seems that cascade condition is a global one.

Most extreme/unexpected cascades occur in
highly connected networks

‘Influentials’ are posterior constructs.
Many potential influentials exist.
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Social contagion

Implications

Focus on the influential vulnerables.
Create entities that can be transmitted

successfully through many individuals rather than

broadcast from one ‘influential.’

Only simple ideas can spread by word-of-mouth.
(Idea of opinion leaders spreads well...)

Want enough individuals who will adopt and

display.
Displaying can be passive = free (yo-yo's, fashion),
or active = harder to achieve (political messages).

Entities can be novel or designed to combine with

others, e.g. block another one.
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