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Scale-free networks

 Networks with power-law degree distributions
have become known as scale-free networks.

 Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

𝑃𝑘 ∼ 𝑘−𝛾 for ‘large’ 𝑘

 One of the seminal works in complex networks:
ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4 ), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6 ). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7 ),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ; k2g. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6 ), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
gpower . 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent gcite 5 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent g between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7 ) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p 5 0, the probability distri-
bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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“Emergence of scaling in random
networks”
Barabási and Albert,
Science, 286, 509–511, 1999. [2]

Times cited: ∼ 23, 532 (as of October 8, 2015)
 Somewhat misleading nomenclature...

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/barabasi1999a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/barabasi1999a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/barabasi1999a.pdf
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=vsj2slIAAAAJ&citation_for_view=vsj2slIAAAAJ:u5HHmVD_uO8C
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Scale-free networks

 Scale-free networks are not fractal in any sense.
 Usually talking about networks whose links are

abstract, relational, informational, …(non-physical)
 Primary example: hyperlink network of the Web
 Much arguing about whether or networks are

‘scale-free’ or not…

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Some real data (we are feeling brave):

From Barabási and Albert’s original paper [2]:

ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4 ), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6 ). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7 ),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ! k"#. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ! k"#actor, where #actor $
2.3 % 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6 ), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with #www $ 2.1 % 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
#power ! 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent #cite $ 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent # between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7 ) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) $
e"&&k/k!, where

& ! N"N " 1

k
#pk'1 " p(N"1"k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p $ 0, the probability distri-
bution of the connectivities is P(k) $ )(k "
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N $ 212,250 vertices and average connectivity *k+ $ 28.78. (B) WWW, N $
325,729, *k+ $ 5.46 (6). (C) Power grid data, N $ 4941, *k+ $ 2.67. The dashed lines have
slopes (A) #actor $ 2.3, (B) #www $ 2.1 and (C) #power $ 4.
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Random networks: largest components

𝛾 = 2.5
⟨𝑘⟩ = 1.8

𝛾 = 2.5
⟨𝑘⟩ = 1.6

𝛾 = 2.5
⟨𝑘⟩ = 2.05333

𝛾 = 2.5
⟨𝑘⟩ = 1.50667

𝛾 = 2.5
⟨𝑘⟩ = 1.66667

𝛾 = 2.5
⟨𝑘⟩ = 1.62667

𝛾 = 2.5
⟨𝑘⟩ = 1.92

𝛾 = 2.5
⟨𝑘⟩ = 1.8

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS, Vol. 1
@pocsvox

Scale-free
networks

Scale-free
networks
Main story

Model details

Analysis

A more plausible
mechanism

Robustness

Krapivsky & Redner’s
model

Generalized model

Analysis

Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

.
.
.
.
.

.
11 of 57

Scale-free networks

The big deal:
 We move beyond describing networks to finding

mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:
 How does the exponent 𝛾 depend on the

mechanism?
 Do the mechanism details matter?

http://www.uvm.edu
http://www.uvm.edu/pdodds
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BA model

 Barabási-Albert model = BA model.
 Key ingredients:

Growth and Preferential Attachment (PA).
 Step 1: start with 𝑚0 disconnected nodes.
 Step 2:

1. Growth—a new node appears at each time step
𝑡 = 0, 1, 2, ….

2. Each new node makes 𝑚 links to nodes already
present.

3. Preferential attachment—Probability of
connecting to 𝑖th node is ∝ 𝑘𝑖.

 In essence, we have a rich-gets-richer scheme.
 Yes, we’ve seen this all before in Simon’s model.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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BA model

 Definition: 𝐴𝑘 is the attachment kernel for a node
with degree 𝑘.

 For the original model:

𝐴𝑘 = 𝑘

 Definition: 𝑃attach(𝑘, 𝑡) is the attachment
probability.

 For the original model:

𝑃attach(node 𝑖, 𝑡) = 𝑘𝑖(𝑡)
∑𝑁(𝑡)

𝑗=1 𝑘𝑗(𝑡)
= 𝑘𝑖(𝑡)

∑𝑘max(𝑡)
𝑘=0 𝑘𝑁𝑘(𝑡)

where 𝑁(𝑡) = 𝑚0 + 𝑡 is # nodes at time 𝑡
and 𝑁𝑘(𝑡) is # degree 𝑘 nodes at time 𝑡.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Approximate analysis
 When (𝑁 + 1)th node is added, the expected

increase in the degree of node 𝑖 is

𝐸(𝑘𝑖,𝑁+1 − 𝑘𝑖,𝑁) ≃ 𝑚 𝑘𝑖,𝑁

∑𝑁(𝑡)
𝑗=1 𝑘𝑗(𝑡)

.

 Assumes probability of being connected to is
small.

 Dispense with Expectation by assuming (hoping)
that over longer time frames, degree growth will
be smooth and stable.

 Approximate 𝑘𝑖,𝑁+1 − 𝑘𝑖,𝑁 with d
d𝑡𝑘𝑖,𝑡:

d
d𝑡𝑘𝑖,𝑡 = 𝑚 𝑘𝑖(𝑡)

∑𝑁(𝑡)
𝑗=1 𝑘𝑗(𝑡)

where 𝑡 = 𝑁(𝑡) − 𝑚0.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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 Deal with denominator: each added node brings 𝑚
new edges.

∴
𝑁(𝑡)
∑
𝑗=1

𝑘𝑗(𝑡) = 2𝑡𝑚

 The node degree equation now simplifies:

d
d𝑡𝑘𝑖,𝑡 = 𝑚 𝑘𝑖(𝑡)

∑𝑁(𝑡)
𝑗=1 𝑘𝑗(𝑡)

= 𝑚𝑘𝑖(𝑡)
2𝑚𝑡 = 1

2𝑡𝑘𝑖(𝑡)

 Rearrange and solve:

d𝑘𝑖(𝑡)
𝑘𝑖(𝑡) = d𝑡

2𝑡 ⇒ 𝑘𝑖(𝑡) = 𝑐𝑖 𝑡1/2.

 Next find 𝑐𝑖 …

http://www.uvm.edu
http://www.uvm.edu/pdodds
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 Know 𝑖th node appears at time

𝑡𝑖,start = { 𝑖 − 𝑚0 for 𝑖 > 𝑚0
0 for 𝑖 ≤ 𝑚0

 So for 𝑖 > 𝑚0 (exclude initial nodes), we must have

𝑘𝑖(𝑡) = 𝑚 ( 𝑡
𝑡𝑖,start

)
1/2

for 𝑡 ≥ 𝑡𝑖,start.

 All node degrees grow as 𝑡1/2 but later nodes have
larger 𝑡𝑖,start which flattens out growth curve.

 First-mover advantage: Early nodes do best.
 Clearly, a Ponzi scheme.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Ponzi_scheme
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We are already at the Zipf distribution:
 Degree of node 𝑖 is the size of the 𝑖th ranked node:

𝑘𝑖(𝑡) = 𝑚 ( 𝑡
𝑡𝑖,start

)
1/2

for 𝑡 ≥ 𝑡𝑖,start.

 From before:

𝑡𝑖,start = { 𝑖 − 𝑚0 for 𝑖 > 𝑚0
0 for 𝑖 ≤ 𝑚0

so 𝑡𝑖,start ∼ 𝑖 which is the rank.
 We then have:

𝑘𝑖 ∝ 𝑖−1/2 = 𝑖−𝛼.

 Our connection 𝛼 = 1/(𝛾 − 1) or 𝛾 = 1 + 1/𝛼 then
gives

𝛾 = 1 + 1/(1/2) = 3.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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(t)  𝑚 = 3

 𝑡𝑖,start =
1, 2, 5, and 10.
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Degree distribution

 So what’s the degree distribution at time 𝑡?
 Use fact that birth time for added nodes is

distributed uniformly between time 0 and t:

Pr(𝑡𝑖,start)d𝑡𝑖,start ≃ d𝑡𝑖,start
𝑡

 Also use

𝑘𝑖(𝑡) = 𝑚 ( 𝑡
𝑡𝑖,start

)
1/2

⇒𝑡𝑖,start = 𝑚2𝑡
𝑘𝑖(𝑡)2 .

Transform variables—Jacobian:

d𝑡𝑖,start
d𝑘𝑖

= −2 𝑚2𝑡
𝑘𝑖(𝑡)3 .

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS, Vol. 1
@pocsvox

Scale-free
networks

Scale-free
networks
Main story

Model details

Analysis

A more plausible
mechanism

Robustness

Krapivsky & Redner’s
model

Generalized model

Analysis

Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

.
.
.
.
.

.
22 of 57

Degree distribution


Pr(𝑘𝑖)d𝑘𝑖 = Pr(𝑡𝑖,start)d𝑡𝑖,start



= Pr(𝑡𝑖,start)d𝑘𝑖 ∣d𝑡𝑖,start
d𝑘𝑖

∣



= 1
𝑡d𝑘𝑖 2 𝑚2𝑡

𝑘𝑖(𝑡)3



= 2 𝑚2

𝑘𝑖(𝑡)3d𝑘𝑖


∝ 𝑘−3

𝑖 d𝑘𝑖 .

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS, Vol. 1
@pocsvox

Scale-free
networks

Scale-free
networks
Main story

Model details

Analysis

A more plausible
mechanism

Robustness

Krapivsky & Redner’s
model

Generalized model

Analysis

Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

.
.
.
.
.

.
23 of 57

Degree distribution

 We thus have a very specific prediction of
Pr(𝑘) ∼ 𝑘−𝛾 with 𝛾 = 3.

 Typical for real networks: 2 < 𝛾 < 3.
 Range true more generally for events with size

distributions that have power-law tails.
 2 < 𝛾 < 3: finite mean and ‘infinite’ variance (wild)
 In practice, 𝛾 < 3 means variance is governed by

upper cutoff.
 𝛾 > 3: finite mean and variance (mild)

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Back to that real data:

From Barabási and Albert’s original paper [2]:

ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4 ), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6 ). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7 ),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ! k"#. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ! k"#actor, where #actor $
2.3 % 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6 ), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with #www $ 2.1 % 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
#power ! 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent #cite $ 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent # between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7 ) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) $
e"&&k/k!, where

& ! N"N " 1

k
#pk'1 " p(N"1"k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p $ 0, the probability distri-
bution of the connectivities is P(k) $ )(k "
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N $ 212,250 vertices and average connectivity *k+ $ 28.78. (B) WWW, N $
325,729, *k+ $ 5.46 (6). (C) Power grid data, N $ 4941, *k+ $ 2.67. The dashed lines have
slopes (A) #actor $ 2.3, (B) #www $ 2.1 and (C) #power $ 4.

R E P O R T S

15 OCTOBER 1999 VOL 286 SCIENCE www.sciencemag.org510
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Examples

Web 𝛾 ≃ 2.1 for in-degree
Web 𝛾 ≃ 2.45 for out-degree

Movie actors 𝛾 ≃ 2.3
Words (synonyms) 𝛾 ≃ 2.8

The Internets is a different business...

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Things to do and questions

 Vary attachment kernel.
 Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

 Deal with directed versus undirected networks.
 Important Q.: Are there distinct universality

classes for these networks?
 Q.: How does changing the model affect 𝛾?
 Q.: Do we need preferential attachment and

growth?
 Q.: Do model details matter? Maybe …

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Preferential attachment

 Let’s look at preferential attachment (PA) a little
more closely.

 PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

 For example: If 𝑃attach(𝑘) ∝ 𝑘, we need to
determine the constant of proportionality.

 We need to know what everyone’s degree is...
 PA is ∴ an outrageous assumption of node

capability.
 But a very simple mechanism saves the day…

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Preferential attachment through
randomness

 Instead of attaching preferentially, allow new
nodes to attach randomly.

 Now add an extra step: new nodes then connect
to some of their friends’ friends.

 Can also do this at random.
 Assuming the existing network is random, we

know probability of a random friend having
degree 𝑘 is

𝑄𝑘 ∝ 𝑘𝑃𝑘

 So rich-gets-richer scheme can now be seen to
work in a natural way.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Robustness
 Albert et al., Nature, 2000:

“Error and attack tolerance of complex
networks” [1]

 Standard random networks (Erdős-Rényi)
versus Scale-free networks:

from Albert et al., 2000

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Robustness

letters to nature

NATURE | VOL 406 | 27 JULY 2000 | www.nature.com 379

called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd

from Albert et al., 2000

 Plots of network
diameter as a function
of fraction of nodes
removed

 Erdős-Rényi versus
scale-free networks

 blue symbols =
random removal

 red symbols =
targeted removal
(most connected first)
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Robustness

 Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

 All very reasonable: Hubs are a big deal.
 But: next issue is whether hubs are vulnerable or

not.
 Representing all webpages as the same size node

is obviously a stretch (e.g., google vs. a random
person’s webpage)

 Most connected nodes are either:
1. Physically larger nodes that may be harder to

‘target’
2. or subnetworks of smaller, normal-sized nodes.

 Need to explore cost of various targeting schemes.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Robustness

Not a robust paper:

the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) � �(i, j)�E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax � max{s(g): g �
G(D)}, we define the measure 0 � S(g) � 1 of the graph g as
S(g) � s(g)�smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) � 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) � 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) � 0.33 and S(gd) � 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet
An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the
Abilene network are available from www.internet2.edu�abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-
fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent
the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having
the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree
nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified
version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di � 1 is shown.

14498 � www.pnas.org�cgi�doi�10.1073�pnas.0501426102 Doyle et al.

“The “Robust yet Fragile” nature of the
Internet”
Doyle et al.,
Proc. Natl. Acad. Sci., 2005, 14497–14502,
2005. [3]

 HOT networks versus scale-free networks
 Same degree distributions, different

arrangements.
 Doyle et al. take a look at the actual Internet.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/doyle2005a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/doyle2005a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/doyle2005a.pdf
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Generalized model

Fooling with the mechanism:
 2001: Krapivsky & Redner (KR) [4] explored the

general attachment kernel:

Pr(attach to node 𝑖) ∝ 𝐴𝑘 = 𝑘𝜈
𝑖

where 𝐴𝑘 is the attachment kernel and 𝜈 > 0.
 KR also looked at changing the details of the

attachment kernel.
 KR model will be fully studied in CoNKS.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Generalized model

 We’ll follow KR’s approach using rate equations.
 Here’s the set up:

d𝑁𝑘
d𝑡 = 1

𝐴 [𝐴𝑘−1𝑁𝑘−1 − 𝐴𝑘𝑁𝑘] + 𝛿𝑘1

where 𝑁𝑘 is the number of nodes of degree 𝑘.
1. One node with one link is added per unit time.
2. The first term corresponds to degree 𝑘 − 1 nodes

becoming degree 𝑘 nodes.
3. The second term corresponds to degree 𝑘 nodes

becoming degree 𝑘 − 1 nodes.
4. 𝐴 is the correct normalization (coming up).
5. Seed with some initial network

(e.g., a connected pair)
6. Detail: 𝐴0 = 0

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Rate_equation
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Generalized model

 In general, probability of attaching to a specific
node of degree 𝑘 at time 𝑡 is

Pr(attach to node 𝑖) = 𝐴𝑘
𝐴(𝑡)

where 𝐴(𝑡) = ∑∞
𝑘=1 𝐴𝑘𝑁𝑘(𝑡).

 E.g., for BA model, 𝐴𝑘 = 𝑘 and 𝐴 = ∑∞
𝑘=1 𝑘𝑁𝑘(𝑡).

 For 𝐴𝑘 = 𝑘, we have

𝐴(𝑡) =
∞
∑

𝑘′=1
𝑘′𝑁𝑘′(𝑡) = 2𝑡

since one edge is being added per unit time.
 Detail: we are ignoring initial seed network’s

edges.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Generalized model
 So now

d𝑁𝑘
d𝑡 = 1

𝐴 [𝐴𝑘−1𝑁𝑘−1 − 𝐴𝑘𝑁𝑘] + 𝛿𝑘1

becomes

d𝑁𝑘
d𝑡 = 1

2𝑡 [(𝑘 − 1)𝑁𝑘−1 − 𝑘𝑁𝑘] + 𝛿𝑘1

 As for BA method, look for steady-state growing
solution: 𝑁𝑘 = 𝑛𝑘𝑡.

 We replace d𝑁𝑘/d𝑡 with d𝑛𝑘𝑡/d𝑡 = 𝑛𝑘.
 We arrive at a difference equation:

𝑛𝑘 = 1
2�𝑡

[(𝑘 − 1)𝑛𝑘−1 �𝑡 − 𝑘𝑛𝑘 �𝑡] + 𝛿𝑘1

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Universality?

 As expected, we have the same result as for the
BA model:

𝑁𝑘(𝑡) = 𝑛𝑘(𝑡)𝑡 ∝ 𝑘−3𝑡 for large 𝑘.

 Now: what happens if we start playing around
with the attachment kernel 𝐴𝑘?

 Again, we’re asking if the result 𝛾 = 3 universal?
 KR’s natural modification: 𝐴𝑘 = 𝑘𝜈 with 𝜈 ≠ 1.
 But we’ll first explore a more subtle modification

of 𝐴𝑘 made by Krapivsky/Redner [4]

 Keep 𝐴𝑘 linear in 𝑘 but tweak details.
 Idea: Relax from 𝐴𝑘 = 𝑘 to 𝐴𝑘 ∼ 𝑘 as 𝑘 → ∞.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/w/index.php?title=Universality_%28dynamical_systems%29&oldid=204738455
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Universality?

 Recall we used the normalization:

𝐴(𝑡) =
∞
∑

𝑘′=1
𝑘′𝑁𝑘′(𝑡) ≃ 2𝑡 for large 𝑡.

 We now have

𝐴(𝑡) =
∞
∑

𝑘′=1
𝐴𝑘′𝑁𝑘′(𝑡)

where we only know the asymptotic behavior of
𝐴𝑘.

 We assume that 𝐴 = 𝜇𝑡
 We’ll find 𝜇 later and make sure that our

assumption is consistent.
 As before, also assume 𝑁𝑘(𝑡) = 𝑛𝑘𝑡.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Universality?
 For 𝐴𝑘 = 𝑘 we had

𝑛𝑘 = 1
2 [(𝑘 − 1)𝑛𝑘−1 − 𝑘𝑛𝑘] + 𝛿𝑘1

 This now becomes

𝑛𝑘 = 1
𝜇 [𝐴𝑘−1𝑛𝑘−1 − 𝐴𝑘𝑛𝑘] + 𝛿𝑘1

⇒ (𝐴𝑘 + 𝜇)𝑛𝑘 = 𝐴𝑘−1𝑛𝑘−1 + 𝜇𝛿𝑘1

 Again two cases:

𝑘 = 1 ∶𝑛1 = 𝜇
𝜇 + 𝐴1

; 𝑘 > 1 ∶𝑛𝑘 = 𝑛𝑘−1
𝐴𝑘−1

𝜇 + 𝐴𝑘
.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Universality?

 Time for pure excitement: Find asymptotic
behavior of 𝑛𝑘 given 𝐴𝑘 → 𝑘 as 𝑘 → ∞.

 For large 𝑘, we find:

𝑛𝑘 = 𝜇
𝐴𝑘

𝑘
∏
𝑗=1

1
1 + 𝜇

𝐴𝑗

∝ 𝑘−𝜇−1

 Since 𝜇 depends on 𝐴𝑘, details matter...

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS, Vol. 1
@pocsvox

Scale-free
networks

Scale-free
networks
Main story

Model details

Analysis

A more plausible
mechanism

Robustness

Krapivsky & Redner’s
model

Generalized model

Analysis

Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

.
.
.
.
.

.
47 of 57

Universality?

 Now we need to find 𝜇.
 Our assumption again: 𝐴 = 𝜇𝑡 = ∑∞

𝑘=1 𝑁𝑘(𝑡)𝐴𝑘
 Since 𝑁𝑘 = 𝑛𝑘𝑡, we have the simplification

𝜇 = ∑∞
𝑘=1 𝑛𝑘𝐴𝑘

 Now subsitute in our expression for 𝑛𝑘:

1�𝜇 =
∞
∑
𝑘=1

�𝜇
��𝐴𝑘

𝑘
∏
𝑗=1

1
1 + 𝜇

𝐴𝑗
��𝐴𝑘

 Closed form expression for 𝜇.
 We can solve for 𝜇 in some cases.
 Our assumption that 𝐴 = 𝜇𝑡 looks to be not too

horrible.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Universality?

 Consider tunable 𝐴1 = 𝛼 and 𝐴𝑘 = 𝑘 for 𝑘 ≥ 2.
 Again, we can find 𝛾 = 𝜇 + 1 by finding 𝜇.
 Closed form expression for 𝜇:

𝜇
𝛼 =

∞
∑
𝑘=2

Γ(𝑘 + 1)Γ(2 + 𝜇)
Γ(𝑘 + 𝜇 + 1)

#mathisfun


𝜇(𝜇 − 1) = 2𝛼 ⇒ 𝜇 = 1 + √1 + 8𝛼
2 .

 Since 𝛾 = 𝜇 + 1, we have

0 ≤ 𝛼 < ∞ ⇒ 2 ≤ 𝛾 < ∞

 Craziness...

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Sublinear attachment kernels

 Rich-get-somewhat-richer:

𝐴𝑘 ∼ 𝑘𝜈 with 0 < 𝜈 < 1.

 General finding by Krapivsky and Redner: [4]

𝑛𝑘 ∼ 𝑘−𝜈𝑒−𝑐1𝑘1−𝜈+correction terms.

 Stretched exponentials (truncated power laws).
 aka Weibull distributions.
 Universality: now details of kernel do not matter.
 Distribution of degree is universal providing 𝜈 < 1.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Sublinear attachment kernels

Details:
 For 1/2 < 𝜈 < 1:

𝑛𝑘 ∼ 𝑘−𝜈𝑒−𝜇( 𝑘1−𝜈−21−𝜈
1−𝜈 )

 For 1/3 < 𝜈 < 1/2:

𝑛𝑘 ∼ 𝑘−𝜈𝑒−𝜇 𝑘1−𝜈
1−𝜈 + 𝜇2

2
𝑘1−2𝜈
1−2𝜈

 And for 1/(𝑟 + 1) < 𝜈 < 1/𝑟, we have 𝑟 pieces in
exponential.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Superlinear attachment kernels

 Rich-get-much-richer:

𝐴𝑘 ∼ 𝑘𝜈 with 𝜈 > 1.

 Now a winner-take-all mechanism.
 One single node ends up being connected to

almost all other nodes.
 For 𝜈 > 2, all but a finite # of nodes connect to one

node.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Nutshell:

Overview Key Points for Models of Networks:
 Obvious connections with the vast extant field of

graph theory.
 But focus on dynamics is more of a

physics/stat-mech/comp-sci flavor.
 Two main areas of focus:

1. Description: Characterizing very large networks
2. Explanation: Micro story ⇒ Macro features

 Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...

 Still much work to be done, especially with respect
to dynamics... #excitement

http://www.uvm.edu
http://www.uvm.edu/pdodds
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