Optimal Supply Networks III: Redistribution

Last updated: 2019/01/14, 23:14:28

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center | Vermont Advanced Computing Core | University of Vermont

Optimal Supply Networks III

Distributed Sources

Size-density law

Cartograms

A reasonable derivation

Public versus Private

References

9 a @ 1 of 48

These slides are brought to you by:

@networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat ☑

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources Size-density law

Cartograms
A reasonable derivation
Global redistribution
Public versus Private

References

9 a @ 3 of 48

Outline

Distributed Sources

Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

References

COCONUTS @networksvox

Optimal Supply Networks III

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution

Public versus Private

Many sources, many sinks

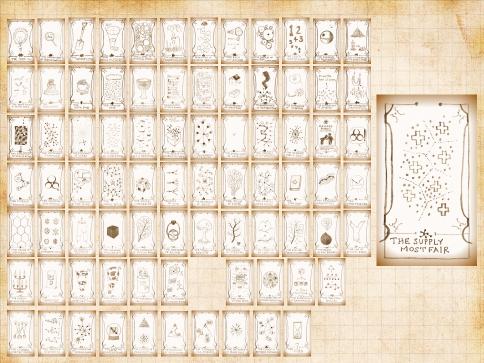
How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?
- We'll follow work by Stephan (1977, 1984) [4, 5], Gastner and Newman (2006) [2], Um *et al.* (2009) [6], and work cited by them.

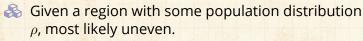
COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources


Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private



Solidifying the basic problem

& Given resources to build and maintain N facilities.

Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

COcoNuTS @networksvox

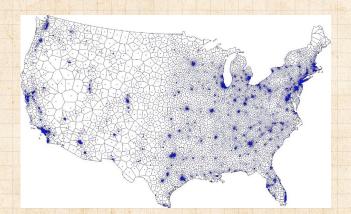
Optimal Supply Networks III

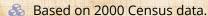
Distributed Sources

Size-density law

A reasonable derivation

Public versus Private





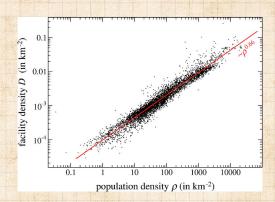
Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]

Approximately optimal location of 5000 facilities.

COcoNuTS @networksvox

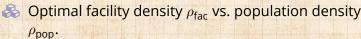
Optimal Supply Networks III

Distributed Sources


Size-density law

A reasonable derivation
Global redistribution
Public versus Private

COCONUTS @networksvox


Optimal Supply Networks III

Distributed Sources

Size-density law

Public versus Private

References

Arr Fit is $ho_{\rm fac} \propto
ho_{\rm pop}^{0.66}$ with $r^2 = 0.94$.

Looking good for a 2/3 power ...

2 9 of 48

Size-density law:

 $ho_{
m fac} \propto
ho_{
m pop}^{2/3}$

- & Why?
- Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout region.

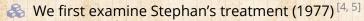
COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private



"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, **196**, 523–524, 1977. [4]

- "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)
- Zipf-like approach: invokes principle of minimal effort.
- Also known as the Homer Simpson principle.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .

Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$

Average time expended per person in accessing facility is therefore

$$\bar{d}/\bar{v} = cA^{1/2}/\bar{v}$$

where c is an unimportant shape factor.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation
Global redistribution
Public versus Private

@networksvox Optimal Supply Networks III

COCONUTS

Next assume facility requires regular maintenance (person-hours per day).

Distributed Sources

& Call this quantity τ .

Size-density law Cartograms

If burden of mainenance is shared then average cost per person is τ/P where P = population.

A reasonable derivation Global redistribution Public versus Private

References

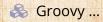
Important assumption: uniform density.

Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\sf pop}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{\sf pop}A).$$

 $\red {\mathbb R}$ Now Minimize with respect to $A \dots$

Differentiating ...


$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho_{\mathsf{pop}}}
ight)^{2/3} \propto
ho_{\mathsf{pop}}^{-2/3}$$

 \clubsuit # facilities per unit area ρ_{fac} :

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$

COCONUTS @networksvox

Optimal Supply Networks III

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

COCONUTS @networksvox

Optimal Supply Networks III

Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private

References

An issue:

 \mathbb{A} Maintenance (τ) is assumed to be independent of population and area (P and A)

- Stephan's online book "The Division of Territory in Society" is here ...
- (It used to be here .)
- ♣ The Readme

 is well worth reading (1995).

Standard world map:

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed

Sources

Size-density law Cartograms

A reasonable derivation

Public versus Private

Cartogram of countries 'rescaled' by population:

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private

References

Diffusion-based cartograms:

- ldea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

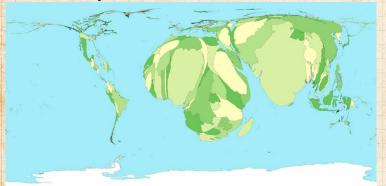
- Allow density to diffuse and trace the movement of individual elements and boundaries.
- $\ref{Diffusion}$ is constrained by boundary condition of surrounding area having density $\bar{
 ho}_{pop}$.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms


A reasonable derivation
Global redistribution
Public versus Private

Child mortality:

COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private

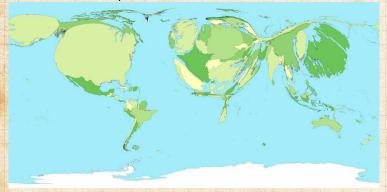
Energy consumption:

COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law

Cartograms A reasonable derivation


Global redistribution Public versus Private

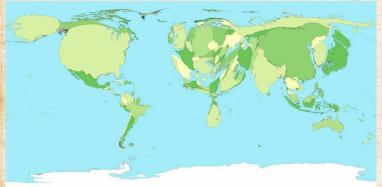
Gross domestic product:

COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law

Cartograms


A reasonable derivation Global redistribution Public versus Private

Greenhouse gas emissions:

COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private

Spending on healthcare:

COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law

Cartograms A reasonable derivation

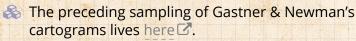
Global redistribution Public versus Private

People living with HIV:

COcoNuTS @networksvox

Optimal Supply Networks III

Size-density law


Cartograms A reasonable derivation

Global redistribution Public versus Private

A larger collection can be found at worldmapper.org .

WORLDMAPPER The world as you've never seen it before

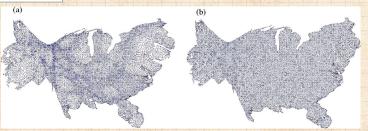
COCONUTS @networksvox

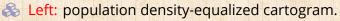
Optimal Supply Networks III

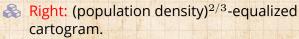
Sources

Size-density law Cartograms A reasonable derivation

Global redistribution Public versus Private







"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, 74, 016117, 2006. [2]

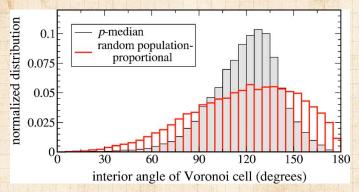
 $\stackrel{\text{@}}{\Leftrightarrow}$ Facility density is uniform for $\rho_{\text{non}}^{2/3}$ cartogram.

COCONUTS @networksvox

Optimal Supply Networks III

Sources

Size-density law


Cartograms

Public versus Private

From Gastner and Newman (2006) [2]

Cartogram's Voronoi cells are somewhat hexagonal.

COCONUTS @networksvox

Optimal Supply Networks III

Sources Size-density law

Cartograms

A reasonable derivation Public versus Private

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- Assume given a fixed population density ρ_{pop} defined on a spatial region $\Omega.$
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) \, \mathsf{min}_i ||\vec{x} - \vec{x}_i|| \mathsf{d}\vec{x} \,.$$

- Also known as the p-median problem.
- Not easy ...in fact this one is an NP-hard problem. [2]
- Approximate solution originally due to Gusein-Zade [3].

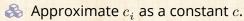
COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private



Approximations:

- & For a given set of source placements $\{\vec{x}_1, ..., \vec{x}_n\}$, the region Ω is divided up into Voronoi cells \mathcal{O} , one per source.
- Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .
- As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where c_i is a shape factor for the ith Voronoi cell.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

- Within each cell, $A(\vec{x})$ is constant.
- & So ...integral over each of the n cells equals 1.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

Cartograms
A reasonable derivation

Global redistribution
Public versus Private

Now a Lagrange multiplier story:

 \S By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathrm{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right) \underset{\text{Size-density law}}{\operatorname{Distributed}} \int_{\mathrm{Size-density law}} \mathrm{d}\vec{x} = 0$$

I Can Haz Calculus of Variations ??

& Compute $\delta G/\delta A$, the functional derivative \Box of the functional G(A).

This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathrm{d}\vec{x} \, = 0.$$

Setting the integrand to be zilch, we have:

$$\rho_{\rm pop}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}.$$

Optimal Supply Networks III

A reasonable derivation Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\mathsf{pop}}^{-2/3}.$$

- \Leftrightarrow Finally, we indentify $1/A(\vec{x})$ as $\rho_{\rm fac}(\vec{x})$, an approximation of the local source density.
- $\red {\$}$ Substituting $ho_{\sf fac}=1/A$, we have

$$ho_{\mathsf{fac}}(\vec{x}) = \left(rac{c}{2\lambda}
ho_{\mathsf{pop}}
ight)^{2/3}.$$

& Normalizing (or solving for λ):

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/3}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/3} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/3}.$$

@networksvox

Optimal Supply Networks III

Distributed Sources

Sources Size-density law

Cartograms

A reasonable derivation
Global redistribution
Public versus Private

Global redistribution networks

One more thing:

- How do we supply these facilities?
- A How do we best redistribute mail? People?
- A How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$$

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

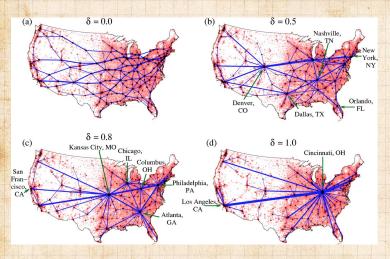
$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

& When $\delta = 1$, only number of hops matters.

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms


A reasonable derivatio
Global redistribution
Public versus Private

Global redistribution networks

From Gastner and Newman (2006) [2]

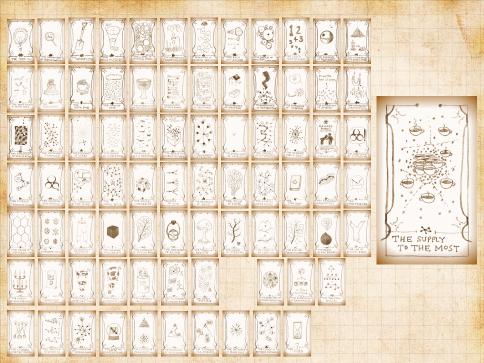
@networksvox

Optimal Supply Networks III

Distribute

Size-density law Cartograms

A reasonable derivation


Global redistribution
Public versus Private

References

9 a @ 38 of 48

Public versus private facilities

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [6]
- With the connection between facility and population density

$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha = 1$;
 - 2. Pro-social, public facilities: $\alpha = 2/3$.
- Um et al. investigate facility locations in the United States and South Korea.

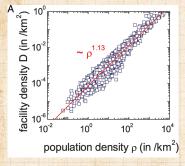
COcoNuTS @networksvox

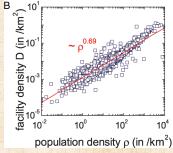
Optimal Supply Networks III

Distributed Sources

Size-density law

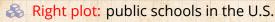
A reasonable derivation Global redistribution Public versus Private

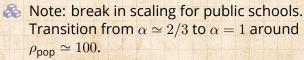

References



Public versus private facilities: evidence

COcoNuTS
@networksvox
Optimal Supply


Optimal Supply Networks III


Distributed Sources Size-density law

A reasonable derivat Global redistribution Public versus Private

References

Left plot: ambulatory hospitals in the U.S.

Public versus private facilities: evidence

US facility	α (SE)	R ²
Ambulatory hospital	1.13(1)	0.93
Beauty care	1.08(1)	0.86
Laundry	1.05(1)	0.90
Automotive repair	0.99(1)	0.92
Private school	0.95(1)	0.82
Restaurant	0.93(1)	0.89
Accommodation	0.89(1)	0.70
Bank	0.88(1)	0.89
Gas station	0.86(1)	0.94
Death care	0.79(1)	0.80
* Fire station	0.78(3)	0.93
* Police station	0.71(6)	0.75
Public school	0.69(1)	0.87
		A SOUND REAL PROPERTY.
SK facility	α (SE)	R ²
SK facility Bank	α (SE) 1.18(2)	0.96
		0.96
Bank	1.18(2)	0.96
Bank Parking place	1.18(2) 1.13(2)	0.96 0.91
Bank Parking place * Primary clinic	1.18(2) 1.13(2) 1.09(2)	0.96 0.91 1.00 0.97 0.89
Bank Parking place * Primary clinic * Hospital	1.18(2) 1.13(2) 1.09(2) 0.96(5)	0.96 0.91 1.00 0.97
Bank Parking place * Primary clinic * Hospital * University/college	1.18(2) 1.13(2) 1.09(2) 0.96(5) 0.93(9)	0.96 0.91 1.00 0.97 0.89
Bank Parking place * Primary clinic * Hospital * University/college Market place	1.18(2) 1.13(2) 1.09(2) 0.96(5) 0.93(9) 0.87(2)	0.96 0.91 1.00 0.97 0.89 0.90
Bank Parking place * Primary clinic * Hospital * University/college Market place * Secondary school	1.18(2) 1.13(2) 1.09(2) 0.96(5) 0.93(9) 0.87(2) 0.77(3)	0.96 0.91 1.00 0.97 0.89 0.90
Bank Parking place * Primary clinic * Hospital * University/college Market place * Secondary school * Primary school	1.18(2) 1.13(2) 1.09(2) 0.96(5) 0.93(9) 0.87(2) 0.77(3)	0.96 0.91 1.00 0.97 0.89 0.90 0.98 0.97
Bank Parking place * Primary clinic * Hospital * University/college Market place * Secondary school * Primary school Social welfare org.	1.18(2) 1.13(2) 1.09(2) 0.96(5) 0.93(9) 0.87(2) 0.77(3) 0.77(3) 0.75(2)	0.96 0.91 1.00 0.97 0.89 0.90 0.98 0.90 0.98
Bank Parking place * Primary clinic * Hospital * University/college Market place * Secondary school * Primary school Social welfare org. * Police station	1.18(2) 1.13(2) 1.09(2) 0.96(5) 0.93(9) 0.87(2) 0.77(3) 0.77(3) 0.75(2) 0.71(5)	0.96 0.91 1.00 0.97 0.89 0.90 0.98 0.97 0.84 0.94

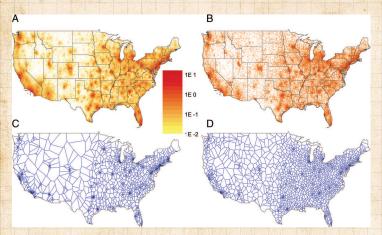
Rough transition between public and private at $\alpha \approx 0.8$.

Note: * indicates analysis is at state/province level; otherwise county level. COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms


A reasonable derivation

Public versus Private

Public versus private facilities: evidence

A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law

Cartograms A reasonable derivation

Public versus Private

References

20 44 of 48

Public versus private facilities: the story So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- \clubsuit Defns: For the *i*th facility and its Voronoi cell V_i , define
 - n_i = population of the *i*th cell;
 - $\langle r_i \rangle$ = the average travel distance to the ith facility.
 - A_i = area of ith cell (s_i in Um et al. [6])
- Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^{\beta}$$
 with $0 \le \beta \le 1$.

 $\beta = 0$: purely commercial.

 $\beta = 1$: purely social.

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources Size-density law

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References

Public versus private facilities: the story

COcoNuTS
@networksvox
Optimal Supply
Networks III

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\label{eq:rhofac} \begin{split} & \rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}. \end{split}$$

 \Longrightarrow For $\beta = 0$, $\alpha = 1$: commercial scaling is linear.

 \Leftrightarrow For $\beta = 1$, $\alpha = 2/3$: social scaling is sublinear.

You can try this too:

Insert question from assignment 4 🗹

Sources
Size-density law
Cartograms

A reasonable derivation
Global redistribution
Public versus Private
References

References I

[1] M. T. Gastner and M. E. J. Newman.
Diffusion-based method for producing density-equalizing maps.
Proc. Natl. Acad. Sci., 101:7499–7504, 2004. pdf

[3] S. M. Gusein-Zade.

Bunge's problem in central place theory and its generalizations.

Geogr. Anal., 14:246–252, 1982. pdf

[4] G. E. Stephan.

Territorial division: The least-time constraint behind the formation of subnational boundaries.

Science, 196:523–524, 1977. pdf

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

References

9 a ○ 47 of 48

References II

[5] G. E. Stephan.

Territorial subdivision.

Social Forces, 63:145–159, 1984. pdf

✓

[6] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities.

Proc. Natl. Acad. Sci., 106:14236–14240, 2009. pdf 2

COcoNuTS @networksvox

Optimal Supply Networks III

Distributed Sources

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

