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Preface

Any figures you see can be recreated by running ./demo.py <equation

number> in your terminal, unless the caption says explicitly it’s from a pa-
per or something like that. For example, to reproduce the recurrence 1.14,
you’d run ./demo.py 1.13 in your terminal. I assume you’re using a Linux
distribution; if you’re not, good luck running the script as I don’t know how
Windows or Mac work. Python will be the language used throughout and
there is an appendix to show you the basics, although the online documen-
tation is excellent (and how I learned python). Any code I write in the text
should work perfectly, unless it’s designed not to; you’ll know if it’s designed
not to work if I say it’s designed not to work.
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Chapter 1

Discrete and multivariate
calculus

The subject of discrete mathematics comprises a large part of the entirety
of mathematics; we can’t give anything approximating a clear description of
it here. You’ll have to be content with a brief overview of the aspects most
applicable to the study of complex systems. We’ll also review a little bit of
multivariate calculus, as it’ll bring great utility later on in the course.

1.1 Sums

Often we wish to add a large number of terms together: a1 + a2 + · · ·+ aN .
We could write it this way, but it is much more convenient to write it using
summation notation:

a1 + a2 + · · ·+ aN ≡
N∑
i=1

ai (1.1)

The letter i is called an index, and it’s a member of an index set I: i ∈ I.
Here, it’s easy to see that I = {1, ..., N}, a subset of the integers. Of course,
we can sum over other index sets too; if we wanted to sum the terms ai over
all even integers, we could write it in a variety of ways:

a0 + a2 + a−2 + · · · =
∞∑
−∞

a2i = a0 +
∞∑
n=1
i=2n

(ai + a−i) (1.2)

You get the picture. By the way, the two sums above are called infinite series
because their index set, I = {i ∈ Z : i/2 ∈ Z} is an infinite set. Right now

1



2 CHAPTER 1. DISCRETE AND MULTIVARIATE CALCULUS

we won’t worry about what it means to sum over an infinite number of terms;
for those of who know some algebra, we’re just treating the sums as formal
power series without notions of convergence. We’ll come back to that later.

Sums are the discrete equivalents of integrals; they add stuff up and answer
the question “how much of...?” We’ve glossed over it until now, but the terms
of the sum ai are really functions of i; i 7→ ai. These terms arise because of
some system (or algorithm, or theorem, or...) that you’re considering. When
sums are involved, we’re often using them to answer one of a two questions:

a. How much stuff do I have? That is, if I add up all of these terms ai,
what do I get?

b. Is there some special property about the terms ai that I can learn?

Let’s do two easy problems to check out how sums operate “in the wild.”
These are a little cooked up, but you’ll find over the course of the semester
that problems such as these come up very, very naturally.

1. Find a closed form for
∑N

n=0 n.

Proof. We note that the functional form for an is just an = id;
n 7→ an = n. In doing these kinds of problems, it’s often quite helpful
to write out the first few partial sums :

S2 =
2∑

n=0

n = 1 + 2 = 3 = 2(2 + 1)/2

S3 =
3∑

n=0

n = S2 + 3 = 6 = 3(3 + 1)/2

S4 =
4∑

n=0

n = S3 + 4 = 10 = 4(4 + 1)/2

We may have discovered a pattern! Now, we might think that we know
SN = N(N+1)

2
, but we haven’t proved it. (In more complicated examples

than this, patterns can hold up for a long time, and then suddenly break
down!) So we need to prove it. We’ll do this by induction: show that
the formula holds for N = 1 (or some other integer; think of it as an
anchor for the rest of the proof), assume it holds up to N , and then
show it works for N + 1. Okay, nothing to it: obviously the formula
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holds for N = 1; 1(1 + 1)/2 = 1. Let’s assume it works for N and show
that it works for N + 1. All right, we’ll write it out:

N+1∑
n=1

n =
N(N + 1)

2
+ (N + 1) inductive hypothesis

= N2/2 + 3N/2 + 1

Now, note that

(N + 1)(N + 2)

2
=
N2 + 2N +N + 2

2

Simplify, and they’re equal.

2. (This problem’s for you!) Find a closed form for
∑N

n=1 n
2. I would use

induction if I were you.

Like integration, we don’t have to limit ourselves to summation over just one
index set. If we have a collection of index sets I1, ..., IK , we can sum over all
of them: ∑

i1∈I1,...,iK∈IK

ai1,...,iK (1.3)

Note that, in general,∑
i1,...,iK

ai1,...,iK 6=
∑
i1

· · ·
∑
iK

ai1,...,iK 6=
∑
iK

· · ·
∑
i1

ai1,...,iK . (1.4)

Blithely changing the order of summation like this can go horribly wrong if,
for example, one of the Iks depends on another! Just consider the double
sum

∑n
j=1

∑j
i=1 ai,j. Changing the order of summation would make the j on

the outer sum essentially an unbound variable. If this is hard for you to see,
try writing some code to compute a sample sum: for example, let ai,j = ij
and compute the sum above.

a = lambda i , j : i ∗ j
S = 0
N = 10

for i in range (N) :
for j in range ( i ) :

S += a ( i , j )
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You’ll find that S = 870. What happens when we try to compute it the other
way?

a = lambda i , j : i ∗ j
S = 0
N = 10

for j in range ( i ) :
for i in range (N) :

S += a ( i , j )

A very unpleasant NameError: name ’i’ is not defined results. Other
examples abound; see if you can come up with a few! (The more insidious
cases come about when you don’t have an unbound variable, but changing
the order of summation produces wildly different results.)

We can also think of sums as operators going from the space of (partial)
sequences to some subset of the real or complex numbers. This is an incred-
ibly useful mindset when dealing with other operators, such as integrals and
derivatives, along with sums. There are a few good rules to remember:

a. If the sums are finite (meaning that their index sets are finite), we can
just move integrals and derivatives inside the sum:∫

dx
N∑
n=1

an(x) =
N∑
n=1

∫
dx an(x) (1.5)

d

dx

N∑
n=1

an(x) =
N∑
n=1

dan(x)

dx
(1.6)

Of course, this is obvious; in the finite case, sums are just adding up a
bunch of stuff, and from linear algebra we know that integration and
differentiation are linear operators. In the infinite case it’s a little more
tricky; we need to know something about the convergence of the sums.

b. If we act on a sum with an operator specific to a particular term of
the sum, we must be careful about the rest of the terms. The most
common occurrence of this is when we take the derivative with respect
to a particular term of a sum:

∂

∂aj

∑
i∈I

f(ai) =
∑
i∈I

∂f

∂ai

dai
daj

=
∂f

∂aj

(1.7)
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since all of the dai
daj

= 0 when j 6= i. Of course, this extends to sums

over multiple indices as well:

∂

∂aj1,...,jK

∑
i1,...,iK

f(ai1,...,iK ) =
∑

i1,...,iK

∂f

∂ai1,...,iK

dai1,...,iK
daj1,...,jK

=
∂f

∂aj1,...,jK

(1.8)

But be careful! The entire K-fold sum vanishes in this case because we
specified differentiation with respect to the entire collection of indices

i1, ..., iK and, consequently, all of the derivatives
dai1,...,iK
daj1,...,jK

vanish except

at the point (j1, ..., jK). If we don’t do this, we’ll need to be less
cavalier with our differentiation. Consider, for example, the derivative
with respect to x of the sum of a sequence of functions.

∂

∂x

∑
i,j,k

fijk(x, y, z) =
∑
i,j,k

∂fijk(x, y, z)

∂x
, (1.9)

which is valid as long as the sum isn’t infinite. (We’ll discuss infinite
sums later.) These two types of differentiation are very different–they
only look similar! We’ll discuss the first type more later on, in Chapter
??.

1.2 Products

If we decide to multiply {ai} together instead of adding them, we have a
product. This is commonly denoted

a1a2 · · · aN ≡
N∏
i=1

ai (1.10)

As with sums, we will (for now) consider ourselves only with finite products.
(Infinite products make infinite sums look like a piece of cake!) These often
show up when working with certain types of recurrences (see section 1.3),
and can also be involved when working with certain differential equations.
Often, we’ll find ourselves taking the derivative of a product of functions.
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It’s just repeated application of the chain rule, but it can trip you up:

∂

∂xj

N∏
i=1

fi(x1, ..., xK) =
∂f1

∂xj

N∏
`=2

f`(x1, ..., xK) + · · ·+

∂fN
∂xj

N−1∏
`=1

f`(x1, ..., xK)

=
N∑
k=1

∂fk
∂xj

N∏
`=1
` 6=k

f`(x1, ..., xK)

(1.11)

1.3 Recurrences

The process of summation naturally arises when considering recurrence re-
lations, or equations that relate different terms of the sequence {ai}i∈I to
each other. In the course of PoCS, you’ll find that recurrences recur quite
frequently. Here’s an example:

xn = xn−1 + n, x0 = 1, n ≥ 1. (1.12)

Here’s another:

fn = fn−1 + 2fn−2, f0 = 1, f1 = 1, n ≥ 2 (1.13)

We’ll solve both of these in just a bit.

1.3.1 Linear first order (simple!)

Speaking generally, we’d like to figure out an explicit formula for xn in terms
of n. There are a few ways to go about doing this:

1. Calculate out the first few terms and see if you can find a pattern.
Then, prove it by induction.

2. Rearrange terms to make the expression more amenable to summation
(or multiplication), then see if summing (or multiplying) the expression
causes many cancellations.

3. Sum both sides and see if you can wrangle out an answer using calcu-
lus. Doing this in a principled way is called the method of ordinary
generating functions, and we’ll use it extensively in the next chapter.
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4. Multiply both sides by a function and then sum it. These are other
generating function methods, some of which we’ll discuss.

5. Use some knowledge of algebra (roots of polynomials, etc.) and a little
intuition to convert the analytical problem into a purely algebraic one.

There are many other methods of explicitly solving recurrence relations, but
these will be the most useful to us. Right now we should note that the
recurrence in 1.12 is linear: all xk that appear aren’t squared, exponentiated,
or otherwise mangled. Linear recurrences are far nicer to work with than
their cousins, the nonlinear recurrences, because linear recurrences can be
solved explicitly. With rare exceptions, nonlinear recurrences can’t be solved
explicitly and we have to resort to approximation methods.

Enough talk: let’s solve 1.12. This one’s not too hard; we notice that we can
subtract xn−1 from both sides to rewrite it as

xn − xn−1 = n, x0 = 1, n ≥ 1

If we sum both sides, most terms on the left cancel (this is called a telescoping
sum):

N∑
n=1

(xn − xn−1) = xN − x0 =
N∑
n=1

n

We recognize that sum from earlier! Thus, we find that

xN = x0 +
N∑
n=1

n = 1 +
N(N + 1)

2

Certainly we could have just tried to figure it out and then proved it by
induction, but this was a lot easier.

Here’s another recurrence that’s a little more challenging.
an+1

an
= 1 +

n

k
, a0 = 1, n ≥ 0 (1.14)

You could try the summing trick, but you’d quickly be in a world of hurt.
Instead of summing, why not try “product-ing” (multiplying) both sides?

N−1∏
n=0

an+1

an
=

N−1∏
n=0

(
1 +

n

k

)
aN
aN−1

aN−1

aN−2

· · · a1

a0

=
N−1∏
n=0

(
1 +

n

k

)
Cancel everything!!!

aN =
N−1∏
n=0

(
1 +

n

k

)
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Figure 1.1: Solutions to recurrence 1.14 as functions of the parameter k

That’s pretty slick; we’ve reduced the problem of solving a recurrence to
finding an explicit expression of evaluating a finite product. (Lest you think
this problem is entirely cooked-up, you’ll be solving a very similar recurrence
when you study rich-get-richer processes...) Let’s rewrite the product:

N−1∏
n=0

(
1 +

n

k

)
=

N−1∏
n=0

k + n

k

=
1

kN
(k +N − 1)(k +N − 2) · · · (k + 0)

This long product on the right-hand side of the equation occurs so frequently
it has a name: the rising factorial. We typically define it as

k(N) ≡ (k +N − 1) · · · (k + 1)k, (1.15)

so we could write the closed form of the recurrence as

aN(k) =
k(N)

kN
(1.16)

Figure 1.1 shows solutions to the recurrence for various values of k; note that
when k = 1 the solution is just N !, as our analytical derivation shows (verify
this!)

1.3.2 Linear, constant-coefficient, higher order

Okay, what about recurrence 1.13? We might try the sum or product tricks,
but they aren’t easy, since we have more than two terms present! We’ll solve
this one two different ways, both algebraic in nature.
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W1: The characteristic polynomial. First, a little diversion. Let’s think
about the very simple recurrence

an
an−1

= r, a0 = 1, n ≥ 1

To solve this, we just use the product trick to find that aN = rN .
Nothing to it! We’ll use this simple guess (also called an ansatz, which
is the German word for approach or attempt–literally “at sentence”)
in the solution of multi-term constant-coefficient linear recurrence such
as 1.13 by substituting fn = rn into the recurrence:

fn = fn−1 + 2fn−2 =⇒ rn − rn−1 − 2rn−2 = 0 (1.17)

Dividing both sides of the equation by rn−2 gives us a second order
polynomial, r2 − r − 2 = 0. Using the quadratic formula gives r± =
(2,−1), so our general solution is

fn = c12n + c2(−1)n (1.18)

We still have to solve for the constants c1 and c2. They come from the
initial conditions–plug in n = 0 and n = 1 and write the corresponding
equations. Doing this gives the simple linear algebra problem(

1 1
2 −1

)(
c1

c2

)
=

(
1
1

)
Row reducing gives c1 = 1

3
and c2 = 2

3
, so we find that the specific

solution is

fn =
2

3
2n +

1

3
(−1)n (1.19)

This isn’t the most powerful way to solve recurrences in general, but
for linear, constant-coefficient recurrences it’s often the best. Even for
recurrences of high order, solving for roots can often be done efficiently
using some numerical method (e.g., Newton’s method).

W2 Ordinary generating functions. This is complete overkill for a simple
recurrence such as this, but it’s a good introduction to the generating
function method. Just as integration can be thought of as the inverse
operation of differentiation, so can summation be thought of as the in-
verse operation of finite differences, of which these sorts of recurrence
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relations are examples. The general algorithm is this: rewrite the re-
currence in terms of the formal power series A(x) =

∑∞
n=0 anx

n, and
solve the corresponding equation for A(x). Then, form A(x)’s Taylor
series, which will give us the coefficients an = A(n)(0)/n! that we so
desire.

Starting with recurrence 1.13 (which we’ll rewrite as an = an−1 +2an−2

with a0 = a1 = 1, n ≥ 2) we’re going to “undo” the differencing by
summing both sides. We want the indices on the sums to eventually
start at n = 0, so since our lowest order term is an−2, we’ll start the
index of each sum at n = 2:

∞∑
n=2

anx
n −

∞∑
n=2

an−1x
n − 2

∞∑
n=2

an−2x
n = 0 (1.20)

This is just another way to formally rewrite the recurrence, but now we
can use some tricks with the power series. We’ll take them one-by-one;
the first is relatively easy:

∞∑
n=2

anx
n =

∞∑
n=0

anx
n − a0 − a1x

= A(x)− 1− x
(1.21)

Now the second:

∞∑
n=2

an−1x
n = x

∞∑
n=2

an−1x
n−1

= x

(
∞∑
n=0

anx
n − a0

)
= x(A(x)− 1)

(1.22)

And the third:

2
∞∑
n=2

an−2x
n = 2x2

∞∑
n=0

anx
n

= 2x2A(x)

(1.23)

Cool. Now we can put all of this together into an equation for the
generating function A(x). Do some algebra, and you’ll find that

A(x) =
1

1− x− 2x2
(1.24)
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From here, we can do one of two things: try to find a pattern for the
Taylor series coefficients of A(x) (and thereby find the solution to the
recurrence); or just realize that an = A(n)(0)/n!, and compute whatever
terms of the recurrence we need.

This barely scratched the surface of generating functions; they are a
massive topic of research, even today. The connections between them
and areas of pure mathematics such as abstract algebra and complex
analysis are incredibly deep; I highly encourage you to purchase the
books by GKP [1] and Wilf [2] for further study.

1.4 Review of multivariate calculus

This is something you just have to know–and if you don’t already, the last
two sections were probably rough going!

1.4.1 Differentiation

You know about partial derivatives. Remember the formula for a differential
of the function f(x1, ..., xN):

df =
N∑
i=1

∂f

∂xi
dxi (1.25)

Obviously the chain rule works the same way; if we have

f(x1, ..., xN), xi(t)

then to find df
dt

it’s the same old process:

df

dt
=

N∑
i=1

∂f

∂xi

dxi
dt

(1.26)

One can go on in this way ad infinitum. Remember that multivariate func-
tions exist in, well, many variables, so that we don’t just ask about derivatives
in one direction or another (as in ∂nxf) but in different directions of different
orders. These are the mixed partial derivative operators, e.g., ∂2

∂x∂y
= ∂

∂x
∂
∂y

,
etc. There are a couple misconceptions about partial derivatives that we
should clear up:

a. Just because a function has partial derivatives does not mean it’s dif-
ferentiable!!!
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b. Unless the second mixed partial derivatives are both continuous, you
can’t exchange them! Often I have found that students seem to think
Claraiut’s theorem holds all the time–it doesn’t. This mistake can
really get you into trouble in finance; we will discuss this point later.

Something that isn’t taught well (or people just don’t remember well) is the
multivariate Taylor expansion. Recall that, if a function of one variable f(x)
satisfies certain conditions it can be expanded in a power series about the
point x = a of the form

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

There are subtle questions of convergence of the series and all that; as physi-
cists, economists, and computer scientists, we’re often dangerously cavalier
with these series and just go around expanding functions willy-nilly. One
variable isn’t enough sometimes, so we expand multivariate functions. When
we do this, we move to partial derivatives, and we have to remember to in-
clude all the mixed partials! We’ll just expand about the point xi = 0 in the
N -dimensional MacLaurin series:

f(x1, ..., xN) = f(0) +
N∑
i=1

∂xif(x1, ..., xN)xi+

+
1

2!

N∑
j,k=1

∂xj∂xkf(x1, ..., xN)xjxk + · · ·
(1.27)

The term in the infinite series of order K will thus have NK terms in its
finite sum. In practical work, a lot of times we will truncate the terms at
order 2, so that we have at most second partials floating around.

1.4.2 Integration

Remember: you can’t just interchange integrals! That is to say,∫
x∈X
y∈Y

f(x, y)d(x, y) 6=
∫
x∈X

(∫
y∈Y

f(x, y)dy

)
dx

6=
∫
y∈Y

(∫
x∈X

f(x, y)dx

)
dy

(1.28)

in all generality. Now, it is the case that if
∫
x∈X, y∈Y |f(x, y)|d(x, y) < +∞,

you can change the order of integration; use this power wisely! (This is called
Fubini’s theorem.)



1.4. REVIEW OF MULTIVARIATE CALCULUS 13

Here is another useful thing to remember. If you are able to factor a function
f(x1, ..., xN) =

∏N
1 fi(xi) somehow, and if each domain Xi does not depend

on the values of any of the other variables, we can factor out an integral as
follows: ∫

x1∈X1,...,xN∈XN
d(x1, ..., xN)f(x1, ..., xN)

=

∫
x1∈X1,...,xN∈XN

d(x1, ..., xN)
N∏
1

fi(xi)

=
N∏
1

∫
xi∈Xi

dxi fi(xi)

(1.29)

This can be handy when dealing with statistics of large systems.
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Chapter 2

Probability

The theory of probability is wide and deep, and one of the most difficult
subjects in mathematics. Here we will cover discrete probability in depth, and
touch on the applied aspects of continuous probability theory; to enter into
a discussion of the continuous theory requires rather advanced mathematics
that won’t really add to your understanding of probability concepts.

2.1 Axioms and fundamentals

For right now we will concern ourselves only with spaces of finitely many
or countably infinitely many events that can occur; the index set I is either
finite or can be put into one-to-one correspondence with the integers. If we
denote an event by Xi, we can write the sample space S as

S =
⋃
i

Xi (2.1)

We will denote a discrete probability measure by p(·). It is best, for now, to
not worry about what the fundamental meaning of this is too much. You
can think about the frequentist interpretation (if I roll a fair die many, many
times, about one-sixth of the rolls will land on five; I have a one-fifth proba-
bility of rolling five) for now. We will later discuss other interpretations.

2.1.1 Axioms

There are three axioms of probability.

PA1. 0 ≤ p(Xi) ≤ 1 for all i.

PA2. p(S) = 1

15
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PA3. Let J ⊆ I. Then p
(⋃

j∈J Xj

)
≤
∑

j∈J p(Xj), with equality holding if

and only if the events Xj are mutually exclusive.

Let us briefly unpack the third axiom. We are considering the set of events⋃
j∈J Xj and would like to know the probability that we observe this set.

This, of course, requires that we know how to interpret
⋃

in the context of
probability. A union can be interpreted as an or :⋃

j∈J

Xj = X1 or X2 or ... or X|J | (2.2)

Armed with this, we now know that we’re really seeking to find the proba-
bility that at least one of the events Xj happens. If the events are mutually
exclusive–that is, if Xi ∩Xj = ∅ for all i, j ∈ J , then it’s pretty obvious that
we just add the probabilities to find the answer. But if they aren’t mutu-
ally exclusive, then adding the probabilities would be overcounting, so the
relationship becomes a strict inequality.

2.1.2 Important subsets

The third axiom tells us (almost) how to compute the probability that at
least one of something happens. But we discussed that it overcounts; we
need to remove what it’s overcounting. To that end, suppose I = {A,B}
and we wished to find p(A ∪B):

p(A ∪B) = p(A) + p(B)︸ ︷︷ ︸
Count both

− p(A ∩B)︸ ︷︷ ︸
prob that both occur

(2.3)

If we instead tried to find p(A ∪B ∪ C), it’d be almost as easy:

p(A ∪B ∪ C) = p(A) + p(B) + p(C)− p(A ∩B)

− p(A ∩ C)− p(B ∩ C) + p(A ∩B ∩ C)
(2.4)

Again, we first overcounted, then undercounted by taking too much away,
then put back some of the stuff we took away. This is, in general, called the
inclusion-exclusion principle. In all generality we can write

p

(
N⋃
i=1

Xi

)
=

N∑
j=1

(−1)j−1
∑
L⊂I
|L|=j

p

(⋂
`∈L

X`

)
(2.5)

This looks intimidating, but it’s actually a big softie: the first sum simply
says whether to over- or under-count; the second sum says to sum over all
j-sized subsets of I = {1, ..., N}, and the intersection is as above.
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Once we know how to deal with unions, intersections are actually really easy
to deal with. We can interpret

⋂
j∈J Xj as “X1 and X2 and ... and X|J |”.

How do we calculate this statement? Well, the opposite of it is “at least one
of the events Xj does not occur”, which we can express as

⋃
j∈J X

(c)
j , where

the superscript c stands for compliment; X
(c)
j ≡ S\Xj. Thus, we have that

p

(⋂
j∈J

Xj

)
= 1− p

(⋃
j∈J

X
(c)
j

)
, (2.6)

and we know how to calculate the probability of that union thanks to Eq.
2.5.

2.1.3 Independent probabilities

One of the most important special cases is where the events Xj are all inde-
pendent; that is S =

⋃
i∈I Xi and Xi ∩ Xj for all i, j ∈ I. This restriction

makes the above formulae a lot simpler:

p

(⋃
j∈J

Xj

)
=
∑
j∈J

p(Xj) (2.7)

p

(⋂
j∈J

Xj

)
=
∏
j∈J

p(Xj) (2.8)

Independent probabilities occur very often in physics, economics, and com-
puter science. For example, in classical mechanics a physical system can only
be in one state at a time. We may wonder what the probability is that a
system is in a particular subset of states, say J ⊂ I. These probabilities
must be independent, and so we have p(state is in J) =

∑
j∈J p(state is j),

for a simple example. Much of the following material in this chapter is based
on the idea of independence.

Here’s a little toy example: suppose there’s a forest full of animals of various
types.1 The probability of observing one animal is unchanged by the observa-
tion of any other animal. What’s the probability of reaching into the forest,
taking out two animals at the same time, and observing that the two animals
are of the same species? (Assume that each species is equinumerous.) We

1 This comes from Peter Dodds.
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can just write this out:

p (both type 1 ∪ both type 2 ∪...) = p

(
N⋃
i=1

type i and type i

)

=
N∑
i=1

p(type i and type i)

=
N∑
i=1

p2
i

The above result uses independence twice: once in rewriting the probability
of the union as a sum of probabilities, and once in rewriting the union as a
product of probabilities. For another example of independence in action, see
[3].

2.1.4 Conditional probability

The concept of conditioning is fundamental to both science and the human
condition. It is very rare that we actually ask the question, “what is the
probability that...?” Rather, we tend to say, “given that such-and-such thing
happened, what is the probability that...?” Formally, we define conditional
probability as follows: given two events A and B, the probability of A given
B is

p(A|B) = p(A ∩B)/p(B) (2.9)

You may also see this written p(A|B) = p(A,B)/p(B); the distribution
p(A,B) is called the joint distribution and is another way of denoting “the
probability of A and B”. (The concept of a joint distribution is more conve-
nient when considering probability in many dimensions, and especially useful
in the continuum.) Equation 2.9 is a fundamental equation of science, and
is often introduced as an axiom of probability!

You should be aware of a few things related to conditional probability. First
of all, since p(A ∩ B) = p(B ∩ A)–who cares what order the events are in,
we want both of them to occur!–we could just as easily write p(A ∩ B) =
p(B|A)p(A). Substituting this into Eq. 2.9 and rearranging terms gives us
Bayes’s theorem:

p(B|A) =
p(A|B)p(B)

p(A)
(2.10)

I cannot stress enough how important this equation is. Along with the defi-
nition (axiom) of conditional probability, this equation is the key to under-
standing probability, statistics, and much of logic. We will return repeatedly
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to Bayes’s theorem in the coming sections. One other note about Eq. 2.10:
you may often see this written as

p(θ|X) =
p(X|θ)p(θ)
p(X)

⇐⇒ p(evidence|data) =
p(data|evidence)p(evidence)

p(data)
(2.11)

This is an excellent interpretation of the theorem, and I encourage you to
think of it thus. We call p(θ) ≡ p(evidence) the prior, p(X|θ) ≡ p(data|evidence)
the likelihood, p(X) ≡ p(data) the marginal likelihood, and p(θ|X) ≡
p(evidence|data) the posterior.

2.2 Discrete probability

We will confine ourselves to index sets I as outlined in Section 2.1. We will
be considering probability distributions pi ≡ Pr(event Xi occurs), and we
will consider the events Xi to be independent unless otherwise stated.

2.2.1 Normalization

There are a few terms to know. A discrete probability function–the probabil-
ity, say, that the random variable N = n, will be written as p(N = n) ≡ pn.
Often I will say something like “the random variable n,” but I really mean
“the random variable N observed to be n”. The function pn is known as
a probability mass function (PMF). The function p(n ≤ N) ≡

∑N
n=0 pn is

known as the cumulative distribution function (PDF). We will also occasion-
ally talk about the complimentary cumulative distribution function (CCDF),
which is just p(n ≥ N) =

∑∞
n=N pn, if, for example, n ∈ [0,∞).

Let’s deal with some actual probability distributions now. For example, we
might have the uniform distribution over the integers {0, ..., N}, denoted
U [0, N ]. Since the probability distribution is uniform over all possible states,
we thus have pn ∝ 1

N
. (The symbol∝means “proportional to”.) We don’t yet

write = because we need to make sure that PA2 is satisfied; the probabilities
need to sum to one. Let’s do this. We know that pn = c 1

N
, and we’d like to

figure out the value of c.

1 =
N∑
n=1

c

N
= c

N∑
n=1

1

N
= c,

so in this (admittedly silly!) case, we have c = 1 and pn = 1
N

. Other
distributions are, of course, less trivial. For example, suppose we have pn ∝
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e−λn, where n ∈ [0,∞). (This is called the Boltzmann distribution and arises
frequently in statistical mechanics.) We can go through the same process:

1 =
∞∑
n=0

ce−λn

= c
∞∑
n=0

e−λn = c
∞∑
n=0

(
1

eλ

)n
= c

1

1− 1
eλ

=
eλ

eλ − 1
,

so that c = eλ−1
eλ

. Thus, the probability of observing the number n is given
by pn =

(
1− e−λ

)
e−λn.

Here are two normalization exercises for you to do:

1. Normalize pn ∝ e−λn when n ∈ [0, N ] (not, as above, in [0,∞)). This
is the most commonly-used form of the Boltzmann distribution.

2. Normalize pn ∝ n−γ when γ > 1. Why is γ > 1 required to normalize
this distribution?

In general, normalization isn’t that hard. Since we know that pn = cq(n),
where q(n) is the function such that pn ∝ q(n), we know that we just need
to find

∑
n∈I q(n), and then do some algebra. The only tricky piece may be

actually computing that sum–the chapter on special functions in this book
may occasionally be of some use in this task!

2.2.2 Moments

We often use probability as a tool when considering large systems of which
deterministic simulation would be completely infeasible. Often we would
like to understand the mean behavior of such systems–what they do in the
average case–as well as the standard deviation from this average. You have
surely heard of the mean and standard deviation before, and likely know how
to calculate them. We will again introduce them here in a more formal sense.

We define the k-th moment of a discrete random variable X ∼ p(x) as

Ep[Xk] ≡ 〈Xk〉 =
∑
x∈X

xkp(x) (2.12)
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(Probabilists and statisticians usually use the notation Ep[Xk], while physi-
cists often use 〈Xk〉. I will use the physicists notation unless the meaning
becomes unclear, which can happen.) It’s pretty clear what’s happening: we
are seeing what the value of xk is at every x, and multiplying that by the
probability of actually seeing x. Thinking about this another way, if xk is
very large, but the probability of actually observing x–given by p(x)–is van-
ishingly small, the contribution to the sum of the term xkp(x) is not going to
be large! We also aren’t restricted to ordinary moments of the form Xk; we
can find the value of the functional moment 〈f(X)〉 =

∑
x∈X f(x)p(x) just as

easily. The ordinary moments are clearly a subset of this more general case.

The most commonly-used moment statistic is the mean, with which you’re
familiar. It is defined as the first (k = 1) expectation:

〈X〉 =
∑
x∈X

x p(x) (2.13)

You have probably calculated the mean from observed data (x1, ..., xN) as

µ =
1

N

N∑
i=1

xi (2.14)

It makes sense that this is the empirical approximation to Eq. 2.13; if p(x)
is large relative to p(y), it is more likely that we observe x than y, and thus
more xi will be equal to x than y. Expressed a little more formally, we can
rewrite Eq. 2.14 as

µ =
1

N

N∑
i=1

xi =
N∑
i=1

xi
N

=
M∑
j=1

x
(j)
unique

nj
N

(2.15)

where each x
(j)
unique is a unique observed value and nj counts the number

of times that value was observed. With some mild conditions on the true
probability distribution p(x), we know that as we observe many draws from
the distribution– as N →∞–we will have nx

N
→ p(x).

Calculation of the mean is an important exercise, and one that you will do
quite frequently in PoCS! There are some practice problems below, but before
you do them, we should note something about the mean (and moments in
general): they don’t have to exist! There are many probability distributions
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that are perfectly well-defined–that is, they sum (or integrate, in the con-
tinuous case) to one–and yet have infinite mean and other moments. These
distributions are usually very interesting; you will encounter many of them
this semester.

1. Calculate 〈X〉 if p(x) is the uniform distribution on [0, N ]

2. Calculate 〈X〉 if p(x) = λxe−λ

x!
with x ∈ [0,∞). This is the all-important

Poisson distribution, and describes the number of independently and
identically distributed random variables arriving at some location in a
given amount of time, among other things. (Hint: Taylor series.)

There is an incredibly useful property of the expectation called the tower
property. Succinctly, it says that the expectation of an expectation is equal
to the original expectation;

E[E[f(X)]] = E[f(X)], (2.16)

It is pretty easy to see why this is so:

E[E[f(X)]] =
∑
y∈X

(∑
x∈X

f(x)p(x)

)
p(y)

=
∑
y∈X

〈f(X)〉p(y)

= 〈f(X)〉
∑
y∈X

p(y)

= E[f(X)]

The key thing to understand is that the mean (or any moment!) of a function
of a random variable f(X) is just a number, at least, in relationship to its
own probability distribution p(x), and so we can pull it out of the second
sum–which, of course, sums to one.

The other moment statistic with which you’re likely most familiar is the
standard deviation, often denoted σ. In fact, the more fundamental statistic
is the variance, denoted σ2, since the standard deviation is equal the square
root of the variance. It is the expectation of the squared deviation of an
observation X from p(x) and the mean of p(x), 〈X〉:

Var(X) = 〈(X − 〈X〉)2〉
= 〈X2 − 2X〈X〉+ 〈X〉2〉
= 〈X2〉 − 2〈X〉〈X〉+ 〈X〉2

= 〈X2〉 − 〈X〉2

(2.17)
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Make sure you understand the properties of the expectation used to derive
this statistic! (In moving between the second and third lines we used both
the linearity of the expectation and the tower property.) This derivation
makes the empirical estimator of the variance rather obvious:

σ̂2 =
1

N

N∑
i=1

(
x2
i

N
− xi

)
(2.18)

Depending on your choice of programming language, this may not be a stable
method to compute the variance; division of large numbers (such as xsi2) by
other large numbers (like N2) might not be a great idea. Consult a textbook
on numerical analysis to fix this problem if you need to. You can see a
demonstration of the convergence of these estimators to the true mean and
variance in Figure 2.2.2. There are many other moment statistics, some of

Figure 2.1: Estimated mean and standard deviation of random variates
X ∼ Poisson(λ = 5) converging to the true mean and standard deviation.
Call ./demo.py moment-demo to generate this image yourself.

which are even important. However, these two should be the dearest to your
heart.

2.2.3 Generating functions

You have noticed that we do a lot of work with sums in order to find moment
statistics. Sometimes actually manipulating the sums to get an answer is
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less than trivial–you may have seen this already–and we will resort to using
generating functions. (We introduced these back in Chapter 1.) There are a
few types that are used commonly in probability:

1. (Probability generating function (PGF)) This is the original generating
function we introduced when solving linear recurrences. Given some
sequence of numbers–in this case, the numbers are probabilities pn–we
will write the PGF as

P (x) =
∞∑
n=0

pnx
n (2.19)

2. (Moment generating function (MGF)) Instead of attacking pn with the
monomial xn, we’ll instead use the exponential etn:

Mp(t) =
∞∑
n=0

pne
tn (2.20)

Can you guess why they’re called moment-generating functions?

3. (Characteristic function (CF)) This is the most important generating
function, though we will not use it too much in this short book. We
will use eitn, where i ≡

√
−1:

Ψp(t) =
∞∑
n=0

pne
itn (2.21)

Generating functions are sort of like magic. Suppose, for sake of argument,
that we know P (x) for some distribution pn. Here are some very handy
things to remember about the PGF. First, consider the fact that P (1) =∑∞

n=0 pn1n =
∑∞

n=0 pn = 1. So finding the constant of normalization becomes
trivial. Calculating the mean isn’t hard either:

〈n〉 =
∞∑
n=0

npn

=
∞∑
n=0

d

dx
(pnx

n) |x=1

=
d

dx

(
∞∑
n=0

pnx
n

)∣∣∣∣∣
x=1

=
dP (x)

dx

∣∣∣∣
x=1

(2.22)
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We can take higher order moments using the PGF too. For example, here is
the calculation of the second moment, 〈n2〉:

〈n2〉 =
∞∑
n=0

n2pn

=
d

dx

(
∞∑
n=0

npnx
n

)∣∣∣∣∣
x=1

=

(
d

dx
◦ x
)( ∞∑

n=0

npnx
n−1

)∣∣∣∣∣
x=1

=

(
d

dx
◦ x ◦ d

dx

)( ∞∑
n=0

pnx
n

)∣∣∣∣∣
x=1

=

(
d

dx
◦ x ◦ d

dx

)
(P (x))

∣∣∣
x=1

(2.23)

In general, moments can be computed with the PGF with the formula 〈nk〉 =
θkP (x)|x=1, with θk defined recursively2 as

θk =
d

dx
◦ x ◦ θk−1, θ1 =

d

dx
(2.24)

The falling factorial moments, defined

〈n(k)〉 ≡

〈
k∏
`=1

(n− `+ 1)

〉
(2.25)

are much easier to compute with the PGF:

〈
k∏
`=1

(n− `+ 1)

〉
=

dk

dxk
(P (x)) |x=1 (2.26)

2 This is a recurrence relation similar to the ones we studied in chapter 1! However,
this is an operator recurrence relation, one of the more sublime structures in mathematics.
I recommend you seek them out and study them in depth.
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Moments are (surprise!) much easier to calculate using the moment-generating
function, or MGF. For example,

〈n〉 =
∞∑
n=0

npn

=
∞∑
n=0

npne
tn|t=0

=
d

dt

(
∞∑
n=0

pne
tn

)∣∣∣∣∣
t=0

=
dMp(t)

dt

∣∣∣
t=0

(2.27)

You can see that, in general,

〈nk〉 =
dkMp(t)

dtk

∣∣∣
t=0

(2.28)

Now, moments are all well and good when they exist. But, as we mentioned
before, some distributions just don’t have them! For an example, think
of pn ∝ n−1. You should immediately recognize the (divergent) harmonic
series. But generating functions can still be helpful! It is a theorem, for
example, that a probability distribution is completely characterized by its
characteristic function (not a surprise). The characteristic function can be
used to calculate moments–for example, consider the calculation of the mean:

〈n〉 =
∞∑
n=0

npn

= −i
∞∑
n=0

inpne
itn|t=0

= −i d
dt

(
∞∑
n=0

pne
itn

)∣∣∣∣∣
t=0

= −idΨp(t)

dt

∣∣∣∣
t=0

(2.29)

but they can also be used for other purposes (along with the PGF and the
MGF) and they always exist, even when the PGF and MGF don’t. So, if
you’re trying to prove something using generating functions but the others
don’t exist, use the characteristic function.
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What else can we do with generating functions? Well, how about this: sup-
pose that we have X1, ..., XN independent random variables. They don’t
need to be identically distributed. We would like to determine the distribu-
tion of the sum of these random variables. Since a distribution is uniquely
determined by its characteristic function, let’s just compute that instead:

Ψ∑
Xi(t) =

〈
exp

(
it
∑

Xi

)〉
=

〈
N∏
i=1

exp(itXi)

〉

=
N∏
i=1

〈exp(itXi)〉

=
N∏
i=1

ΨXi(t)

(2.30)

This is what I mean when I say generating functions are like magic. You
can think of many more examples like this–and I won’t spoil them for you,
since I think you’ll work through some of them in your PoCS homework!3

For more information on generating functions as applied to probability, an
excellent reference is [4]; of course [2] is the master resource.

2.3 Continuous probability

Now that you know (something) of discrete probability, continuous prob-
ability won’t be too hard to figure out. I hasten to say that the actual
mathematics behind continuous probability is quite a bit more difficult than
that (essentially finite combinatorics) behind the discrete material. But, in
terms of application, you will see that we mostly replace sums with integrals,
and everything just works out.

2.3.1 From discrete to continuous

The continuum is very different from even countably infinite sets. Instead
of a function pn defined over, say, n ∈ [0,∞), we now have a probability

3 For those of you who are well-versed in higher mathematics, you will have noticed
by now that these generating functions seem awfully familiar. In fact this is because they
are exactly the frequency-space transforms that you have encountered in your differential
equations courses; the PGF is the z-transform; the MGF is (essentially, map t 7→ −t′)
the Laplace transform; and the CF is the Fourier transform. All of the theorems and
properties of those transforms work just as well here. Use this power wisely!
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density function, usually denoted p(x) or fX(x), for x ∈ Ω ⊆ R. If you
took multivariate calculus, you’ll remember mass density functions–this is
exactly like that. Since we’re going to be integrating instead of summing,
the probability that X = x is always zero. There is no probability whatsoever
that the random variable X will equal x. This is due to nuances of the real
numbers.

Aside from this, most things stay the same. For example, the CDF is just

FX(x ∈ S) =

∫
S⊆R

dx fX(x), (2.31)

which is essentially the same as the discrete definition–if X ∈ R, then this is
just FX(X ≤ x) =

∫ x
−∞ dx fX(x). For example, if X ∈ R and we wanted to

know the probability that we observed X ∈ [4, 12], we’d just integrate:

FX(4 ≤ x ≤ 12) =

∫ 12

4

dx fX(x).

Nothing to it. The CCDF is essentially the same too. If X ∈ R, then

FX,≥(x) = 1− FX(x)

=

∫ ∞
x

dx fX(x)
(2.32)

Does anything else change? Not really. For example, the moments are defined
in the identical manner:

〈g(X)〉 =

∫
x∈Ω

dx g(x)fX(x). (2.33)

And the three generating functions are also essentially identical:

P (z) =

∫ ∞
−∞

dx fX(x)zx (this is not used much) (2.34)

Mf (t) =

∫ ∞
−∞

dx fX(x) ext (2.35)

Ψf (t) =

∫ ∞
−∞

dx fX(x) eixt (2.36)

Of these three, by far the most used is the characteristic function Ψf (t).
This is because it is identical to the Fourier transform, which is absolutely
ubiquitous throughout science and engineering and there are many theorems
about it that provide us with useful results. You can verify for yourself that
the properties we defined above all still hold for each of these transforms.
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2.3.2 Limit theorems

I won’t give too much away here–meaning that I won’t prove what follows,
since you’ll be doing a lot of that in class–but there are two incredibly im-
portant theorems that you should know. We will first introduce the normal
distribution, also known as the Gaussian distribution. This is probably the
most important probability distribution and is defined

fX(x;µ, σ) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(2.37)

If a random variable X is distributed according to the normal distribution we
write X ∼ N (µ, σ); µ is the mean of the distribution and σ2 is the variance.
(You should definitely attempt to prove this; do not take my word for it.)

The first theorem is reassuring:

Theorem 1. (Weak law of large numbers) Suppose that X1, ..., XN are i.i.d.
random variables 〈Xn〉 is defined and is finite with mean µ. Then, for any
ε > 0,

lim
N→∞

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

Xi − µ

∣∣∣∣∣ > ε

)
= 0

The second theorem relies on the normal distribution:

Theorem 2. (Lindeberg-Lévy central limit theorem) Suppose that X1, ..., XN

are i.i.d. random variables such that 〈Xn〉 and Var(Xn) are defined and finite,
with mean µ and variance σ2. Then

√
n

(
1

N

N∑
i=1

Xi − µ

)
d−→ N (0, σ2)

The symbol
d−→ means “converges in distribution”; it is a technical point,

but there are several types of convergence and this is a relatively strong one.
This theorem is of utmost importance; you should seek to understand it as
best you can.

There are other central limit theorems–lots of them–but Theorem 2 is the
most widely-used of them. You should know, however, that the generalized
central limit theorem states that any i.i.d. random variables with finite mean
and infinite variance also converge in distribution to a limit distribution,
known as the Lévy stable distribution. Look it up. There is a lot more to
probability than what is presented here–as I stated at the beginning of this

https://en.wikipedia.org/wiki/Stable_distribution
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chapter, it is one of the most well-studied and difficult areas of mathematics,
and there are still many open questions–so you should read some references
on the subject if you want to know more. Feller’s texts [4, 5] are phenomenal
guides.



Chapter 3

Special functions

There are some functions that just appear over and over again when studying
physics, economics, computer science, and complex systems more generally.
I will cover some of them here in an attempt to ease the pain when you’re
confronted by them in a dark alley (e.g., in PoCS).

3.1 The gamma function

We all know about the factorial:

n! = n(n− 1)!, 0! = 1

You can also think about it in product notation: n! =
∏n

k=1 k, where we
take the empty product to be equal to one. Now, the factorial shows up a
lot: probably its most common appearance is in the Taylor series expansion
of a function, although it also describes the number of permutations of n
elements of a set, etc. It also appears in the binomial coefficient,(

n

k

)
=

n!

k!(n− k)!
, (3.1)

which (among other things) describes the number of ways to choose k things
from n things and appears in the binomial formula:

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk (3.2)

Well, that’s just fine. But suppose, for example, we wanted to expand
f(x, y) = (x + y)α, where α ∈ R\Z; that is, where α was not an integer.
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How are we supposed to interpret the binomial coefficient? We don’t know
what α! means when α isn’t an integer!

Enter the gamma function. Its easiest interpretation is the continuation of
the factorial to non-integer values: we want some function Γ(x) that satisfies
the all-important recursive property of the factorial. It turns out that a
function that does this is

Γ(x+ 1) =

∫ ∞
0

txe−t dt (3.3)

To see this, let us compute the integral via integration by parts:

∫ ∞
0

txe−t dt = −txe−t|∞0 + x

∫ ∞
0

tx−1e−t dt

= x

∫ ∞
0

tx−1e−t dt,

so we see indeed that Γ(x+ 1) = xΓ(x). And we have got the right function
for interpolation of the factorial too; it is the case that Γ(n+ 1) = n!:

Γ(n+ 1) = nΓ(n)

= n(n− 1)Γ(n− 1)

...

= n(n− 1) · · · 1 = n!

(3.4)

There are so many beautiful identities related to the gamma function that it
is difficult to know what to write and what to leave to you. I will mention a
few; you should look up others in [6] or a similar function reference.1

1 Doing this is incredibly enjoyable. I have spent many hours just reading special
function identities in this text and others, such as Abramowitz [7]. At times they are
overwhelming in their depth; imagining the work that has gone into each identity is inspi-
rational, to say the least.
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G1. There is another convenient integral form of the gamma function:

Γ(x) =

∫ 1

0

(
ln

1

t

)x−1

dt

=

∫ 1

0

(− ln t)x−1 dt let t 7→ e−s, e−s ∈ (0, 1) so s ∈ (∞, 0)

=

∫ 0

∞

(
− ln e−s

)x−1
d
(
e−s
)

= −
∫ 0

∞
sx−1e−sds

=

∫ ∞
0

sx−1e−sds

(3.5)
which of course we recognize as Eq. 3.3.

G2. We have Γ(1− x) = −xΓ(−x). For, after all,

Γ(1− x) =

∫ ∞
0

t(1−x)−1e−tdt

=

∫ ∞
0

t−xe−tdt

= −e−tt−x
∣∣∣∞
0
−
∫ ∞

0

(−x)t−x−1(−e−t)dt

= (−x)

∫ ∞
0

t(−x)−1e−tdt

= −xΓ(−x)

(3.6)

G3. Here is a beautiful identity that proves surprisingly useful: Γ(1/2) =√
π. I will prove this so that you can get used to some of the integral

manipulations that you’ll use frequently in PoCS. First, note that we
can rewrite the gamma function with the transformation t 7→ s2:

Γ(x) =

∫ ∞
0

tx−1e−tdt

=

∫ ∞
0

(s2)x−1e−s
2

d(s2)

= 2

∫ ∞
0

s2(x−1)e−s
2

s ds

= 2

∫ ∞
0

s2x−1e−s
2

ds
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Now, let us take x = 1
2

to write the gamma function as2 Γ(1/2) =

2
∫∞

0
e−s

2
ds. We’re looking for something square-rooted; let’s square

something else! (Don’t question this questionable logic.)

Γ(1/2)Γ(1/2) =

(
2

∫ ∞
0

e−s
2

ds

)(
2

∫ ∞
0

e−u
2

du

)
= 4

∫∫
(0,∞)×(0,∞)

exp
(
−(s2 + u2)

)
d(s, u)

(3.7)

We would like to simplify this integral. Noting that we are integrating
strictly over the first quadrant and that the term s2 + u2 looks suspi-
ciously like r2–the radius squared in polar coordinates–we establish the
coordinate change (s, u) 7→ (r cos θ, r sin θ). The new differential is∣∣∣∣∂(s, u)

∂(r, θ)

∣∣∣∣ drdθ =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ drdθ
= rdrdθ,

so we can convert Eq. 3.7 to

4

∫∫
(0,∞)×(0,∞)

exp
(
−(s2 + u2)

)
d(s, u) = 4

π/2∫
0

∞∫
0

e−r
2

r dr dθ

= 4

∫ π/2

0

dθ

∫ ∞
0

dr re−r
2

= 2π

∫ ∞
0

dr re−r
2

change to ρ = −r2, ρ ∈ (0,−∞) = −π
∫ −∞

0

dρ eρ

= π

Take roots and you’re finished.

Now you can actually decide what
(

1/2
k

)
means in some principled way. We

can just define the real-valued binomial coefficient as(
x

y

)
=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
(3.8)

2 You should note a similarity between this integral and the CDF of the normal dis-
tribution given by the integral of Eq. 2.37. This derivation is intimately related to the
normal distribution; in fact, the gamma function is entwined with much of continuous
probability theory in rather remarkable ways.
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3.2 The beta function

The beta function is defined as

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
(3.9)

From this, we will find an expression for it in terms of an integral. (It is often
that this is done in the opposite direction; one defines the beta function as
an integral and then derives this property. But it is my opinion that it is this
property that is the fundamental characteristic of the beta function, not the
other way around.) Without further ado, write the product of two gamma
functions as

Γ(α)Γ(β) =

(∫ ∞
0

tα−1e−t dt

)(∫ ∞
0

sα−1e−s ds

)
=

∫∫
(0,∞)×(0,∞)

tα−1sβ−1e−(s+t)d(t, s)

Make the variable change (t, s) 7→ (xy, x(1 − y)) and calculate | ∂(t,s)
∂(x,y)

|. You

will find that dt ds = −x dx dy. Since s, t ∈ (0,∞) and s + t = x, we must
have x ∈ (0,∞) and consequently y ∈ (0, 1). Then rewrite the integral again:∫∫

(0,∞)×(0,∞)

tα−1sβ−1e−(s+t)d(t, s) =

∞∫
0

1∫
0

(xy)α−1 (x(1− y))β−1 e−(xy+x(1−y))x dx dy

=

∞∫
0

1∫
0

xα+β−1yα−1(1− y)β−1e−xdx dy

=

∫ ∞
0

xα+β−1e−xdx

∫ 1

0

yα−1(1− y)β−1 dy

= Γ(α + β)

∫ 1

0

yα−1(1− y)β−1 dy

So we have found that

B(α, β) =

∫ 1

0

yα−1(1− y)β−1 dy (3.10)

as its integral definition. You will find that Eq. 3.9 is the most important
beta function identity to know; it comes up a lot, especially in probability.
Note that, if n,m ∈ Z+, then we can actually write

B(n,m) =
(n− 1)!(m− 1)!

(n+m− 1)!
(3.11)
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by the definition of the gamma function.

There are many more phenomenal identities involving the gamma and beta
function together. Here are two that you might find exceptionally useful:

B1. B(α, β) = B(β, α). Pretty obvious.

B2. We can also rewrite the generalized binomial coefficient in terms of the
beta function. (

x

y

)
=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)

=
Γ(x+ 2)

(x+ 1)Γ(y + 1)Γ(x− y + 1)

=
1

(x+ 1)B(x− y + 1, y + 1)

We will derive more identities as exercises in the chapter on tricks and asymp-
totics.

3.3 The zeta function

This is probably the most second-most famous special function among mathe-
maticians in general, and most revered among number theorists. It is usually
defined as a power series:

ζ(s) =
∞∑
n=1

1

ns
(3.12)

It arises in many applications in physics and optimization, but is proba-
bly most famous for an unsolved conjecture due to Riemann, known as the
Riemann hypothesis :

Theorem 3. Riemann hypothesis (B. Riemann 1859): the real part of
all nontrivial zeros of ζ(s) lie on the line x = 1

2
in the complex plane.

The trivial zeros of ζ(s) are the negative even integers. (We will not prove
this here; it requires some complex analysis to see.) You should know that
this function also has a representation as an infinite product over all prime
numbers! Although this sounds exotic, it actually makes a lot of sense. In
deriving this we will use the concept of a number sieve, which algorithmically
factors out primes from numbers. Consider the following:

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · ·(

1− 1

2s

)
ζ(s) = 1 +

�
�
�1

2s
+

1

3s
+

�
�
�1

4s
+

1

5s
+ ·
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We can just get rid of all factors of any prime number p on the RHS that we
want by “sieving” them out; multiply the LHS by (1 − 1

ps
). Doing this for

every prime gives ∏
p

(
1− 1

ps

)
ζ(s) = 1

which can just be rewritten as3

ζ(s) =
∏
p

(
1− 1

p−s

)
. (3.13)

This form of the function actually shows up quite often in physics; you
may also find yourself factoring it out of some other infinite product you’re
considering–say, in the analysis of the steady state of a recurrence relation!

3 If you’re an analysis nerd (like me), you can make this completely rigorous by noting
that

∑
n≥1 n

−s converges for all s > 1; thus, this infinite product converges since it is
equal to the sum.
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Chapter 4

Optimization

You’re already familiar with univariate optimization from basic calculus. You
should have learned basic multivariate continuous optimization in multivari-
ate calculus, but I have found that this skill isn’t always as well-developed as
it should be; we’ll go over this. We’ll also dig into functional optimization,
as that will play an important part of some problems in PoCS (as well as the
successor course, complex networks). I won’t go too much into other types,
such as discrete and combinatorial optimization, since those are (perhaps
surprisingly) much, much harder problems.

4.1 Multivariate continuous optimization

4.1.1 Unconstrained optimization

Suppose we have a multivariate function f : Rn → R of which we’d like to
find the maximum (minimum) value. No problem; essentially in parallel with
the univariate case, we will

a. take its “derivative” and set it equal to zero

b. make sure its “second derivative” at the optimal point is negative (pos-
itive)

I used quotes because the actual action of differentiation is the only part of
this algorithm that really changes. Instead of setting the univariate derivative
to zero, we will set the gradient to zero; instead of checking that the second
derivative is negative (positive), we will check that the eigenvalues of the
Hessian are negative (positive). Recall that the gradient of f is defined

∇f =
n∑
i=1

∂xif ei (4.1)
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where ei are the standard Euclidean basis vectors in Rn.1 The Hessian op-
erator is just Hij = ∂xixj , so that the Hessian matrix of f is

H(f) =


∂2
x1
f ∂x1x2f · · · ∂x1xnf

∂x2x1f ∂2
x2
f · · · ∂x2xnf

...
...

. . .
...

∂xnx1f ∂xnx2f · · · ∂2
xnf

 (4.2)

We remember how to find eigenvalues, of course: solve the equation

det (H(f)− λI) = 0

for the eigenvalues λ. In Rn there will be n eigenvalues, although they are
not guaranteed to be unique. The multidimensional equivalent to the sign
of the second derivative is analysis of the signs of the eigenvalues. If all
eigenvalues are negative, the solution of ∇f(x) = 0 is a maximum; if they’re
all positive, the solution is a minimum. Of course, it may be the case that
some eigenvalues are positive and some are negative; this is called a saddle
point.

4.1.2 Constrained optimization

Of course, we often have constraints on our optimization problem. A typical
problem you’ll encounter (in PoCS and, more generally, in any sort of applied
and industrial mathematics) is

min
x1,...,xn

f(x1, ..., xn)

s.t. g1(x1, ..., xn) = k1

...

gm(x1, ..., xn) = km

(4.3)

1 The gradient is an interesting thing. It is the only possible choice for the derivative
of f : Rn → R, but it is not necessarily the derivative of such a function; f may have a
perfectly well-defined gradient and be non-differentiable. Technically, a function f : Rn →
Rm is differentiable if and only if there exists a linear transformation T : Rn → Rm such
that

f(c+ v)− f(c) = Tc(v) + ||v||Ec(v)

where Ec(v) is a nonlinear error function that goes to zero as ||v|| → 0. In the m = 1
dimensional case that we are considering, it is obvious that T must be the gradient. In

the general m-dimensional case, it is not hard to see that actually T = ∂(f1,...,fm)
∂(x1,...,xn)

, the

Jacobian matrix!
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We will assume that f and gj are all continuous and at least twice-differentiable.
To find the optimum of f , we just extend the method of Lagrange multipliers
a little bit. Instead of having only one multiplier, we have m of them–one
for each constraint. The method works like this: form the objective function
L, defined

L(x1, ..., xn) = f(x1, ..., xn) +
m∑
j=1

λj (kj − gj(x1, ..., xn)) (4.4)

Then, solve∇L(x) = 0. All the solutions of this equation are possible optima;
certainly they are critical points of f , and you know how to figure out (using
the Hessian) if they are local maxima, minima, or saddle points. But here
there are m more things we need to do: figure out if each xopt is compatible
with the m equalities. We do this by taking partial derivatives with respect
to each multiplier: ∂λjL = 0. Now we must find those solutions that solve all
of the equations that we have.2 Do yourself a favor and solve a few practice
problems.

1. Minimize f(x, y) = x+ y subject to x2 + y2 = r2.

2. Maximize H(x) = −
∑n

i=1 xi lnxi subject to
∑n

i=1 xi = 1. The function
H is called the entropy of x; you will learn about it and related functions
in PoCS.

4.2 Functional optimization

Many of the functions we care about in physics, economics, and computer
science are actually functions from some space of functions to the real num-
bers. For example, consider the problem of minimizing total energy of a
physical system over time:

min
x(t)

∫ T

t0

dt E(x(t), ẋ(t), t) (4.5)

2 The simpler, though more abstract, way to think of this is simply to take the n+m-
dimensional gradient of L, since it really is now a function in Rn+m–n of these coming
from the variables x1, ..., xn, and m of these coming from the m multipliers. We can thus
summarize the process by writing ∇L(x;λ) = 0, where here

∇ =

n∑
j=1

∂xjej +

m∑
`=j+1

∂λ`
e`
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Physical systems do this; this is called the principle of stationary energy or
Hamilton’s principle.

We can formulate these problems in a manner similar to problem 4.3. We
want to maximize or minimize some quantity, in this case a functional repre-
sented by an integral (or sum), and we must do this subject to m constraints,
also functionals represented by integrals or sums. Thus, problems of this form
will generally look like

min
r(x)

∫
Ω

dx F (r(x), r′(x), x)

s.t.

∫
Ω

dx Gi(r(x), r′(x), x) = Ki, i = 1, ...,m

(4.6)

Solving these problems is a little bit trickier than above. We will first consider
the case where F and each Gi are functions only of r(x); they don’t contain
r′(x) terms or terms with x alone. In this case, we first form what’s called
the action integral:

J =

∫
Ω

[
F (r(x))−

m∑
i=1

λi (Ki −Gi(r(x)))

]
dx (4.7)

Heuristically-speaking, we want to take the derivative of this integral with
respect to r(x). If we want to be formal about it, this is a pretty tall order;
this is called functional differentiation, defined by the Fréchet derivative, and
is denoted δ

δr(x)
. However, since we’re (as I’ve stated before) cool and cavalier,

we’ll just do what comes naturally:

δJ

δr(x)
=

δ

δr(x)

∫
Ω

[
F (r(x))−

m∑
i=1

λi (Ki −Gi(r(x)))

]
dx

=

∫
Ω

∂

∂r(x)

[
F (r(x))−

m∑
i=1

λi (Ki −Gi(r(x)))

]
dx

=

∫
Ω

[
∂r(x)F +

m∑
i=1

λi∂r(x)Gi

]
dx

(4.8)

Okay, now what? Well, in problems like those described by Eq. 4.4 we take
the derivative and set it equal to zero; we’ll do that here too:∫

Ω

[
∂r(x)F +

m∑
i=1

λi∂r(x)Gi

]
dx = 0 =⇒ ∂r(x)F +

m∑
i=1

λi∂r(x)Gi = 0
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This implication is by something called the fundamental lemma of the cal-
culus of variations, into which I will not go here.3 It’s pretty obvious now
that we just solve ∂r(x)F +

∑m
i=1 λi∂r(x)Gi = 0 for r(x); this will give us the

optimal function r(x) that solves the problem associated with the action in
Eq. 4.7.

The harder case is when F or Gi are functions of r′(x) as well. The action
is, in this case, given by a similar integral to that in Eq. 4.7:

J =

∫
Ω

[
F (r(x), r′(x), x)−

m∑
i=1

λi (Ki −Gi(r(x), r′(x), x))

]
dx

=

∫
Ω

L(r(x), r′(x), x) dx,

(4.9)

where we have simply defined L = F −
∑m

1 λi(Ki − Gi). By a theorem
(proved in Section 4.2.1 for the truly brave) the fundamental equation here is
not ∂r(x)L = 0, as above, but rather the celebrated Euler-Lagrange equation,
ubiquitous throughout classical mechanics:

∂L

∂r(x)
=

d

dx

∂L

∂r′(x)
(4.10)

This, then, is the equation to be solved for r(x)!

4.2.1 Derivation of Euler-Lagrange equation

Optional!!! You need to be very familiar with vector calculus to begin to
follow this derivation.

Let x ∈ Rd, ψ : Ω → R where Ω ⊆ Rd closed, and consider the problem of
finding an extremum of the functional

J(ψ) =

∫
Ω

L(x, ψ(x),∇ψ(x))dx

where we assume that L ∈ C1 and that the integral actually exists and has
a finite value. We will impose the boundary condition ψ(x) = f(x) for all
x ∈ ∂Ω. Let h be some test function–any arbitrary function in C1 such

3 FLCV: Suppose f and g are functions (a, b)→ R with g compactly supported. If∫ b

a

f(x)g(x)dx = 0

for any such g, then f(x) = 0.
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that h(x) = 0 for all x ∈ ∂Ω will do–and consider the functional derivative

δJ ≡ limε→0
J(ψ+εh)−J(ψ)

ε
= d

dε
J(ψ + εh). (I will not prove here that the

usual rules of differential calculus hold here–it is a remarkable fact that most
of them carry over!) Let us define the vector field F =

∑d
i=1

∂L
∂ψxi

ei, where

ψxi ≡
∂ψ
∂xk

. Then we can calculate the functional derivative:

δJ =
d

dε

∫
Ω

L(x, ψ(x+ εh),∇ψ(x+ εh))dx

=

∫
Ω

(∂L
∂ψ

∂ψ

∂ε
+

d∑
1

∂L

∂ψxi

∂ψxi
∂ε

)
dx

=

∫
Ω

(∂L
∂ψ

h+
d∑
1

∂L

∂ψxi
hxi

)
dx

Substituting in the definition of F , we can rewrite this as∫
Ω

(∂L
∂ψ

h+ F · ∇h
)
dx =

∫
Ω

(∂L
∂ψ
−∇ · F

)
h dx+∮

∂Ω

(hF ) · n dS︸ ︷︷ ︸
zero, since J is linear in ∂L

∂ψ

by the divergence theorem

=

∫
Ω

(∂L
∂ψ
−∇ · F

)
hdx

We want δJ = 0 for any test function h, and thus, by the fundamental
theorem of calculus of variations, we have

∂L

∂ψ
−∇ · F =

∂L

∂ψ
−

d∑
1

∂

∂xi

∂L

∂ψxi
= 0

This is called the Euler-Lagrange equation.



Chapter 5

Asymptotics and tricks

Physical processes often generate mathematical phenomena that are pro-
hibitively difficult to express analytically. One may be able to reduce the
complexity of some expressions using the tools of asymptotic theory, which I
will describe in some detail below. I will also outline some handy tricks that
will guaranteed be useful at some point in PoCS.

5.1 Asymptotics: outline and notation

Let f, g : R → R be two functions. We will make no assumption on their
continuity, differentiability, etc., but the reader will note in what follows that
certain notions of asymptotic behavior require these constraints. There are
two common uses of the sentence “f is asymptotic to g”:

a. For all ε > 0 there exists x′ ∈ R such that, for all x > x′, |f(x)−g(x)| <
ε. This is the infinite-limit, or large-x, definition of asymptotic, and is
generally what is meant when no other clarifications are present.

b. For all ε > 0 there exists x′ ∈ R such that, for all x > x′, |f( 1
x
)−g( 1

x
)| <

ε. This is the zero-limit definition of asymptotic. The reader will note
that this definition is practically identical to the infinite-limit definition.

Here is a good exercise: using infinite sequences, propose a rigorous “x = a-
limit” definition of asymptotic functions, and show that the two cases above
are just special cases of this one.1

Asymptotics are very useful to us. Here is an obvious example: suppose, in
the course of solving some problem, we come across the hyperbolic cosine

1 You should start with the following: let {an}∞1 be a sequence of real numbers such
that an → a as n→ +∞. Then...
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function coshx = 1
2
(ex+e−x). We could carry this function along with us for

the rest of the problem. However, we could also note that | coshx − 1
2
ex| =

|1
2
(ex + e−x)− 1

2
ex| = 1

2
e−x decays quickly to zero as x gets large, and thus,

for large x, the difference between coshx and 1
2
ex is almost nothing at all.

The reader familiar with computer science will note a similarity between the
definition of asymptotic functions and so-called “big theta notation” in the
analysis of algorithms, although the two are not quite identical. See [8] for
more details; we will not need this notation for our course.

We should also note the mathematician’s use of the so-called “big oh” no-
tation. In the coming sections you will see me write, for example, f(x) =
1+x+O(x2). This means that f(x) looks like 1+x, and then the remaining
error described by approximating the function f(x) by 1 +x is no more than
some constant times |x2| when 0 < x � 1.. The connections between this
notation and asymptoticity can be formally developed; I recommend that
you do so.

5.2 Asymptotic formulas

5.2.1 Power / MacLaurin series

We may be interested in representing the function f(x) by a power series
of the form

∑∞
0

an
n!
xn. We should note that not all functions f have

this representation, but that, as physicists, we’re–say it with me–cool
and cavalier, and so we’ll often just assume that such a representation is
possible.2 It is very common to truncate Taylor series after either the first or
second order. Truncation after the first order is principled, since if a function
is differentiable at any point it is well-approximated by a linear function.
Truncation after the second order is also principled when one wishes to take
into account nonlinear effects that may be present; this is particularly true
in the case of a multivariate function f(x1, ..., xn), whose second order Taylor
expansion (if it exists!) is

f(x1, ..., xn) = f(0) +
n∑
i=1

(∂xkf(0))xk +
1

2

n∑
k=1

n∑
j=1

(∂xkxjf(0))xkxj +O(x3).

Without the second order expansion in this case, we lose all information
about interactions between f ’s arguments!

2 Here is a good problem due to James Wilson: let f(x) = e1/x
2

. Show that f(x) has
derivatives of all orders and that f (n)(0) = 0, meaning that f cannot be expanded in a
Taylor series. Be very careful of functions like this!
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Here are some good expansions to know:

a. eu =
∑∞

0
un

n!
, so that, for example, eu − 1 ≈ u for small u.

b. ln(1− u) = −
∑∞

1 un/n, so that ln(1− u) ≈ −u for small u.

c. sinx =
∑∞

0
(−1)n

(2n+1)!
x2n+1 and cosx =

∑∞
0

(−1)n

(2n)!
x2n. This, combined

with (a.), leads to one of the most beautiful identities in mathematics,
which you should now prove: eiθ = cos θ+ i sin θ.3 Common expansions
here are sinx ≈ x, the famed “small-angle approximation” in the theory
of classical oscillators, and cosx ≈ 1− x, both valid for small x.

d. The geometric series, which is of paramount importance: 1
1−u =

∑∞
0 un.

This series converges for u ∈ (−1, 1) and quite clearly diverges else-
where.

You should prove all of these from the definition of a Taylor series; by no
means are these the only expansions you will need, and you must be able to
derive them for yourself.

5.2.2 Sterling’s formula and Laplace’s method

One of the best-known and most impressive asymptotic approximations is
one derived by James Sterling for the factorial. I will derive this below, and
in doing so, show one of the many uses for the Gaussian integral

∫∞
−∞ dx e

−x2 .
(We have seen a modified version of this integral before, in 3.1.)

Write the factorial as the gamma function and make a change of variables:

n! =

∫ ∞
0

dt tne−t

=

∫ ∞
0

dt en ln t−t

=

∫ ∞
0

d(ny) en lnny−ny

=

∫ ∞
0

dy n en(lnn+ln y)−ny

= n en lnn

∫ ∞
0

dy en(ln y−y),

3 This is an incredibly deep result and has all sorts of ramifications in the theory of
ordinary and partial differential equations, classical and quantum mechanics, and complex
analysis.
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so that the question becomes one of calculating the integral
∫∞

0
dy en(ln y−y).

To do this we need a theorem due to Laplace.

Theorem 4. (Laplace’s method) If f(x) is a function on [a, b] with global
maximum x0 and f(x) is not close to f(x0) unless x is close to x0, and if
f ′′(x0) < 0 and x0 is not a or b, then∫ b

a

dx eMf(x) ≈

√
2π

M |f ′′(x0)|
eMf(x0)

for large M .

This is not an entirely rigorous statement of the theorem (although it is
good enough for our purposes) and the proof of the theorem requires signif-
icant real analysis; see me for pointers if interested. However, we can still
get a very good understanding of it in general by considering an asymptotic
expansion of f(x) about the point x0:

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 +O((x− x0)3)

Since x0 is not a or b and it is a global maximum, it is also a stationary
point and thus f ′(x0) = 0; the function thus has expansion f(x) ≈ f(x0) +
1
2
f ′′(x0)(x− x0)2. We can therefore write the integral as∫ b

a

dx eMf(x) ≈
∫ b

a

dx eM(f(x0)+ 1
2
f ′′(x0)(x−x0)2)

= eMf(x0)

∫ b

a

dx e−
M
2
f ′′(x0)(x−x0)2 .

Now, the remarkable thing is that this integral we’ve found is actually pro-
portional to the CDF of the normal distribution with variance 1

Mf ′′(x0)
and

mean x0. Just as in our derivation of gamma function identity G3, we will
now calculate this integral with the assumption that a and b are far enough
apart that we can approximate I(x) =

∫ b
a
dx e−

M
2
f ′′(x0)(x−x0)2 by the identical

integral over all of R.4 Write the square of the integral:

I(x)I(y) =

(∫ ∞
−∞

dx e−
M
2
f ′′(x0)(x−x0)2

)(∫ ∞
−∞

dy e−
M
2
f ′′(x0)(y−x0)2

)
=

∫∫
R2

d(x, y) e−
M
2
f ′′(x0)((x−x0)2+(y−x0)2)

4 This is called the Gaussian integral. It is ubiquitous throughout science, engineering,
and mathematics.
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Make the variable change to polar coordinates with r2 = (x−x0)2 +(y−x0)2.
The integral becomes∫∫

R2

d(x, y) e−
M
2
f ′′(x0)((x−x0)2+(y−x0)2) =

∫ 2π

0

dθ

∫ ∞
0

dr r e−
M
2
f ′′(x0)r2

= 2π

∫ ∞
0

dr r e−
M
2
f ′′(x0)r2

Make another change of coordinates, this time to ρ = − − M
2
f ′′(x0)r2, so

that the integral is now just

2π

∫ ∞
0

dr r e−
M
2
f ′′(x0)r2 = − 2π

Mf ′′(x0)

∫ −∞
0

dρ eρ

=
2π

Mf ′′(x0)
.

Thus we have I(x) =
√

2π
Mf ′′(x0)

, and so

eMf(x0)

∫ b

a

dx e−
M
2
f ′′(x0)(x−x0)2 ≈ eMf(x0)

√
2π

Mf ′′(x0)
. (5.1)

What about in our particular case, that of the integral
∫∞

0
dy en(ln y−y)? Well,

noting that f ′(y) = y−1 − 1 and f ′′(y) = −y−2, we conclude that the maxi-
mum of f occurs at y = 1 and is given by y0 = −1. Using Laplace’s method,
we conclude that

n! = n en lnn

∫ ∞
0

dy en(ln y−y)

≈ nen lnn

(
e−n
√

2π

n

)
=
√

2πn
(n
e

)n
.

You should take a minute to understand how beautiful this formula is.

Here is a useful exercise for you: derive a (slightly) weaker form of Sterling’s
approximation by taking the logarithm of the factorial:

lnn! =
n∑
1

lnn

Replace the sum by an integral and do what comes naturally. For more on
this type of brutality involving sums and integrals, see the next section:
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5.3 Replacing sums with integrals

Coming soon...
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