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Many complex systems are prone to cascading
catastrophic failure:
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Many complex systems are prone to cascading
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Many complex systems are prone to cascading
catastrophic failure: exciting!!!

Blackouts
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Many complex systems are prone to cascading
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Myths: Achilles.
But complex systems also show persistent
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Robustness

Many complex systems are prone to cascading
catastrophic failure: exciting!!!

Blackouts

Disease outbreaks

Wildfires

Earthquakes

Organisms, individuals and societies

Ecosystems

Cities

Myths: Achilles.
But complex systems also show persistent
robustness (not as exciting but important...)

Robustness and Failure may be a power-law
story...
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Our emblem of Robust-Yet-Fragile:
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“Trouble ..."
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1. Evolutionary processes
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< System robustness may result from

1. Evolutionary processes
2. Engineering/Design
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System robustness may result from
1. Evolutionary processes
2. Engineering/Design
Idea: Explore systems optimized to perform under
uncertain conditions.
The handle:
‘Highly Optimized Tolerance’ (HOT)* > & 101
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Robustness

System robustness may result from
1. Evolutionary processes
2. Engineering/Design
Idea: Explore systems optimized to perform under
uncertain conditions.
The handle:
‘Highly Optimized Tolerance’ (HOT)* > & 101

The catchphrase: Robust yet Fragile
The people: Jean Carlson and John Doyle (£

Great abstracts of the world #73: “There aren't
any.”l’]
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Features of HOT systems:

<% High performance and robustness
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environmental variability
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High performance and robustness

Designed/evolved to handle known stochastic
environmental variability

Fragile in the face of unpredicted environmental
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Highly specialized, low entropy configurations
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High performance and robustness e

Designed/evolved to handle known stochastic
environmental variability

Fragile in the face of unpredicted environmental
signals

Highly specialized, low entropy configurations
Power-law distributions appear (of course...)
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HOT combines things we've seen:
<% Variable transformation

PoCS, Vol. 1
System
Robustness
12 of 44

Robustness
i

Narrative causality
Random forests
Self-Organized Criticality
COLD theory

Network robustness

References




Robustness

HOT combines things we've seen:
<% Variable transformation
<= Constrained optimization
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Robustness

Variable transformation
Constrained optimization

Need power law transformation between
variables: (V = X )
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Constrained optimization
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Robustness

Variable transformation
Constrained optimization

Need power law transformation between
variables: (V = X )

Recall PLIPLO is bad...
MIWO is good: Mild In, Wild Out
X has a characteristic size but Y does not
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<= Sites contain a tree with probability p = density
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Square N x N grid
Sites contain a tree with probability p = density
Sites are empty with probability 1 — p
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Sites contain a tree with probability p = density
Sites are empty with probability 1 — p

Fires start at location (7, j) according to some
distribution P,
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Sites contain a tree with probability p = density
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distribution P,
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only)

Connected clusters of trees burn completely
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Fires start at location (7, j) according to some
distribution P,

Fires spread from tree to tree (nearest neighbor
only)

Connected clusters of trees burn completely
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Square N x N grid

Sites contain a tree with probability p = density kbl
Sites are empty with probability 1 — p gt g
Fires start at location (7, j) according to some
distribution P,

Fires spread from tree to tree (nearest neighbor
only)

Connected clusters of trees burn completely
Empty sites block fire

Best case scenario:
Build firebreaks to maximize average # trees left
intact given one spark
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<% Build a forest by adding one tree at a time
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<> Test D ways of adding one tree
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Build a forest by adding one tree at a time
Test D ways of adding one tree

D = design parameter

Average over P, ; = spark probability
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Test D ways of adding one tree

D = design parameter

Average over P, ; = spark probability

D = 1: random addition
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Test D ways of adding one tree
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Average over P, ; = spark probability

D = 1: random addition

D = NZ2: test all possibilities

f(c) = distribution of fire sizes ¢ (= cost)
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f(c) = distribution of fire sizes ¢ (= cost)
Yield=Y = p— (c)




Robustness

Fi; :Pi;az,bmpj;ay,by

where
Pi'a b X 6_[<i+a)/b]2

In the original work, by >:by

Distribution has more width in y direction.
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N =64
(@Db=1
Brt—2
(c)D=N
(dyD'= N2
P;; has a

Gaussian decay

Optimized forests do well on average (robustness)

But rare extreme events occur (fragility)
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HOT Forests
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FIG. 2. Yield vs density Y(p): (a) for design parameters D =
1 (dotted curve), 2 (dot-dashed), N (long dashed), and N2 (solid)
with N = 64, and (b) for D = 2 and N = 2,2%,...,27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (a) illustrates corresponding

loss functions L = log[{f)/(1 — {f))], on a scale which more
clearly differentiates between the curves.
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FIG. 3. Cumulative distributions of events F(c): (a) at peak
yield for D = 1, 2, N, and N? with N = 64, and (b) for D =
N2, and N = 64 at equal density increments of 0.1, ranging at
p = 0.1 (bottom curve) to p = 0.9 (top curve).
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Random Forests

D = 1: Random forests = Percolation
<= Randomly add trees.
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Random Forests

D = 1: Random forests = Percolation
<= Randomly add trees.

<= Below critical density p., no fires take off.
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Random Forests

Randomly add trees.
Below critical density p., no fires take off.

Above critical density p., percolating cluster of
trees burns.
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Random Forests

Randomly add trees.

Below critical density p., no fires take off.
Above critical density p., percolating cluster of
trees burns.

Only at p_, the critical density, is there a power-law
distribution of tree cluster sizes.
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Rand0m|y add trees, References
Below critical density p., no fires take off.

Above critical density p., percolating cluster of
trees burns.

Only at p_, the critical density, is there a power-law
distribution of tree cluster sizes.

Forest is random and featureless.
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HOT forests nutshell:

Highly structured

Power law distribution of tree cluster sizes for a
broad range of p, including below p..
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failure becomes highly likely
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No specialness of p,
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Uncertainty is okay if well characterized

If P,; is characterized poorly or changes too fast,
failure becomes highly likely

Growth is key to toy model which is both
algorithmic and physical.
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HOT forests nutshell:

Highly structured

Power law distribution of tree cluster sizes for a
broad range of p, including below p..

No specialness of p,
Forest states are tolerant
Uncertainty is okay if well characterized

If P,; is characterized poorly or changes too fast,
failure becomes highly likely

Growth is key to toy model which is both
algorithmic and physical.

HOT theory is more general than just this toy
model.
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HOT forests—Real data: A
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6 Y
PLR = probability-loss-
4 resource. References
log (P) Minimize cost subject to
2

resource (barrier)
constraints:

D-4 - 2 0 2 C = ZZ p’Lll

log (1)

AR5 10815 L RN R A given
with PLR models (solid lines) (for 8 = 0,0.9,0.9, 1.85, or a = 1/ ==, 1.1,1.1,0.054,

respectively) and the SOC FF model « = 0.15, dashed). Reference lines of a = 0.5,
1 (dashed) are included. The cumulative distributions of frequencies (/=) vs. l = f r.)an 7 <t R_
describe the inthe largest 4, 19860 1995 on all of the 2 (2 1 —
US. Fish and Wildiife Service Lands (FF) (17), the 10,000 largest California

brushfires from 1878 to 1999 (CF) (18), 130,000 web file transfers at Boston e L9 =
A e o e B LI DC = Data Com pression.
units [1,000 km? (FF and CF), megabytes (WWW), and bytes (DC)] and the loga-

rithmic decimation of the data are chosen for visualization.

These are CCDFs
(Eek: PPl 1.))
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PLR = probability-loss-
resource.

Minimize cost subject to
resource (barrier)
constraints:
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log (1)

AR5 10815 L RN R A glven
with PLR models (solid lines) (for 8 = 0,0.9,0.9, 1.85, or a = 1/ ==, 1.1,1.1,0.054,

respectively) and the SOC FF model (a = 0.15, dashed). Reference ines of = 0.5,
1 (dashed)are included. The cumulative disributions of requencies #( = ) vs. | an 7" < I i

inthe largest 4, 1986t0 1995 on all of the
USs. Fish and Wildife Service Lands (FF) (17), the >10,000 largest California

brushfires from 1878 to 1999 (CF) (18), 130,000 web file transfers at Boston e L9
A e o e B LI D (@ D) ata Com p ression.

units [1,000 km? (FF and CF), megabytes (WWW), and bytes (DC)] and the loga-
Horror: log. Screaming:
These are CCDFs “The base! What is the

(Eek: P, P(1 > 1;)) base!? You monsters!”
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HOT theory:

Given some measure of failure size y, and
correlated resource size z,; with relationship
Y =B = N e

Design system to minimize (y)

subject to a constraint on the z;.

Minimize cost:

Nsites

C= Z Pr(y,)y;

i=1

Subject to Zj\f‘fs x; = constant.
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http://www.uvm.edu/pdodds/teaching/courses/2020-08UVM-300/docs/{2020-08UVM-300}assignment7.pdf

1. Cost: Expected size of fire:
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a,; = area of ith site’s region, and p, = avg. prob. of fire
at sth site over some time frame.

2. Constraint: building and maintaining firewalls.
Per unit area, and over same time frame:

Niites /
T2 ==
C'firewalls & E :ai a; .
i=1

We are assuming isometry.
In d dimensions, 1/2 is replaced by (d — 1)/d
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a,; = area of ith site’s region, and p, = avg. prob. of fire i
at ith site over some time frame. References

2. Constraint: building and maintaining firewalls.
Per unit area, and over same time frame:

Niites /
T2 ==
C'ﬁrewalls & E :ai a; .
i=1

We are assuming isometry.
In d dimensions, 1/2 is replaced by (d — 1)/d

3. Insert question from assignment 7 4" to find:
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Random forests

where C is some cost to be evaluated at each R R
point in space 7 (e.g., V(#)®), and p(2) is the e
probability an Ewok jabs position z with a

sharpened stick (or equivalent).

2. Constraint:

where c is a constant.




1. Cost function:

where C is some cost to be evaluated at each
point in space ¥ (e.g., V(#)%), and p(¥) is the
probability an Ewok jabs position z with a
sharpened stick (or equivalent).

2. Constraint:

where ¢ is a constant.
Claim/observation is that typically

V(Z) ~ R78(3)
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1. Cost function:

where C is some cost to be evaluated at each
point in space ¥ (e.g., V(#)%), and p(¥) is the
probability an Ewok jabs position z with a
sharpened stick (or equivalent).

. Constraint:

where ¢ is a constant.
Claim/observation is that typically
V(Z) ~ R78(3)

For spatial systems with barriers: g = d.
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Idea: natural dissipative systems exist at ‘critical

states’; =
Analogy: Ising model with temperature somehow e
self-tuning;

Power-law distributions of sizes and frequencies
arise ‘for free’;

Introduced in 1987 by Bak, Tang, and
Weisenfeld 2 &!:

“Self-organized criticality - an explanation of 1/f
noise” (PRL, 1987);

Problem: Critical state is a very specific point;
Self-tuning not always possible;
Much criticism and arguing...
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HOT theory—Summary of designed
tolerance ™

Table 1. Characteristics of SOC, HOT, and data

Property SOC HOT and Data
1 Internal Generic, Structured,
configuration homogeneous, heterogeneous,
self-similar self-dissimilar
2 Robustness Generic Robust, yet
fragile
3 Density and yield Low High
4 Max event size Infinitesimal Large
5 Large event shape Fractal Compact
6 Mechanism for Critical internal Robust
power laws fluctuations performance
7 Exponent « Small Large
8 a vs. dimension d a~(d-1)/10 a~1/d
9 DDOFs Small (1) Large ()
10 Increase model No change New structures,
resolution new sensitivities
1 Response to Homogeneous Variable

forcing
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Constrained Optimization with Limited
Deviations ¥/

Weight cost of larges losses more strongly
Increases average cluster size of burned trees...
... but reduces chances of catastrophe

PoCS, Vol. 1
System
Robustness
36 of 44

Robustness

HOT theor

Narra causality
Random fore:

elf-Org; ed Critical
COLD theory

References




COLD forests

Constrained Optimization with Limited
Deviations ¥/

Weight cost of larges losses more strongly

Increases average cluster size of burned trees...

... but reduces chances of catastrophe
Power law distribution of fire sizes is truncated
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where z . is the approximate cutoff scale.
May be Weibull distributions:
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Robustness

Network robustness.

Albert et al., Nature, 2000:
“Error and attack tolerance of complex
networks” ']

General contagion processes acting on complex
networks. [13 121

Similar robust-yet-fragile stories ...
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