# Optimal Supply Networks III: Redistribution

Last updated: 2019/01/14, 22:05:08

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center | Vermont Advanced Computing Core | University of Vermont



























Optimal Supply Networks III

#### Distributed Sources

Size-density law

Cartograms

A reasonable derivation
Global redistribution

Public versus Private

References





20 1 of 47

### These slides are brought to you by:



COcoNuTS @networksvox

Optimal Supply Networks III

#### Distributed Sources

Size-density law

Cartograms
A reasonable derivation
Global redistribution

Public versus Private







# These slides are also brought to you by:

Special Guest Executive Producer



☑ On Instagram at pratchett\_the\_cat ☑

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

References





99 € 3 of 47

#### Outline

#### **Distributed Sources**

Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

References

COCONUTS @networksvox

Optimal Supply Networks III

#### Sources

Size-density law Cartograms

A reasonable derivation Global redistribution

Public versus Private







How do we distribute sources?

COcoNuTS @networksvox

Optimal Supply Networks III

#### Distributed Sources

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private







#### How do we distribute sources?



Focus on 2-d (results generalize to higher dimensions).

COCONUTS @networksvox

Optimal Supply Networks III

#### Distributed Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private







#### How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...

COcoNuTS @networksvox

Optimal Supply Networks III

#### Distributed Sources

Size-density law

Cartograms
A reasonable derivation

Global redistribution Public versus Private







#### How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private







#### How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation
Global redistribution
Public versus Private







#### How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal?

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private







#### How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private







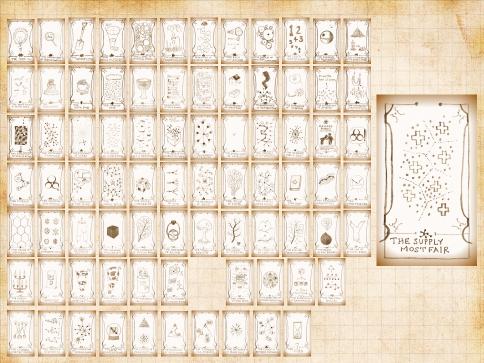
#### How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?
- We'll follow work by Stephan (1977, 1984) [?,?], Gastner and Newman (2006) [?], Um et al. (2009) [?], and work cited by them.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources


Cartograms

A reasonable derivation Global redistribution Public versus Private









Solidifying the basic problem

COcoNuTS @networksvox

Optimal Supply Networks III

#### Distributed Sources

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private







#### Solidifying the basic problem



Given a region with some population distribution  $\rho$ , most likely uneven.

COCONUTS @networksvox

**Optimal Supply** Networks III

#### Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution

Public versus Private



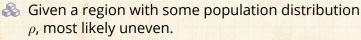


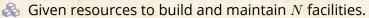


COcoNuTS @networksvox

Optimal Supply Networks III

#### Distributed Sources


Size-density law Cartograms


A reasonable derivation

Public versus Private

References

#### Solidifying the basic problem











#### Solidifying the basic problem



& Given resources to build and maintain N facilities.

Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

COcoNuTS @networksvox

Optimal Supply Networks III

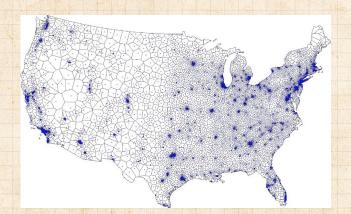
Distributed Sources

Size-density law

A reasonable derivation

Public versus Private










#### 

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [?]





Approximately optimal location of 5000 facilities.

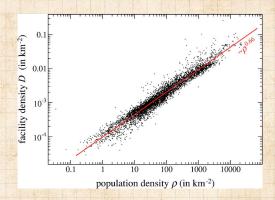


Based on 2000 Census data.

COcoNuTS @networksvox

Optimal Supply Networks III

#### Distributed Sources


Size-density law

A reasonable derivation
Global redistribution
Public versus Private









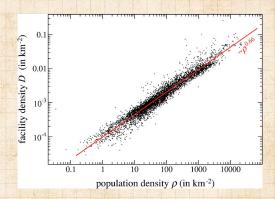
COcoNuTS @networksvox

Optimal Supply Networks III

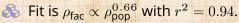
#### Distributed Sources

Size-density law
Cartograms
A reasonable derivation

Global redistribution
Public versus Private


References

& Optimal facility density  $ho_{
m fac}$  vs. population density  $ho_{
m pop}$ .









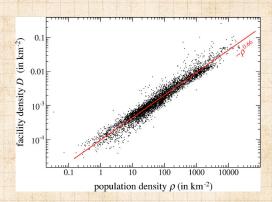

ho Optimal facility density  $ho_{
m fac}$  vs. population density  $ho_{
m pop}.$ 



COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources


Size-density law

A reasonable derivation Global redistribution Public versus Private

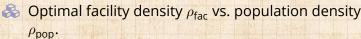


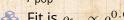






COCONUTS @networksvox


**Optimal Supply** Networks III


#### Distributed Sources

Size-density law

Public versus Private

References





Arr Fit is  $ho_{\rm fac} \propto 
ho_{\rm pop}^{0.66}$  with  $r^2 = 0.94$ .



Looking good for a 2/3 power ...





20 9 of 47

#### Outline

**Distributed Sources** Size-density law

COCONUTS @networksvox

Optimal Supply Networks III

Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private







#### Size-density law:



 $\rho_{\rm fac} \propto \rho_{\rm pop}^{2/3}$ 

COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law

A reasonable derivation Global redistribution Public versus Private







#### Size-density law:



 $\rho_{\rm fac} \propto \rho_{\rm pop}^{2/3}$ 





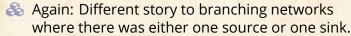
Optimal Supply Networks III

Size-density law

A reasonable derivation Global redistribution Public versus Private








#### Size-density law:



 $ho_{
m fac} \propto 
ho_{
m pop}^{2/3}$ 





COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private







#### Size-density law:



 $ho_{
m fac} \propto 
ho_{
m pop}^{2/3}$ 

- & Why?
- Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout region.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private









"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, 196, 523-524, 1977. [?]



We first examine Stephan's treatment (1977) [?,?]

COCONUTS @networksvox

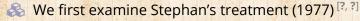
**Optimal Supply** Networks III

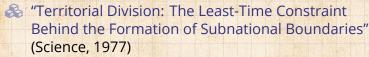
Sources

Size-density law Cartograms

A reasonable derivation Public versus Private








"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, **196**, 523–524, 1977. [?]





COcoNuTS @networksvox

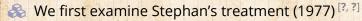
Optimal Supply Networks III

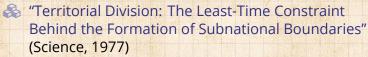
Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private








"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, **196**, 523–524, 1977. [?]





Zipf-like approach: invokes principle of minimal effort.

COcoNuTS @networksvox

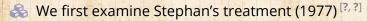
Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private










"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, **196**, 523–524, 1977. [?]



- "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)
- Zipf-like approach: invokes principle of minimal effort.
- Also known as the Homer Simpson principle.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private







 Consider a region of area A and population P with a single functional center that everyone needs to access every day.

COCONUTS @networksvox

Optimal Supply Networks III

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private







Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation
Global redistribution
Public versus Private







Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

Write average travel distance to center as  $\bar{d}$  and assume average speed of travel is  $\bar{v}$ .

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private







Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

Write average travel distance to center as  $\bar{d}$  and assume average speed of travel is  $\bar{v}$ .

Assume isometry: average travel distance  $\bar{d}$  will be on the length scale of the region which is  $\sim A^{1/2}$ 

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation
Global redistribution
Public versus Private







Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

Write average travel distance to center as  $\bar{d}$  and assume average speed of travel is  $\bar{v}$ .

Assume isometry: average travel distance  $\bar{d}$  will be on the length scale of the region which is  $\sim A^{1/2}$ 

Average time expended per person in accessing facility is therefore

$$\bar{d}/\bar{v} = cA^{1/2}/\bar{v}$$

where c is an unimportant shape factor.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private









Next assume facility requires regular maintenance (person-hours per day).

COCONUTS @networksvox

Optimal Supply Networks III

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private







Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity  $\tau$ .

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private







Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity  $\tau$ .

If burden of mainenance is shared then average cost per person is  $\tau/P$  where P = population.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private







Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity  $\tau$ .

If burden of mainenance is shared then average cost per person is  $\tau/P$  where P = population.

 $\Re$  Replace P by  $\rho_{\text{pop}}A$  where  $\rho_{\text{pop}}$  is density.

COCONUTS @networksvox

Optimal Supply Networks III

Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private







Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity  $\tau$ .

If burden of mainenance is shared then average cost per person is  $\tau/P$  where P = population.

 $\red Replace P$  by  $ho_{\mathsf{pop}} A$  where  $ho_{\mathsf{pop}}$  is density.

Important assumption: uniform density.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation

Global redistribution

Public versus Private







Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity  $\tau$ .

If burden of mainenance is shared then average cost per person is  $\tau/P$  where P = population.

 $\red Replace P$  by  $ho_{\mathsf{pop}} A$  where  $ho_{\mathsf{pop}}$  is density.

Important assumption: uniform density.

Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\mathsf{pop}}A)$$

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation
Global redistribution
Public versus Private







Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity  $\tau$ .

If burden of mainenance is shared then average cost per person is  $\tau/P$  where P = population.

 $\red Replace P$  by  $ho_{\mathsf{pop}} A$  where  $ho_{\mathsf{pop}}$  is density.

Important assumption: uniform density.

Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\sf pop}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{\sf pop}A).$$

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private







@networksvox
Optimal Supply
Networks III

COCONUTS

Next assume facility requires regular maintenance (person-hours per day).

Distributed Sources

Size-density law

If burden of mainenance is shared then average cost per person is  $\tau/P$  where P = population.

A reasonable derivation Global redistribution Public versus Private

 $\red{length}$  Replace P by  $ho_{\mathsf{pop}} A$  where  $ho_{\mathsf{pop}}$  is density.

References

Important assumption: uniform density.

Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{pop}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{pop}A).$$



 $\Re$  Now Minimize with respect to A ...







Differentiating ...

$$\frac{\partial T}{\partial A} = \frac{\partial}{\partial A} \left( c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right)$$

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private









Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left( c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} \end{split}$$

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private









Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left( c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

COCONUTS @networksvox

**Optimal Supply** Networks III

#### Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private









Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left( c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$



Rearrange:

$$A = \left(\frac{2\bar{v}\tau}{c\rho_{\mathsf{pop}}}\right)^{2/3}$$

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private









Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left( c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$



Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho_{\mathsf{pop}}}
ight)^{2/3} \propto 
ho_{\mathsf{pop}}^{-2/3}$$

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private





Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left( c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho_{\mathsf{pop}}}
ight)^{2/3} \propto 
ho_{\mathsf{pop}}^{-2/3}$$

 $\clubsuit$  # facilities per unit area  $\rho_{fac}$ :

$$ho_{
m fac} \propto A^{-1} \propto 
ho_{
m pop}^{2/3}$$

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law Cartograms

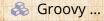
A reasonable derivation Global redistribution Public versus Private







Differentiating ...


$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left( c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho_{\mathsf{pop}}}
ight)^{2/3} \propto 
ho_{\mathsf{pop}}^{-2/3}$$

 $\clubsuit$  # facilities per unit area  $\rho_{fac}$ :

$$ho_{
m fac} \propto A^{-1} \propto 
ho_{
m pop}^{2/3}$$



COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private





COCONUTS @networksvox

**Optimal Supply** Networks III

#### Sources

Size-density law Cartograms

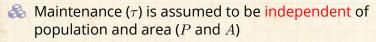
A reasonable derivation Global redistribution Public versus Private

References

#### An issue:

 $\mathbb{A}$  Maintenance ( $\tau$ ) is assumed to be independent of population and area (P and A)








COcoNuTS @networksvox

Optimal Supply Networks III

#### An issue:



Stephan's online book "The Division of Territory in Society" is here ...

- The Readme 
   is well worth reading (1995).

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private







## Outline

**Distributed Sources** 

Cartograms

COCONUTS @networksvox

Optimal Supply Networks III

Sources

Size-density law Cartograms A reasonable derivation

Global redistribution Public versus Private







Standard world map:



COcoNuTS @networksvox

Optimal Supply Networks III

Distributed

Sources Size-density law

Cartograms

A reasonable derivation
Global redistribution
Public versus Private







Cartogram of countries 'rescaled' by population:



COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law Cartograms

A reasonable derivation

Global redistribution Public versus Private







Diffusion-based cartograms:

COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law Cartograms A reasonable derivation

Global redistribution Public versus Private

References







20 of 47

### Diffusion-based cartograms:



Idea of cartograms is to distort areas to more accurately represent some local density  $\rho_{\text{pop}}$  (e.g. population).

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private







#### Diffusion-based cartograms:

- Idea of cartograms is to distort areas to more accurately represent some local density  $\rho_{\text{pop}}$  (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private







#### Diffusion-based cartograms:

- ldea of cartograms is to distort areas to more accurately represent some local density  $\rho_{\rm pop}$  (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [7] is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation

Global redistribution

Public versus Private







#### Diffusion-based cartograms:

- ldea of cartograms is to distort areas to more accurately represent some local density  $\rho_{\rm pop}$  (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [7] is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

Allow density to diffuse and trace the movement of individual elements and boundaries.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution







#### Diffusion-based cartograms:

- ldea of cartograms is to distort areas to more accurately represent some local density  $\rho_{\rm pop}$  (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [7] is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

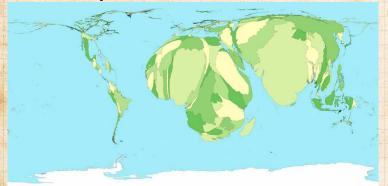
- Allow density to diffuse and trace the movement of individual elements and boundaries.
- $\ref{Diffusion}$  is constrained by boundary condition of surrounding area having density  $\bar{
  ho}_{pop}$ .

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms


A reasonable derivation Global redistribution







Child mortality:



COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private







**Energy consumption:** 



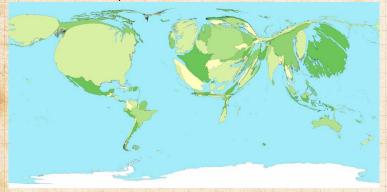
COcoNuTS @networksvox

Optimal Supply Networks III

Distributed

Sources Size-density law

Cartograms
A reasonable derivation


Global redistribution
Public versus Private







Gross domestic product:

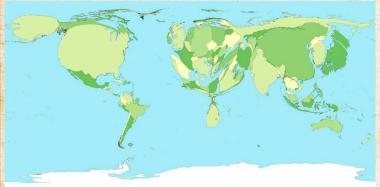


COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law

Cartograms A reasonable derivation


Global redistribution Public versus Private







Greenhouse gas emissions:



COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law

Cartograms


A reasonable derivation Global redistribution Public versus Private







Spending on healthcare:



COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private





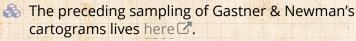


People living with HIV:



COcoNuTS @networksvox

Optimal Supply Networks III


Size-density law

Cartograms A reasonable derivation Global redistribution Public versus Private









A larger collection can be found at worldmapper.org ♂.

WSRLDMAPPER The world as you've never seen it before

COcoNuTS @networksvox

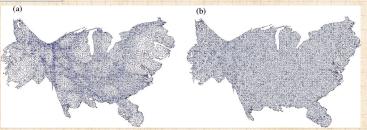
Optimal Supply Networks III

Distributed Sources

Size-density law
Cartograms
A reasonable derivation

Global redistribution
Public versus Private










"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [3]



Left: population density-equalized cartogram.

COCONUTS @networksvox

**Optimal Supply** Networks III

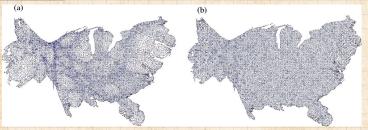
Sources

Size-density law

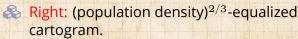
Cartograms

A reasonable derivation Public versus Private








"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [3]



Left: population density-equalized cartogram.



COCONUTS @networksvox

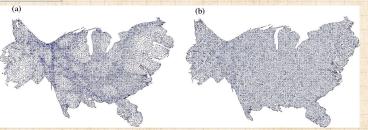
**Optimal Supply** Networks III

Sources Size-density law

Cartograms

A reasonable derivation Public versus Private










"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, 74, 016117, 2006. [?]



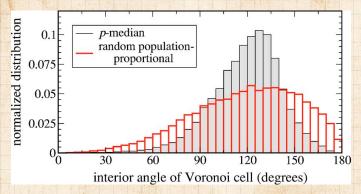
- Left: population density-equalized cartogram.
- Right: (population density)<sup>2/3</sup>-equalized cartogram.
- $\stackrel{\text{@}}{\Leftrightarrow}$  Facility density is uniform for  $\rho_{\text{non}}^{2/3}$  cartogram.

COCONUTS @networksvox

Optimal Supply Networks III

Sources

Size-density law


Cartograms

Public versus Private









From Gastner and Newman (2006) [?]

Cartogram's Voronoi cells are somewhat hexagonal.

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law

Cartograms

A reasonable derivation Public versus Private







# Outline

**Distributed Sources** 

Size density lav

Cartogram

A reasonable derivation

Global redistribution

References

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

Cartograms

A reasonable derivation

Public versus Private







Deriving the optimal source distribution:

COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law Cartograms

A reasonable derivation Global redistribution

Public versus Private







Deriving the optimal source distribution:



Basic idea: Minimize the average distance from a random individual to the nearest facility. [?]

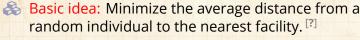
COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law

Cartograms A reasonable derivation Global redistribution


Public versus Private







# Deriving the optimal source distribution:



Assume given a fixed population density  $\rho_{\rm pop}$  defined on a spatial region  $\Omega$ .

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private







# Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [?]
- Assume given a fixed population density  $\rho_{\rm pop}$  defined on a spatial region  $\Omega$ .
- Formally, we want to find the locations of n sources  $\{\vec{x}_1,\dots,\vec{x}_n\}$  that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) \, \mathsf{min}_i ||\vec{x} - \vec{x}_i|| \mathsf{d}\vec{x} \,.$$

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private







# Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [?]
- Assume given a fixed population density  $\rho_{\mathrm{pop}}$  defined on a spatial region  $\Omega.$
- Formally, we want to find the locations of n sources  $\{\vec{x}_1,\dots,\vec{x}_n\}$  that minimizes the cost function

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \, \mathsf{min}_i ||\vec{x} - \vec{x}_i|| \mathsf{d}\vec{x} \,.$$

Also known as the p-median problem.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private







# Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [?]
- Assume given a fixed population density  $\rho_{\mathrm{pop}}$  defined on a spatial region  $\Omega.$
- Formally, we want to find the locations of n sources  $\{\vec{x}_1,\dots,\vec{x}_n\}$  that minimizes the cost function

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \min_i ||\vec{x}-\vec{x}_i|| \mathrm{d}\vec{x} \,.$$

- Also known as the p-median problem.
- Not easy ...in fact this one is an NP-hard problem. [?]

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private







# Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [?]
- Assume given a fixed population density  $\rho_{\mathrm{pop}}$  defined on a spatial region  $\Omega.$
- Formally, we want to find the locations of n sources  $\{\vec{x}_1,\dots,\vec{x}_n\}$  that minimizes the cost function

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) \, \mathsf{min}_i ||\vec{x} - \vec{x}_i|| \mathsf{d}\vec{x} \,.$$

- Also known as the p-median problem.
- Not easy ...in fact this one is an NP-hard problem. [?]
- Approximate solution originally due to Gusein-Zade [?].

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private







## Approximations:



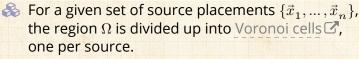
 $\mathcal{L}$  For a given set of source placements  $\{\vec{x}_1, \dots, \vec{x}_n\}$ the region  $\Omega$  is divided up into Voronoi cells  $\mathbb{Z}$ , one per source.

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law Cartograms


A reasonable derivation Global redistribution Public versus Private







## Approximations:



Define  $A(\vec{x})$  as the area of the Voronoi cell containing  $\vec{x}$ .

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private







## Approximations:

- & For a given set of source placements  $\{\vec{x}_1, ..., \vec{x}_n\}$ , the region  $\Omega$  is divided up into Voronoi cells  $\mathcal{O}$ , one per source.
- Define  $A(\vec{x})$  as the area of the Voronoi cell containing  $\vec{x}$ .
- As per Stephan's calculation, estimate typical distance from  $\vec{x}$  to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where  $c_i$  is a shape factor for the *i*th Voronoi cell.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private





# Approximations:

- & For a given set of source placements  $\{\vec{x}_1, \dots, \vec{x}_n\}$ , the region  $\Omega$  is divided up into Voronoi cells  $\vec{C}$ , one per source.
- Define  $A(\vec{x})$  as the area of the Voronoi cell containing  $\vec{x}$ .
- As per Stephan's calculation, estimate typical distance from  $\vec{x}$  to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where  $c_i$  is a shape factor for the ith Voronoi cell.

 $\begin{cases} \& \end{cases}$  Approximate  $c_i$  as a constant c.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private





## Carrying on:



The cost function is now

$$F = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathsf{d}\vec{x} \,.$$

COcoNuTS @networksvox

Optimal Supply Networks III

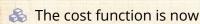
Distributed Sources

Size-density law

Cartograms

A reasonable derivation

Global redistribution


Public versus Private







#### Carrying on:



$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$

We also have that the constraint that Voronoi cells divide up the overall area of  $\Omega$ :  $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$ .

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation

Global redistribution

Public versus Private





#### Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$

- We also have that the constraint that Voronoi cells divide up the overall area of  $\Omega$ :  $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$ .
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation

Global redistribution
Public versus Private





#### Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$

- We also have that the constraint that Voronoi cells divide up the overall area of  $\Omega$ :  $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$ .
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

 $\Leftrightarrow$  Within each cell,  $A(\vec{x})$  is constant.



Optimal Supply Networks III

Distributed Sources

Size-density law

Cartograms

A reasonable derivation
Global redistribution
Public versus Private







# Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$

- We also have that the constraint that Voronoi cells divide up the overall area of  $\Omega$ :  $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$ .
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

- $\Leftrightarrow$  Within each cell,  $A(\vec{x})$  is constant.
- & So ...integral over each of the n cells equals 1.

@networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private







 $\S$  By varying  $\{\vec{x}_1, \dots, \vec{x}_n\}$ , minimize

By varying 
$$\{x_1, \dots, x_n\}$$
, minimize

 $G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathsf{d}\vec{x} - \lambda \left( n - \int_{\Omega} \left[ A(\vec{x}) \right]^{-1} \mathsf{d}\vec{x} \right)$ 

COcoNuTS @networksvox

**Optimal Supply** Networks III

Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private









 $\S$  By varying  $\{\vec{x}_1, \dots, \vec{x}_n\}$ , minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left( n - \int_{\Omega} \left[ A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$



I Can Haz Calculus of Variations ??

COCONUTS @networksvox

**Optimal Supply** Networks III

Distributed

Cartograms

A reasonable derivation Global redistribution Public versus Private









 $\S$  By varying  $\{\vec{x}_1, \dots, \vec{x}_n\}$ , minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left( n - \int_{\Omega} \left[ A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$



I Can Haz Calculus of Variations ??



& Compute  $\delta G/\delta A$ , the functional derivative  $\Box$  of the functional G(A).

COCONUTS @networksvox

**Optimal Supply** Networks III

Cartograms

A reasonable derivation Public versus Private









 $\S$  By varying  $\{\vec{x}_1, \dots, \vec{x}_n\}$ , minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left( n - \int_{\Omega} \left[ A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \, \right)$$



♣ I Can Haz Calculus of Variations 
☐?



& Compute  $\delta G/\delta A$ , the functional derivative  $\Box$  of the functional G(A).



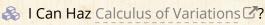
This gives

$$\int_{\Omega} \left[ \frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[ A(\vec{x}) \right]^{-2} \right] \mathrm{d}\vec{x} \, = 0.$$

COCONUTS @networksvox

**Optimal Supply** Networks III

A reasonable derivation Public versus Private








 $\S$  By varying  $\{\vec{x}_1, \dots, \vec{x}_n\}$ , minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left( n - \int_{\Omega} \left[ A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right) \underset{\text{Size-density law}}{\mathsf{Distributed}} \int_{\mathsf{Size-density law}} \mathrm{d}\vec{x} d\vec{x} = 0$$



& Compute  $\delta G/\delta A$ , the functional derivative  $\Box$  of the functional G(A).

This gives

$$\int_{\Omega} \left[ \frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[ A(\vec{x}) \right]^{-2} \right] \mathrm{d}\vec{x} \, = 0.$$

Setting the integrand to be zilch, we have:

$$\rho_{\rm pop}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}.$$

COCONUTS @networksvox

**Optimal Supply** Networks III

A reasonable derivation Public versus Private







## Now a Lagrange multiplier story:



Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\rm pop}^{-2/3}.$$

COCONUTS @networksvox

**Optimal Supply** Networks III

Size-density law

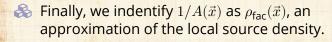
Cartograms

A reasonable derivation Global redistribution

Public versus Private








## Now a Lagrange multiplier story:



Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\mathsf{pop}}^{-2/3}.$$



COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution

Public versus Private







#### Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\mathsf{pop}}^{-2/3}.$$

- $\Leftrightarrow$  Finally, we indentify  $1/A(\vec{x})$  as  $\rho_{\rm fac}(\vec{x})$ , an approximation of the local source density.
- Substituting  $\rho_{\text{fac}} = 1/A$ , we have

$$ho_{\mathsf{fac}}(\vec{x}) = \left(rac{c}{2\lambda}
ho_{\mathsf{pop}}
ight)^{2/3}.$$

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution

Public versus Private







## Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\mathsf{pop}}^{-2/3}.$$

- $\Leftrightarrow$  Finally, we indentify  $1/A(\vec{x})$  as  $\rho_{\rm fac}(\vec{x})$ , an approximation of the local source density.
- $\red {\$}$  Substituting  $ho_{\sf fac}=1/A$ , we have

$$ho_{\mathsf{fac}}(\vec{x}) = \left(rac{c}{2\lambda}
ho_{\mathsf{pop}}
ight)^{2/3}.$$

& Normalizing (or solving for  $\lambda$ ):

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/3}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/3} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/3}.$$

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation

Public versus Private







# Outline

**Distributed Sources** 

Size density lav

A reasonable derivation

Global redistribution

Public versus Private

Reference

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation

Global redistribution

Global redistribution Public versus Private







# One more thing:



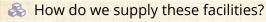
How do we supply these facilities?

COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law

Cartograms


A reasonable derivation Global redistribution Public versus Private







# One more thing:



How do we best redistribute mail? People?

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private







# One more thing:

How do we supply these facilities?

How do we best redistribute mail? People?

How do we get beer to the pubs?

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private







# One more thing:

How do we supply these facilities?

How do we best redistribute mail? People?

A How do we get beer to the pubs?

Gastner and Newman model: cost is a function of basic maintenance and travel time:

 $C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$ 

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private







## One more thing:

- How do we supply these facilities?
- & How do we best redistribute mail? People?
- How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$$

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance  $\ell_{ij}$  and number of legs to journey:

$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation

Global redistribution







# One more thing:

- How do we supply these facilities?
- A How do we best redistribute mail? People?
- How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$$

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance  $\ell_{ij}$  and number of legs to journey:

$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

 $\Leftrightarrow$  When  $\delta = 1$ , only number of hops matters.



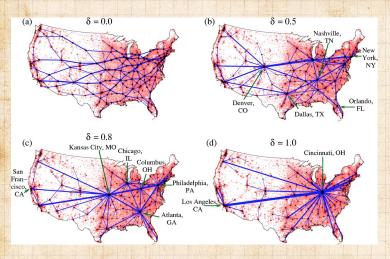
Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivatio

Global redistribution


Public versus Private











From Gastner and Newman (2006) [?]

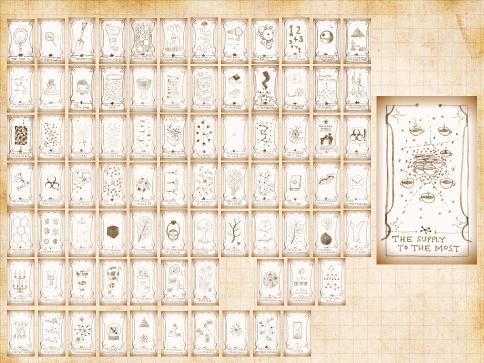
@networksvox

Optimal Supply Networks III

Distribute

Size-density law Cartograms

A reasonable derivation
Global redistribution


Public versus Private

References





9 a @ 38 of 47



# Outline

#### **Distributed Sources**

Public versus Private

COCONUTS @networksvox

Optimal Supply Networks III

Sources

Size-density law Cartograms

A reasonable derivation

Global redistribution Public versus Private







Beyond minimizing distances:

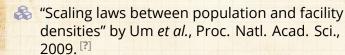
COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

References








2 Q 41 of 47

#### Beyond minimizing distances:



COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Sources Size-density law

Cartograms
A reasonable derivation

Global redistribution
Public versus Private







#### Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um *et al.*, Proc. Natl. Acad. Sci., 2009. [?]
- When the connection between facility and population density

$$ho_{
m fac} \propto 
ho_{
m pop}^{lpha}$$

does not universally hold with  $\alpha = 2/3$ .

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources
Size-density law

Cartograms
A reasonable derivation
Global redistribution
Public versus Private







#### Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um *et al.*, Proc. Natl. Acad. Sci., 2009. [?]
- When the connection between facility and population density

$$ho_{
m fac} \propto 
ho_{
m pop}^{lpha}$$

does not universally hold with  $\alpha = 2/3$ .

- Two idealized limiting classes:
  - 1. For-profit, commercial facilities:  $\alpha = 1$ ;

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law
Cartograms
A reasonable derivation

Global redistribution Public versus Private







#### Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [?]
- With the connection between facility and population density

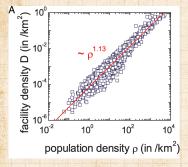
$$ho_{
m fac} \propto 
ho_{
m pop}^{lpha}$$

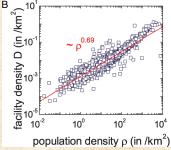
does not universally hold with  $\alpha = 2/3$ .

- Two idealized limiting classes:
  - 1. For-profit, commercial facilities:  $\alpha = 1$ ;
  - 2. Pro-social, public facilities:  $\alpha = 2/3$ .
- Um et al. investigate facility locations in the United States and South Korea.

COcoNuTS @networksvox

Optimal Supply Networks III


Distributed Sources Size-density law


Cartograms
A reasonable derivation
Global redistribution
Public versus Private











COCONUTS @networksvox

**Optimal Supply** Networks III

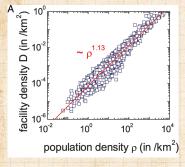
Sources Size-density law

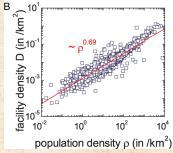
Public versus Private

References



Left plot: ambulatory hospitals in the U.S.





Right plot: public schools in the U.S.











COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources Size-density law

A reasonable derivati Global redistribution Public versus Private

References

Left plot: ambulatory hospitals in the U.S.

Right plot: public schools in the U.S.

Note: break in scaling for public schools. Transition from  $\alpha \simeq 2/3$  to  $\alpha = 1$  around  $\rho_{\rm pop} \simeq 100$ .





| US facility            | α (SE)  | R <sup>2</sup> |
|------------------------|---------|----------------|
| Ambulatory hospital    | 1.13(1) | 0.93           |
| Beauty care            | 1.08(1) | 0.86           |
| Laundry                | 1.05(1) | 0.90           |
| Automotive repair      | 0.99(1) | 0.92           |
| Private school         | 0.95(1) | 0.82           |
| Restaurant             | 0.93(1) | 0.89           |
| Accommodation          | 0.89(1) | 0.70           |
| Bank                   | 0.88(1) | 0.89           |
| Gas station            | 0.86(1) | 0.94           |
| Death care             | 0.79(1) | 0.80           |
| * Fire station         | 0.78(3) | 0.93           |
| * Police station       | 0.71(6) | 0.75           |
| Public school          | 0.69(1) | 0.87           |
| SK facility            | α (SE)  | R <sup>2</sup> |
| Bank                   | 1.18(2) | 0.96           |
| Parking place          | 1.13(2) | 0.91           |
| * Primary clinic       | 1.09(2) | 1.00           |
| * Hospital             | 0.96(5) | 0.97           |
| * University/college   | 0.93(9) | 0.89           |
| Market place           | 0.87(2) | 0.90           |
| * Secondary school     | 0.77(3) | 0.98           |
| * Primary school       | 0.77(3) | 0.97           |
| Social welfare org.    | 0.75(2) | 0.84           |
| * Police station       | 0.71(5) | 0.94           |
| Government office      | 0.70(1) | 0.93           |
| * Fire station         | 0.60(4) | 0.93           |
| * Public health center | 0.09(5) | 0.19           |

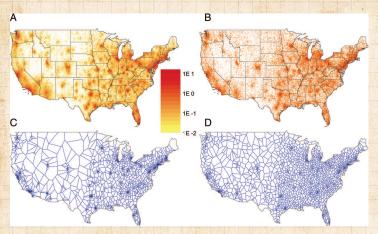
Rough transition between public and private at  $\alpha \approx 0.8$ .

Note: \* indicates analysis is at state/province level; otherwise county level. COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms


A reasonable derivation

Global redistribution

Public versus Private







A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

COcoNuTS @networksvox

Optimal Supply Networks III

Distribute

Size-density law

A reasonable derivation

Public versus Private







## Public versus private facilities: the story So what's going on?

Social institutions seek to minimize distance of travel.

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law

Cartograms A reasonable derivation Global redistribution

Public versus Private







## Public versus private facilities: the story So what's going on?



Social institutions seek to minimize distance of travel.



Commercial institutions seek to maximize the number of visitors.

COCONUTS @networksvox

**Optimal Supply** Networks III

Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution

Public versus Private







## Public versus private facilities: the story So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- & Defns: For the *i*th facility and its Voronoi cell  $V_i$ , define
  - $n_i$  = population of the *i*th cell;
  - $\langle r_i \rangle$  = the average travel distance to the *i*th facility.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources
Size-density law

Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References







# Public versus private facilities: the story So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- & Defns: For the ith facility and its Voronoi cell  $V_i$ , define
  - $n_i$  = population of the *i*th cell;
  - $\langle r_i \rangle$  = the average travel distance to the ith facility.
  - $A_i$  = area of ith cell ( $s_i$  in Um et al. [?])
- Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^\beta \text{ with } 0 \leq \beta \leq 1.$$

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources
Size-density law

Cartograms
A reasonable derivation
Global redistribution
Public versus Private







# Public versus private facilities: the story So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- & Defns: For the ith facility and its Voronoi cell  $V_i$ , define
  - $n_i$  = population of the *i*th cell;
  - $\langle r_i \rangle$  = the average travel distance to the ith facility.
  - $A_i$  = area of ith cell ( $s_i$  in Um et al. [?])
- Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^\beta \text{ with } 0 \leq \beta \leq 1.$$



 $\beta = 0$ : purely commercial.

 $\beta = 1$ : purely social.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources Size-density law

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References







@networksvox

Optimal Supply Networks III

Distributed Sources Size-density law

A reasonable derivation
Global redistribution
Public versus Private

References

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\label{eq:rhofac} \begin{split} & \rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}. \end{split}$$





@networksvox
Optimal Supply
Networks III

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\label{eq:rhofactor} \begin{split} & \rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}. \end{split}$$

 $\Longrightarrow$  For  $\beta = 0$ ,  $\alpha = 1$ : commercial scaling is linear.

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation

Global redistribution
Public versus Private
References







Either proceeding as per the
Gastner-Newman-Gusein-Zade calculation or, as
Um et al. do, observing that the cost for each cell

$$\label{eq:rho_fac} \frac{\rho_{\rm fac}(\vec{x})}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}.$$

 $\Longrightarrow$  For  $\beta = 0$ ,  $\alpha = 1$ : commercial scaling is linear.

should be the same, we have:

 $\Leftrightarrow$  For  $\beta = 1$ ,  $\alpha = 2/3$ : social scaling is sublinear.



Optimal Supply Networks III

## Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private







COcoNuTS
@networksvox
Optimal Supply
Networks III

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\label{eq:rhofac} \begin{split} & \rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}. \end{split}$$

 $\Longrightarrow$  For  $\beta = 0$ ,  $\alpha = 1$ : commercial scaling is linear.

 $\Leftrightarrow$  For  $\beta = 1$ ,  $\alpha = 2/3$ : social scaling is sublinear.

You can try this too:

Insert question from assignment 4 🗹



Global redistribution
Public versus Private
References







#### References I

COcoNuTS @networksvox

Optimal Supply Networks III

#### Distributed Sources

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private





