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net•work |ˈnetˌwərk|
noun

1 an arrangement of intersecting horizontal and vertical lines.

• a complex system of roads, railroads, or other transportation routes :

a network of railroads.

2 a group or system of interconnected people or things : a trade network.

• a group of people who exchange information, contacts, and

experience for professional or social purposes : a support network.

• a group of broadcasting stations that connect for the simultaneous

broadcast of a program : the introduction of a second TV network | [as adj. ]

network television.

• a number of interconnected computers, machines, or operations :

specialized computers that manage multiple outside connections to a network | a

local cellular phone network.

• a system of connected electrical conductors.

verb [ trans. ]

connect as or operate with a network : the stock exchanges have proven to be

resourceful in networking these deals.

• link (machines, esp. computers) to operate interactively : [as adj. ] (

networked) networked workstations.

• [ intrans. ] [often as n. ] ( networking) interact with other people to

exchange information and develop contacts, esp. to further one's

career : the skills of networking, bargaining, and negotiation.

DERIVATIVES

net•work•a•ble adjective



PoCS, Vol. 1
Overview of
Complex
Networks
8 of 43

Complex
Networks Basics
Etymology

Popularity

Graph theory?

Basic definitions

Examples of
Complex
Networks
Physical networks

Interaction networks

Relational networks

References

Thesaurus deliciousness:

network
noun

1 a network of arteries WEB, lattice, net, matrix, mesh,

crisscross, grid, reticulum, reticulation; Anatomy plexus.

2 a network of lanes MAZE, labyrinth, warren, tangle.

3 a network of friends SYSTEM, complex, nexus, web,

webwork.
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Ancestry:

From Keith Briggs’s excellent etymological
investigation:

 Opus
reticulatum:

 A Latin origin?

[http://serialconsign.com/2007/11/we-put-net-

network]

http://keithbriggs.info/network.html
http://keithbriggs.info/network.html
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Ancestry:

First known use: Geneva Bible, 1560
‘And thou shalt make unto it a grate like networke of
brass (Exodus xxvii 4).’

From the OED via Briggs:

 1658–: reticulate structures in animals
 1839–: rivers and canals
 1869–: railways
 1883–: distribution network of electrical cables
 1914–: wireless broadcasting networks
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Ancestry:
Net and Work are venerable old words:
 ‘Net’ first used to mean spider web (King Ælfréd,

888).
 ‘Work’ appear to have long meant purposeful

action.

6/6/09 9:45 PMKeith Briggs: : Etymology of `network'

Page 2 of 4http://keithbriggs.info/network.html

gescylde hálgan nette (with a net-work of clouds), Cd. Th. 182, Ii; Exod. 74. [Goth, nati: O. Sax. netti,
(fisk-)net: O. Frs. nette: Icel. net; gen. pl. netja : O. H. Ger. nezzi rete.] v. æl-, boge-, breóst-, deór-,
drag-, feng-, fisc-, fleóh-, here-, bring-, inwit-, mycg-, searo-, wæl-nett, and next word.

nette, an; 
f. The net-like caul :-- Nette (under the heading de membris hominum) disceptum i. reticulum (cf. hoc
reticulum, pinguedo circa jecur [fat around liver], 704, 7), Wülck. Gl. 293,6. Nettae oligia, 35, 34. Nytte
obligia [binding, bandage], Wrt. Voc. i. 45, 18. Nette, ii. 63, 39 : disceptum, 26,19. [Icel. netja the
caul: cf. O. H. Ger. nezzi adeps [fat] intestini; pl. intestina.] v. neta.

Net has many cognates in Germanic languages and a probable one in Latin. The Germanic words are
of neuter gender (except for nót which is feminine); the Latin word is feminine. Note that the normal
Latin word for a net is rete, although there may have also been a Vulgar Latin word *tragina for a
dragnet.

language word

Gothic nati

Old
English

net(t),
netti

Middle
English

net

Modern
English

net

Modern
Dutch

net

Old High
German

nezzi

Middle
High
German

netze

Modern
High
German

Netz

Old
Frisian

nette

Old
Saxon

netti

Old
Norse

net
(netja
v.),
nót

Modern
Icelandic

net

Modern
Swedish

nät

Latin nassa

The Gothic word occurs exactly seven times in the bible. It takes the form natja in the dative. Because
Gothic is the earliest record of Germanic (from about 350), it is worth looking at all these occurrences:

6/6/09 9:45 PMKeith Briggs: : Etymology of `network'

Page 4 of 4http://keithbriggs.info/network.html

sources

Bosworth, Joseph: (Northcote Toller, T. ed.) An Anglo-Saxon Dictionary. Dictionary, Supplement and
Addenda Oxford University Press, 1st ed. n.d., reprinted 1983, 1966, 1972. [Abbreviations: Wrt. Voc. i:
T. Wright, A volume of vocabularies, 1857. Quoted by page and number of gloss. Wrt. Voc. ii: T. Wright,
A second volume of vocabularies, 1873. Quoted by page and line. Ælfc. Gr: Ælfric's Grammar. Ps. Spl.:
Psalterium Davidis Latino-Saxonicum vetus. Lk. Skt.: The gospel according to St. Luke. Mt. Kmbl.: The
gospel according to St. Matthew in Anglo-Saxon and Northumbrian versions. ed. J. M. Kemble. Jn. Skt.:
The gospel according to St. John. Som.: Dictionarium Saxonico-Latino-Anglicum, by E. Somner, Oxford
1659. Coll. Monast. Th.: Colloquium ad pueros linguae Latinae locutione exercendos ad Ælfrico
compilatum. Homl. Th.: The homilies of Ælfric. Wülck. Gl.: Anglo-Saxon and Old English vocabularies,
by Thomas Wright, edited by R. P. Wülcker, London 1884. Cd. Th.: Cædmon's metrical paraphrase, by
B. Thorpe, London 1832.]

Stamm, Friedrich Ludwig: Friedrich Ludwig Stamm's Ulfilas oder die uns erhaltenen Denkmäler der
gotischen Sprache: Text, Wörterbuch und Grammatik Ungekürzte Neuauflage, Nachdruck der Ausgabe
aus dem Jahre 1872 [Essen]: Magnus-Verlag, [1984]. ISBN: 3884001655

This page was last modified 2005 Sep 26 (Tuesday) 09:52 by 

 ‘Network’ = something built based on the idea of
natural, flexible lattice or web.

 c.f., ironwork, stonework, fretwork.
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Key Observation:
 Many complex systems

can be viewed as complex networks
of physical or abstract interactions.

 Opens door to mathematical and numerical
analysis.

 Dominant approach of last decade of a
theoretical-physics/stat-mechish flavor.

 Mindboggling amount of work published on
complex networks since 1998 …

 …largely due to your typical theoretical physicist:
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analysis.

 Dominant approach of last decade of a
theoretical-physics/stat-mechish flavor.

 Mindboggling amount of work published on
complex networks since 1998 …

 …largely due to your typical theoretical physicist:

 Piranha physicus

 Hunt in packs.

 Feast on new and interesting ideas
(see chaos, cellular automata, …)

 See also: https://xkcd.com/793/

https://xkcd.com/793/
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 …largely due to your typical theoretical physicist:

 Piranha physicus

 Hunt in packs.

 Feast on new and interesting ideas
(see chaos, cellular automata, …)

 See also: https://xkcd.com/793/
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L " Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv # 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

“Collective dynamics of ‘small-world’
networks”
Watts and Strogatz,
Nature, 393, 440–442, 1998. [16]

Times cited:

∼ 37, 460

(as of October 24, 2018)

ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4 ), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6 ). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7 ),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ; k2g. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6 ), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
gpower . 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent gcite 5 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent g between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7 ) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p 5 0, the probability distri-
bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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Science, 286, 509–511, 1999. [2]
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L " Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv # 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

“Collective dynamics of ‘small-world’
networks”
Watts and Strogatz,
Nature, 393, 440–442, 1998. [16]

Times cited: ∼ 37, 460 (as of October 24, 2018)

ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4 ), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6 ). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7 ),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ; k2g. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6 ), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
gpower . 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent gcite 5 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent g between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7 ) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p 5 0, the probability distri-
bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L " Lrandom but C q Crandom.

0

0.2

0.4

0.6
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1

0.0001 0.001 0.01 0.1 1

p

L(p) / L(0)

C(p) / C(0)

Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv # 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

“Collective dynamics of ‘small-world’
networks”
Watts and Strogatz,
Nature, 393, 440–442, 1998. [16]

Times cited: ∼ 37, 460 (as of October 24, 2018)

ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4 ), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6 ). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7 ),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ; k2g. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6 ), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
gpower . 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent gcite 5 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent g between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7 ) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p 5 0, the probability distri-
bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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Abstract

Coupled biological and chemical systems, neural networks, social interacting species, the Internet and the World Wide Web,
are only a few examples of systems composed by a large number of highly interconnected dynamical units. The first approach to
capture the global properties of such systems is to model them as graphs whose nodes represent the dynamical units, and whose
links stand for the interactions between them. On the one hand, scientists have to cope with structural issues, such as characterizing
the topology of a complex wiring architecture, revealing the unifying principles that are at the basis of real networks, and developing
models to mimic the growth of a network and reproduce its structural properties. On the other hand, many relevant questions arise
when studying complex networks’ dynamics, such as learning how a large ensemble of dynamical systems that interact through a
complex wiring topology can behave collectively. We review the major concepts and results recently achieved in the study of the
structure and dynamics of complex networks, and summarize the relevant applications of these ideas in many different disciplines,
ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
© 2005 Elsevier B.V. All rights reserved.
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FIG. 2 Three examples of the kinds of networks that are the topic of this review. (a) A food web of predator-prey interactions
between species in a freshwater lake [272]. Picture courtesy of Neo Martinez and Richard Williams. (b) The network of
collaborations between scientists at a private research institution [171]. (c) A network of sexual contacts between individuals
in the study by Potterat et al. [342].

A. Types of networks

A set of vertices joined by edges is only the simplest
type of network; there are many ways in which networks
may be more complex than this (Fig. 3). For instance,
there may be more than one different type of vertex in a
network, or more than one different type of edge. And
vertices or edges may have a variety of properties, nu-
merical or otherwise, associated with them. Taking the
example of a social network of people, the vertices may
represent men or women, people of different nationalities,
locations, ages, incomes, or many other things. Edges
may represent friendship, but they could also represent
animosity, or professional acquaintance, or geographical
proximity. They can carry weights, representing, say,
how well two people know each other. They can also be
directed, pointing in only one direction. Graphs com-
posed of directed edges are themselves called directed

graphs or sometimes digraphs, for short. A graph rep-
resenting telephone calls or email messages between in-
dividuals would be directed, since each message goes in
only one direction. Directed graphs can be either cyclic,
meaning they contain closed loops of edges, or acyclic
meaning they do not. Some networks, such as food webs,
are approximately but not perfectly acyclic.

One can also have hyperedges—edges that join more
than two vertices together. Graphs containing such edges
are called hypergraphs. Hyperedges could be used to in-
dicate family ties in a social network for example—n in-
dividuals connected to each other by virtue of belonging
to the same immediate family could be represented by
an n-edge joining them. Graphs may also be naturally
partitioned in various ways. We will see a number of
examples in this review of bipartite graphs : graphs that
contain vertices of two distinct types, with edges running
only between unlike types. So-called affiliation networks

“The structure and function of complex
networks”
M. E. J. Newman,
SIAM Rev., 45, 167–256, 2003. [12]
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Statistical mechanics of complex networks
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Complex networks describe a wide range of systems in nature and society. Frequently cited examples
include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of
routers and computers connected by physical links. While traditionally these systems have been
modeled as random graphs, it is increasingly recognized that the topology and evolution of real
networks are governed by robust organizing principles. This article reviews the recent advances in the
field of complex networks, focusing on the statistical mechanics of network topology and dynamics.
After reviewing the empirical data that motivated the recent interest in networks, the authors discuss
the main models and analytical tools, covering random graphs, small-world and scale-free networks,
the emerging theory of evolving networks, and the interplay between topology and the network’s
robustness against failures and attacks.
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More observations

 But surely networks aren’t new …

 Graph theory is well established …
 Study of social networks started in the 1930’s …
 So why all this ‘new’ research on networks?
 Answer: Oodles of Easily Accessible Data.
 We can now inform (alas) our theories

with a much more measurable reality.∗

 A worthy goal: establish mechanistic explanations.

∗If this is upsetting, maybe string theory is for you …
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More observations

 Web-scale data sets can be overly exciting.

Witness:

 The End of Theory: The Data Deluge Makes the
Scientific Theory Obsolete (Anderson, Wired)

 “The Unreasonable Effectiveness of Data,”
Halevy et al. [9].

 c.f. Wigner’s “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences” [17]

But:

 For scientists, description is only part of the battle.
 We still need to understand.

http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
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Super Basic definitions

Nodes = A collection of entities which have
properties that are somehow related to each
other

 e.g., people, forks in rivers, proteins, webpages,
organisms, …

Links = Connections between nodes

 Links may be directed or undirected.
 Links may be binary or weighted.

Other spiffing words: vertices and edges.



PoCS, Vol. 1
Overview of
Complex
Networks
24 of 43

Complex
Networks Basics
Etymology

Popularity

Graph theory?

Basic definitions

Examples of
Complex
Networks
Physical networks

Interaction networks

Relational networks

References

Super Basic definitions

Nodes = A collection of entities which have
properties that are somehow related to each
other
 e.g., people, forks in rivers, proteins, webpages,

organisms, …

Links = Connections between nodes

 Links may be directed or undirected.
 Links may be binary or weighted.

Other spiffing words: vertices and edges.



PoCS, Vol. 1
Overview of
Complex
Networks
24 of 43

Complex
Networks Basics
Etymology

Popularity

Graph theory?

Basic definitions

Examples of
Complex
Networks
Physical networks

Interaction networks

Relational networks

References

Super Basic definitions

Nodes = A collection of entities which have
properties that are somehow related to each
other
 e.g., people, forks in rivers, proteins, webpages,

organisms, …

Links = Connections between nodes

 Links may be directed or undirected.
 Links may be binary or weighted.

Other spiffing words: vertices and edges.



PoCS, Vol. 1
Overview of
Complex
Networks
24 of 43

Complex
Networks Basics
Etymology

Popularity

Graph theory?

Basic definitions

Examples of
Complex
Networks
Physical networks

Interaction networks

Relational networks

References

Super Basic definitions

Nodes = A collection of entities which have
properties that are somehow related to each
other
 e.g., people, forks in rivers, proteins, webpages,

organisms, …

Links = Connections between nodes
 Links may be directed or undirected.

 Links may be binary or weighted.

Other spiffing words: vertices and edges.



PoCS, Vol. 1
Overview of
Complex
Networks
24 of 43

Complex
Networks Basics
Etymology

Popularity

Graph theory?

Basic definitions

Examples of
Complex
Networks
Physical networks

Interaction networks

Relational networks

References

Super Basic definitions

Nodes = A collection of entities which have
properties that are somehow related to each
other
 e.g., people, forks in rivers, proteins, webpages,

organisms, …

Links = Connections between nodes
 Links may be directed or undirected.
 Links may be binary or weighted.

Other spiffing words: vertices and edges.



PoCS, Vol. 1
Overview of
Complex
Networks
24 of 43

Complex
Networks Basics
Etymology

Popularity

Graph theory?

Basic definitions

Examples of
Complex
Networks
Physical networks

Interaction networks

Relational networks

References

Super Basic definitions

Nodes = A collection of entities which have
properties that are somehow related to each
other
 e.g., people, forks in rivers, proteins, webpages,

organisms, …

Links = Connections between nodes
 Links may be directed or undirected.
 Links may be binary or weighted.

Other spiffing words: vertices and edges.



PoCS, Vol. 1
Overview of
Complex
Networks
25 of 43

Complex
Networks Basics
Etymology

Popularity

Graph theory?

Basic definitions

Examples of
Complex
Networks
Physical networks

Interaction networks

Relational networks

References

Super Basic definitions

Node degree = Number of links per node

 Notation: Node 𝑖’s degree = 𝑘𝑖.
 𝑘𝑖 = 0,1,2,….
 Notation: the average degree of a network = ⟨𝑘⟩

(and sometimes 𝑧)

 Connection between number of edges 𝑚 and
average degree:

⟨𝑘⟩ = 2𝑚
𝑁 .

 Defn: 𝒩𝑖 = the set of 𝑖’s 𝑘𝑖 neighbors
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Adjacency matrix:
 We represent a directed network by a matrix 𝐴

with link weight 𝑎𝑖𝑗 for nodes 𝑖 and 𝑗 in entry (𝑖, 𝑗).

 e.g.,

𝐴 =
⎡
⎢
⎢
⎢
⎣

0 1 1 1 0
0 0 1 0 1
1 0 0 0 0
0 1 0 0 1
0 1 0 1 0

⎤
⎥
⎥
⎥
⎦

 (n.b., for numerical work, we always use sparse
matrices.)
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So what passes for a complex network?

 Complex networks are large (in node number)
 Complex networks are sparse (low edge to node

ratio)
 Complex networks are usually dynamic and

evolving
 Complex networks can be social, economic,

natural, informational, abstract, …
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Interaction
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 The Blogosphere

 Biochemical
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 Gene-protein
networks

 Food webs: who
eats whom

 The World Wide
Web (?)

 Airline networks
 Call networks

(AT&T)
 The Media

datamining.typepad.com

http://datamining.typepad.com
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topics:

 Hidalgo et al.’s
“The Product
Space Conditions
the Development
of Nations” [10]

 How do products
depend on each
other, and how
does this
network evolve?

 How do countries
depend on each
other for water,
energy, people
(immigration),
investments?
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Interaction networks:
social networks
 Snogging

 Friendships
 Acquaintances
 Boards and directors
 Organizations
 facebook twitter,

(Bearman et al., 2004)

 ‘Remotely sensed’ by: email activity, instant
messaging, phone logs

(*cough*)

.

http://www.facebook.com
http://www.twitter.com
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Relational networks
 Consumer purchases

(Walmart, Target, Amazon, …)
 Thesauri: Networks of words generated by

meanings
 Knowledge/Databases/Ideas
 Metadata—Tagging: bit.ly flickr

http://bit.ly
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Clickworthy Science:

“Clickstream Data Yields High-Resolution Maps of Science”,
Bollen et al. [4], 2009.
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Neural reboot (NR):

Dog has fun.

https://www.youtube.com/watch?v=7xEX-48RHCY?rel=0


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=7xEX-48RHCY?rel=0
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