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Principles of Complex Systems, Vol. 1, CSYS/MATH 300
University of Vermont, Fall 2020

Assignment 11 • code name: Epidemiology 

Due: Friday, November 20, by 4:59 pm, 2020.
Relevant clips, episodes, and slides are listed on the assignment’s page:
http://www.uvm.edu/pdodds/teaching/courses/2020-08UVM-300/assignments/11/
Some useful reminders:
Deliverator: Prof. Peter Sheridan Dodds (contact through Teams)
Assistant Deliverator: Michael Arnold (contact through Teams)
Office: The Ether
Office hours: Tuesdays, 12 to 12:50 pm; Wednesdays, 1:15 pm to 2:05 pm; Thursdays, 12 to
12:50 pm; all scheduled on Teams
Course website: http://www.uvm.edu/pdodds/teaching/courses/2020-08UVM-300

All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly
and list the names of others with whom you collaborated.

For coding, we recommend you improve your skills with Python, R, and/or Julia. The
Deliverator uses Matlab.

Graduate students are requested to use LATEX (or related TEX variant). If you are new to LATEX,
please endeavor to submit at least n questions per assignment in LATEX, where n is the
assignment number.

Assignment submission: Via Blackboard.

Please submit your project’s current draft in pdf format via Blackboard by the same time
specified for this assignment. For teams, please list all team member names clearly at the
start.

1. Simulate the small-world model and reproduce Fig. 2 from the 1998
Watts-Strogatz paper showing how clustering and average shortest path behave
with rewiring probability p [1].
Please find and use any suitable code online, and feel free to share with each other
via Slack.
Use N = 1000 nodes and k = 10 for average degree, and vary p from 0.0001 to 1,
evenly spaced on a logarithmic scale (there are only 14 values used in the paper).
Here’s the figure you’re aiming for:
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https://www.youtube.com/watch?v=YD08WqbZdS8
http://www.uvm.edu/pdodds/teaching/courses/2020-08UVM-300/assignments/11/
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/teaching/courses/2020-08UVM-300
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ! Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv " 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

2. (3 + 3)
Determine the clustering coefficient for toy model small-world networks [1] as a
function of the rewiring probability p. Find C1, the average local clustering
coefficient:

C1(p) =

⟨∑
j1j2∈Ni

aj1j2

ki(ki − 1)/2

⟩
i

=
1

N
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i=1

∑
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aj1j2

ki(ki − 1)/2

where N is the number of nodes, aij = 1 if nodes i and j are connected, and Ni

indicates the neighborhood of i.
As per the original model, assume a ring network with each node connected to a
fixed, even number m local neighbors (m/2 on each side). Take the number of
nodes to be N ≫ m.
Start by finding C1(0) and argue for a (1− p)3 correction factor to find an
approximation of C1(p).
Hint 1: you can think of finding C1 as averaging over the possibilities for a single
node.
Hint 2: assume that the degree of individual nodes does not change with rewiring
but rather stays fixed at m. In other words, take the average degree of individuals
as the degree of a randomly selected individual.
For what value of p is C1(p)/C1(0) ≃ 1/2?
Does this seem reasonable given your simulation?
(3 points for set up, 3 for solving.)
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